goooboooogn
0 4820 1983 0 73-97

73

Hardware Algorithms and Logic Design Automation

-— An Overview and Progress Report —
Shuzo YAJIMA and Hiroto YASUURA
Faculty of Engineering

Kyoto University

1. Introduction

Advances in the fabrication technology of VLSI_éiréuiiS.will
soon make it feasible to implement highly éaralléi computing
sfstems consisting of hundreds‘ or of thousands of‘ computing
élements; These highly parallel systems will operate
cobperatively with SOftﬁare and achieve tremendous speed
improvements of digital computing 5ystems. Many‘reseafches have
been carried out to establish effective design methods for‘éithér’
general or special purpose highly parallel éysteﬁsfl].

Design of efficient algorithm for parallel coﬁpﬁtationvisv
the key problem of design of highly parallel hardware sYsteﬁs as
well as software. In this article, we will discusé the design
problem bf parallel algorithms, called hardwére aigorithms.

Various hardware aléorithms have been proposed fof several‘
practically important problems such as 36fting, arithmetic
[2]-[6]. T

operations, matrix arithmetics and pattern matching o

analyze these algorithms, . several theoretical discussions

74

have been going on and a new complexity measure of parallel
computation suitable for VLSI, called area, has been proposed

F7][8]. VLSI and hardware algorithms make a new area of

theoretical research on computational complexity. A theory of
design and analysis of hardware algorithms for VLSI systems will
be established in several years ahead.

Logic design automation systems will be indispensable tools
for design of largé highly parallel systems. A silicon
compilation system will be developed which generates mask
patterns for VLSI fabrication from a high level hardware

algorithm description[gl. Design verification tools are also

impogtgnt components of»@esignﬂautomatiqn>systems, since highly
parallel computa;ion is inherently too ;omplicated f§r;dé$igners
to think without any tools such asdsimﬁiéﬁo; andyVefifier.

In_this article,‘we will briefly survey topics of researchgsn
on hardware 1algqrithms and Vdesign automation systems. Section
2 gnd 3‘are ap»overview and progress report of the researqh_on
hardware algorithms. Section 4 is the progress report of
development ofr an interactive iogic design and verification
support system ISS. |

In éhe next section, hardware algofithms of integer multi-
pliéation and sorting are presented. as examples of hardware‘algo—
rifhms. A general consideration of hardware algorithms for VLSI
is -also discussed. 'In section 3, some results of theoretical
researches on the complexity of hardware algorithms are presentgd.
Design automation Systems and éomputer aided design will_ be
discussed in section 4. As an example of design verification

tools, 1ISS developed by our group is presented.

79

2. Design of Hardware Algorithms

2.1 Integer Multiplication

Integer multiplication is widely used as a basic operation
in general purpose computers, in process controllers and signal
processors. Many high speed algorithms for integer multiplication
in software and hardware have been proposed. and used practically.
In table 1, several hardware algorithms for intéger
multiplication are compared. |

"In applications not required so much high speed computation,
~add-and-shift multiplicationlris géne;allyv used. The speed of
computation is improved, when’ a carry look-ahead . adder is
"ﬁdopfed[lo]; ‘Sefialb multiplication is implemented in signal

[ll]. These

'prpcessing in which opefands are input serially
abéve algorithmsyafe implemented by sequential circuits.
For high-speed multiplication by combinational circuits,
~array multiplication and matrix geﬁeration—reduction*schéme‘are
developed and implemented forvpractical use. Array multiplication
is attractive for their compactﬁésé and regularity of its
iterative array structure using one basic circuit‘type, but their
speed of operation increases linearly with the operand length and

[10]

thus slow for large words Matrix generation-reduction

scheme is much faster for large operands since their bspeed of

operation = increases with the logarithm of 4the

[12]

operand length The basic idea of this algorithm was

proposed by Karatsuba and Ofman, and the most popular circuit

(13101471

based on it is known as Wallace's tree Several

papers discussed about multiplier based on this algorithm with

76

speed of
algorithm size area
computation
add-and-shift multiplication 2
n n n
(ripple carry adder)
add-and-shift multiplication o
n nlogn nlogn
(carry look-ahead adder)
serial

n n n
multiplication

array

n2 nz n
multiplication

matrix generation-reduction 2 2 :

n n“logn logn
multiplication : :
" Brént—Kuﬁgﬁé_. : :

v < nlogn vnlogn
algorithm
Shonhage-Strassen's . ‘
n(log n(log log n)) - logn
algorithm B

nn:

the length of operands

Table 1. Hardware algorithms for Integer Multiplication

n ' 8 16 - 32 64
matrix : :
generation- 22/672 24/2516 30/9064 34/35207
reduction : v
array - 29/528 61/2336 125/9792 253/40064
(depth/size) 4-input NOR/OR gates
Table 2. Depth and Size of Multiplier

77

higher performance[lol[lzl.

In table 2, an evaluation of the size (the number of gates)
and the depﬁh (the speed of computation) of circuits designed
according to these two algorithms. Gates usedvin the design are
4-input NOR/OR gates. The circuit based on matrix generation-
reduction algo;ithms is realized as a combination of Booth's
algorithm, Wallece's tree and a carry look-ahead adder. The
depth of the icircuit is extremely smaller than the array
multiplier for large n. This example shows that the design
of a good hardware algorithm results in tremendous improvement
on efficiency.

Although the size of circuits of these two algorithms are

the same order, namely O(nz), the upper boundsAof the area on
VLSI have quite different order, O(n2) for array
multiplication and O(nzlog n) for matrix generation-
‘reduction one. This differehce is caused by the difference of
cpmplexity of interconnection in the circuits. In the next
section, we will discuss a new circuit complexity analysis

technique using the measure, called area.

Brent-Kung's algorithm in table 1 achieves the best upper

bound of the area-time product[sl. Shonbége—Stféssenis one is

the best . upper bound of the number of Boolean operations

required to n-bit integer multiplication[lsl.

18

2.2 Sorting

Sorting is

one of the most

important operations in data

processing. Many sequential and parallel sorting algorithms have

been developed and practically ﬁsed,

algorithms are compared.

Algorithm

Bubble sort
Heap sort

Bitonic sort
Rebound sort

Parallel
enumeration sort

‘Parallel merge
sort

Parallel heap
sort

Sorting on
mesh ‘

Parallel
distributive sort

Sorting by

combinational circuit O(n

Table 3. Algorithms for Sorting

the number of
processing elements

o(1)
0(1)
O(n)

0(n)
O(n)
0(log n)
0(log n)

O(n)

O(n)

2

In table 3, several sorting

- the speed of
- computation -

O(n2)
O(n log n)

2

0(log n)

O(n)
O(n)
O(n)
O(n)

1/2

O(n)

O(log n)

O(log n5

n: the number of sorted element

79

Bubble sort and Heap sort are softwawe algdrithms and have
time complexity O(nz) and O(n log n), respectively[ls]. Heap sort
is one of the fastest algorithms of software, because it is
easy to show that the lower bound of time comélexity of
software algorithms is @(n log n).

Many hardware = algorithms for sorting have been proposed and
some of them are implemented. Muller and Preparatavshowed that
sorting of n elements can be performed by a combinational circuit

with depth O0O(log n) -'and size O(nz)[lsl.

Several ' hardware
algorithms on ‘multiprocessor systems have been proposed such as
algorithms on mesh connected processors by Thompson-Kung[l7]'ahd‘

byvNassimi—Sahni[lal. [19])

and Wilsow—Chowt 201 arg‘élso this kind.

*Parallel distributive sort by Maekawa

When we consider a sorting circuit which is attached to
conventional computer systems, we will assume that data are
transmitted one by one between the sorting circuit and memory

devices. Rebound sort by Chen et. al.[zl], Parallel enumeration

sort by Yasuura and Takagi[22], Parallel merge sort by Todd[23];'

[24] ,re a11 developed under the

and Parallel heap. sort by Tanaka
following assumptions; (1) a sorting circuit 'is seéaratéd from
memo;y”devices and (2) data transmission‘betweenithe.circﬁit and
memory devices is serial. Under these assumptions, pfoéessing'for’
sorting cannot be faster than data transmission. Since the time
required for sorting in these algorithms is linearly proportional
to the number of sorted elements, these algorithms achieve

optimum order on time. In these algorithms, processes of sorting

are efficiently overlapped with the input/output time.

80

Rebound sort and Parallel enumeration sort require O(n)
processing elements, but each element has constant size -and
realized by a vefy simple circuit. Circuits for these algorithms
have linear array structure and simple communication structure.
Rebound sort 1is suitable for implementation by magnetic bubble
circuits. Parallel enumeration sorting is implemented on the Bus
Connected Cellular Array structure detail of which is discussed
in the next subsection.

Parallel merge sort and Parallel heap sort require only
O(log n) processing elements. However, each processing element
should possess 0O(n) memory. Since memory can be integrated in
higherﬂdens{ty,than log}c circuits, several circuits have been

implemented based on these algorithms using commercial LSI's.

2.3 Hardware Algorithms for VLSI

Kung and his group proposed the systolic algorithms which is

suitable for VLSI implementation[4]-[6}

the following properties[sl.

. Systolic algorithms have

(1) The algorithm can be implemented by only a few different
types of simple cells.

(2) The algorithﬁ's data and contrpl flow is simple aﬁdvregular,l
so ,tﬁatA cells canf be cohnected by a network with local and
regular interconnections. : :

(3) The algorithm uses extensive pipelining and multiprocessing.

Typically, several data streaﬁs move at constant velocity over
fixed paths in the network, interacting at cells where they meet.

In this way a large number of cells are active at one time so

81

that the computation speed can keep up with the data rate.

The first property reduses the cost of design and test,
since a designer only designs and tests a few different, simple
cells. Regular interconnection in the second property implies
that the design can be made modular and extensible. This also
means that the area for wiring on a chip will be reduced and
propagation delay caused by these wires will decrease. By
pipelining and multiprocessing, one can meet the performance
requirement of a circuit. Pipelining makes it possible to cverlap
processing and input/output effectively.

Kung and his coauthors developed many systolic algorithms on
one dimensional cellular arrays, two dimensional square meshes
and hexégonal meshes. ‘ A

‘We developed hardware algorithms which éré realized on Bus
Connected Cellular Array (BCA). Algoritﬁms on BCA possess the
following properties added to (1)-(3) of systolic algorithms
[22][25]_

(4) The algorithm uses grobal communications through buses. The
communication control of the grobal communication is simple and
distributed.

(5) Input and output sqheme is Fimple,and it is~eaéy to.attach
to 6ther cifCuits iﬁ a‘gystem. bne can extend the circuit dnly
connecting chips whiéh include smaller circuits without changing
input/output scheme.

(6) The restriction on performance of the algorithm shold be
relaxed as much as possible. Processing time should depend on

only the size of problem not on the size of the circuit.

82

>The grobal communication using buses improves the speed of
algorithm drastically and reduces the complexity of
communication. ~ Algorithms must be designed under realistic
assumption of ipput/output protocols. Highly parallel input and
output increases infeésiblly the complexity of communication of
the outside of the algorithm, though the algorithm seems to
achieve high performance. Hardware algorithms are inherently
restricted their ability of processing by the size of circuits.
However, algorithms should process problems smaller than their
ability in time proportional to the size of problems. On BCA
algorithms, these properties ~ can be easily realized wusing
_grobal bus communication. |

lWé) propésed 'é‘sorting. algorithm on BCA, calléd Parallel
enumeration sort{zzl. This algorithm can be introduced to
.conventionalk computer systems without changing their
architecture. The processing time is linearly proportional to thé

number of data for sorting. The sorting circuit consists of a

linear array of one type of simple cells each of which includes

two registers, a comparator and a counter. These cells are
connected by two buses. Since the circuit is extensible only by
connecting the same circuit, we can implement a large circuit

connecting chips including the circuits.
We have aiso developed BCA algorithms for pattern matching,
matrix multiplication, very long integer multiplications and3joinf

opration in relational databases.

10

83

3. Analysis of Hardware Algorithms

3.1 Time Complexity

Combinational logic ciréuits are the most fundamental
circuits in digital systems, which can realize the most highly
- parallel computation. Many researches have been carried out on
depth and size of circuit required to realize Boolean functions
[2][25][26]. Results of these researches can be applied to
"analysis of hardware algorithms.

The delay complexity of Boolean function 1is the smallest
depth of circuits which realize f. Boolean functions which depend
essentially on n variables have delay complexity Q(log n).
Functions 1in several important classes such as linear functions,
é&&metric functions and threshold functions have delay complexity
proportional to 1log n. It is also well known that there’are
functions required 0O(n) depth of circuits for their realization

[26].

Integer addition and multiplication can be performed by
circuits with depth O(log n), wheére n is the length of operands.
For division and square rooting, algorithms with depth OKloan)
were developed. But it is not known whether these operations can
be computed by circuits with depth C(log n) or not.

- Unger: proposed a method to construct a circuit with the

logarithmic depth for a class of functions which cén be computed
[271

by sequential circuits in 1linear time This class of
functions includes many practical functions such as binary
addition, comparison, counting and so on. We showed a method to

reduce the depth of a circuit as a generalization of Unger's

11

84

method[28].

Moreover, we proved an ‘interesting general result on
relaﬁion between complexity of software algorithms and of
hardware algorithms as follows.

Theorem[29]

A function which can be computed by a T(n)-time
bounded and S(n)-tape bounded deterministic Turing machine can be
computed by a combinational c¢ircuit whose depth is proportional
to S(n)log T(n).

In the proof of this theorem, we obtained a construction method
of the combinational circuit. Thus we can construct a

k+ln) for a function which

combinational circuit with depth O(log
~1s computed . ip}rlogkny space by a_ polynomial time software
éigorithm;“,This result shows an upper bound of speed up ratio of

hardware algorithm and software one.

3.2 Area Complexity

In VLSI circuits, it is well known that the area of a cir-
cuit depends on not only: the number of logic elements included in
the circuit but also the area for the wiring and input/output

[4]1 Thompson[z] and Brent-Kung[sl

terminals prqposed mathematical
models of VLSI circuits andvfprovided several techniques to
evaiuaté‘.the area of circuits theoretically. On these
mathematical models of VLSI, many works have been‘carried out to
estimate performance of VLSI circuits by a measure, afeaftime

product[3]. Leiserson[30] and Valiant[3l] discussed the area
required for layouts of tree and planer graph circuits into the

VLSI model.

12

85

A VLSI model 1is defined as follows:
(1) A circuit 1is embedded into a convex planer region R.
(2) Wires have minimal width) (a positive constant).

(3) At most Vv (v

v

2, a positive constant) wires can
overlap at any point of R.

(4) Logic elements each contain a A x)\ square and their
shapes and area are given for each sort of elements.

(5) No logic element overlaps other logic elements and wires
in R.

(6) Input and output of . the circuit is performed through
wires on the boundary of R.-

The 1last condition of the definition of VLSI model was

[32].‘ The

introduced by us and called the boundary conditions
boundary‘conditions is Very. realistic assumption of actual ‘VLSI"
circuits. We can show that the area required for embedding'of a
binary tree cifcuit with n nodes is 0(n log n) under the boundary
condition, though it 1is Jjust 0O(n) on the model except the
boundary condition.

It is very important‘ to estimate the area of a circuit’® at
the stage of logic design before layout. of the circuit. Several
results have been obtained on evaluation methods of the area from
féature of the circﬁit such as depth, width, size and structure
which are easily measured»from the logic design.

Trade-off between time and area is the most interesting
subject of theoretical researches. Many results have been

presented on area-time products of practical functions such as

integer multiplication, integer addition, comparison, sorting,

13

86

FFT, matrix multiplication and so on[3]. On combinational

circuits, trade-off between depth 4 and area A for an n-variable
function is shown as follows;

Alogd= g (nlog nmi32]

4. Logic Design Automation

4.1 Computer Aided Design and Design Automation

Computer Aided Design (CAD) -or Design Automation (DA)
technology is almost indispensable in large, complicated logic
design. A goal of researches on CAD/DA systems is to develop a

silicon compilation system[gl

. In the silicon compilation system,
a designer describes a design of a hardware algorithm in a high-
level hardware algorithms description language which is free from
many‘constraints caused by physical implementation. The designer
also specifies several conditions on-realization of the algorithmi
by silicon. devices such ' as speed, area,: technology used for
implementation and .so - on. The silicon compilation system
generates a logic design which realizes the algorithm - and
satisfies the specified conditions. Moreover, the system
translates the. design. into . several information to control
fabrication processes of VLSI. One can make his own VLSI chips
only writing a specification of hardware algorithm in a high-
level language as well as software in high-level 1languages.
There are still many problems that should be resol&ed?for
implementation of the silicon compilation system.

Many kinds of CAD techniques and ' systems for logic design

have been developed and are in use: hardware description

14

87

language, logic diagram editor, logic function minimization
programs, optimum circuit generation programs, logic simulator,
logic design verifier, test pattern generator, etc. These
systems‘arebdeveloped to relievé logic designers from troublesome,
laborious work in logic design and verification. However, they
are not utilized to a full extent because designers can not use
them in an integrated way. Since the logic design stage is a
repetition of design and verification, a logic design system
should be an integrated one including a design language, editing
system, design-aid programs, a design verification tool, etc. on
a standardized data management. A CAD system for logic design
usually needs some-intéraction by mén for processing. An inter-
active sophisticated user %nterfacé is keenly needed for CAD
systeﬁs.

‘We .have developed Interacti&éysimulation System (ISS) --- an
interactive logic design and ?erification support system for

structured logic design (331

. One can carry out logic design in a
structured way by utilizing functions of ISS all interactively.
ISS has the following features.
(1) Interactive and Integrated Logic Design System

EDITOR, TRANSLATOR, LINKER, Interactive Simulator (IS) and
other peripheral programs can be utilized easily by terminal
commands (See Fig.l). A designer performs logic design and its
verification alternately without bothering about management of
many kinds of design data.

(2) Interactive Simulator(IS)

IS is wused for design verification in ISS. A designer can

15

88

User Terminal

1SS
MANAGER
Interactive Peripheral
EDITOR TRANSLATOR} LINKER , - o
Simulator Programs
(1S)

€----- ? LODE

|

Fig. 1 Configuration of 1SS

16

89

control the simulation steps interactively td find out design
errors at an early stage of design cycle. IS can simulate a
design described at multi-levels (gate, functional, and register
transfer) in a structured logic design.
(3) Structured Hardware Design Language (SHDL)
SHDL is used to describe logic designs in ISS. SHDL can
describe a design as a hierarchically constructed set of moduies.
Each module is described with its structure or. behavior. There
are three kinds of behavioral description which enable multi-
level description of a design.
(4) Design Data File
The filg.system storing description data or~simﬁlationfdata is
configurated "module boriented“. ' ISS has the filé systgm;as_a

common interface among programs and is integrated around it.

4.2 Design Verification in ISS

A logic simulator is wused for design verification in order
to find out design errors based on simulation results which do
not satisfy the design specification. Verification by
simulation shows that "the design contains errors", not that "the
des%gn is correct". The. usefulness of a simulatSr.as a’design
verificétién tool depends on how earl} a user can find out design
errors with it. The turn around time to feed back the
verification results to the design step becomes shdrter,, the
earlier an error. can be found.

Interactive Simulator IS in ISS is an interactive simulator

which has following functions.

17

90

(1) Interrupting function

A user can set 'breakpoints in simulation steps wusing
subcommand AT, STEP, WHEN and ON. When the following conditions
occur, the simulation process is suspended and falls into the
suspended state.

AT condition occurs when the simulation time reaches the
specified one. AT subcommand is used to set this condition.

' STEP condition occurs when the simulation for the specified
time interval ends. STEP subcommand is wused +to set this
condition.

WHEN condition occurs when the simulated module behaves in
the specified manner or falls into the specified state. WHEN
subcommand is usea td'%et this condition: :

INPUT CONSTRAINTS ERROR condition occurs when the simulated
module or submodules (blocks) receive input patterns which do not
satisfy the input constraints of the module or submodules. ON
subcommand is used to make this condition in effect. In SHDL the
design specification of a module can be partially described as
constraints on its input patterns. In general the module is
designed to have the specified function only of the input
patterns which satisfy the input constraints. A designer can use
this useful - information in design verification with a simulator.
When an‘ input pattern to a module violates input constraints,
the design containing the module must have some errors an& the
module behaves incorrectly. The errors are likely to be in the
design of modules which supply the input pattern or in the input

constraints itself. A designer can tell of what kind the error is

18

31

from ﬁhe type of the input constraints not satisfied. Moreover,
a designer can easily prepare input patterns for a module
according to input constraints description. Waste of computation
time on unnecessary simulation for wrong input patterns. IS has
a function to check input patterns during execution whether
" they satisfy input constraints of modules to which ‘they
drive. INPUT CONSTRAINTS ERROR condition‘occurs when these
input constraints are violated.
While the simulation process stays in the sﬁSpended state,
a user can examine the status 6f the module precisely andlieéume
the simulation with modified input patterns specified adaptivély,
(2) Display function of simulation results |
A user can examiné_ the Vaiﬁes of signal lines and contents
of memory elements at the specified simulation time in'feal time.
LIST subcommand is ﬁsed to display simulation results.
(3) Modification function of input patterns
A user can modify input patterns dynamically acéording,to
the simulation results. EDITWAVE subcommand is used.
(4) Simulation resuming function
A user can resume the simulation from the past ag;wéli as
the present simu;étion timé. When thé input éattérns’are Chénged,
he can go back to £he time ét'which the chénges are effetive énd
resume the simulation. This technique reduces much computation
time. GO and RUN subcommand are available fér this function.
Using these functions of IS, a designer cén easily find
design errors in the early stage of design cycle. It shortens the

whole time spent for 1logic design. In Fig.2, an example of

19

92

90019 ISS: SIMULATE ONE_OF_FOUR_DECODER
g0020 ENTER UNIT TIME(NS): 5

90030 SIMULATE: AT 51

90049 SIMULATE: GO

98050 <AT> TIME=< 51: 55>

@9060 SIMULATE: LIST. (SHR.QA SHR.QB SHR.QC SHR.QD COUNTER.JK1.Q COUNTER.JK2.Q)
p8870 SHR.QA < 46: 58>

60080 0) o
'@66896 SHR.QB - K 46: 58>

661006 @ .

00119 SHR.QC - < 46: 50>

098129 @ :

96136 SHR.QD , < 46: 50>

90148 @ "

89158 COUNTER JKl Q < 46: 58>

006160

00176 COUNTER JK2.Q < 46: 58>

0180 @

908199 SIMULATE: WHEN LOAD (SHR.QA=C | SHR.QB=C | SHR.QC=C | SHR.QD=C)
99200 SIMULATE: GO

00210 <WHEN> LOAD TIME=< 71: 75>

90220 SIMULATE: LIST (SHR.QA SHR.QB SHR.QC SHR. QD)
8230 SHR.QA : < 66:78>

06240 1° '

08258 SHR.QB < 66: 78>

602690 1 . ‘

p3270 SHR.QC < 66: 78>

36280 @ .

66290 SHR.QD "< 66: 78>

96309 1) :

#631¢ SIMULATE: GO '

63208 <WHEN> LOAD TIME=<131:135>

#633¢ SIMULATE: LIST (SHR.QA SHR.QB SHR.QC .SHR.QD)

98340 SHR.QA’ <126:136>
0350 X

96364 SHR.QB' © K126:136>
06370 1

#8384 SHR.QC <126:138>
20390 1

60400 SHR.QD <126:138>
‘90416 @ :

00420 SIMULATE LIST L (1:138)
90430 < 1:138>

00448 XXXXX XXXXX XXXXX XXXXX XXXXX X

00450 SIMULATE: EDITWAVE

00460 ENTER LINENAME: L

06470 FROM: 86

060480 ENTER VALUE: -

004990 ﬁlﬂﬂﬂﬂlllﬂﬂﬂﬂQﬂﬂlﬁﬂﬂﬁﬂ@@ﬂﬂﬁﬁﬂ@@@ﬂﬂl@l@@ﬂﬂﬂﬂﬂﬂﬂﬂ@ﬁﬂﬂ
66500 SIMULATE: GO 86

99510 <WHEN> LOAD TIME=<131:135>

@0528 SIMULATE: LIST (SHR.QA SHR.QB SHR.QC SHR.QD)

06530 SHR.QA ’ <126:130>
08548 0 ‘
00550 SHR.QB <126:138>
98566 1 ,
80570 SHR.QC <126:130>
965846 1
00596 SHR.QD . <126:136>
00600 @ .
Fig.2 Interactive simulation with IS

20

93

interactive simulation is shown. ISS is implemented on FACOM M-
200 in Data Processing Center of Kyoto University. Programs are
mostly developed in PL/I and about 18 thousands steps in total.

Users can use ISS from thelr TSS term1na1 1nteract1vely.

5. Conclusion

In this paper, Qe discussed several problems in the design
of hatdware algorithms and looic design automation. kThe theory
of complexty of logic circuits an@ parallel computatioo(wiil fo;m
the foundation of desién of hardware algorithms which’willsoecome
more important for larger VLSI systems. ‘Especially,k tbe
relation between the complexities of software and vhardﬁare is’
vefy impottant forfpractical system design, because systeﬁs are
comblnatlon of software and hardware.

De51gn automatlon is one of most highlighted flelds in
<computer 501ence.-l In loglc de51gn automatlon, we stlll have
many hard problems to resolve for development of an efficient
design system. Researches on high-level hardwarel'design
1anguages, aatomatlc 1oglc de51gn from descriptioos of‘these
1anguages and design’ verlflcatlon techniques‘for) iargeﬂsystems
‘have been 1ncrea51ng. - Several techniques developed‘ in the

software englneerlng w1ll be applled to these area.

21

94

References

(1]

(2]

(31

[4]
[5]
[6]

(71

(8]

(91
(101

[11]

"Highly Parallel Computing" Edited by L.S.Hayens, IEEE
Computer, vol.l5, no.l, pp.7-96, Jan. 1982;

S.Yajima, H.Yasuura and Y.kambayashi, "Design of
Hardware Algorithms and Related Probléms“, IECE
Technical Rep. AL81-86, Dec. 1981 (in Japanese).
N.Tokura, "VLSI Algorithms and Area-Time Complexityﬁ,
Joho-Shori vol.23, no.3, pp.l76-186, March 1982 (in
Japanese).

C.A.Mead and L.A.Conway, "Introduction to VLSI Systems",
Addison-Wesley, Reading, Mass.,fl980.

H.T.Kung, "The Structure of Parallel. Algorithms",

Advanced in Coﬁputers, vol.l9, Academic Press, 1980.

M.Foster and H.T.Kung, "The Design of Special-Purpose
VLSI Chips", IEEE Computer, vol.13, no.l, Jan. 1980.
C.D.Thompson, "Area-Time Complexity for VLSI", Proc. 11th
Symposium on the Theory of Computing, pp.81-88, May
1979.

R.P.Brent and H.T.Kung, "The Area-Time Complexity of
Binary Multiplication®", JACM, vo0l.28, no.3, pp.521-534,

July 1981,

J.P.Gray, "Introduction to Silicon Compilation®™, Proc.

16th DA Conference, pp.305-306, June 1979.

K.Hwang, "Computer Arithmetic:Principle, Architecture and
Design", John-Wiley & Sons, Reading, Mass., 1979.
L.B.Jackson, S.F.Kaiser and H.S.McDonald, "An Approach to

the Implementation of Digital Filters," IEEE Trans. Audio

22

[12]

[13]

[14]

[15]

[161]

(171

[181]

[191

{20]

95

Electro., AU-16, Sept. 1968.

W.J.Stenzel, W.J.Kubitz and G.H.Garcia, "A Compact High-
Speed Parallel Muitiplication Scheme," IEEE Trans. on
Comput., vol.C-26, no.10, pp.948-957, Oct. 1977. |
A.Karatsuba and Y.Ofman, "Multiplication oﬁ Multidigit
Numbers with Computers”, Dokl. Akad. Nauk,‘SSSR, ho;i45,
Feb7 1962. 4

C.S.Wallace, "A Suggestion‘for a fast Multiplier", IEEE

Trans. on Electro. Comput., vol EC-13, no.l, pp.l1l4-17,

Feb. 1964.
A.V.Aho(J.E.Hopcroft and J.D.Ullman, "Design. and
Analysis of Computer Algorithms", ‘Addison-Wesley,

Reading, Mass., 1974.

D.E.Muller and F.P.Preparata, "Bounds to Complexities of
Networks for Sorting and Switching", JACM, vo;.22,hno.2,
pp.195-201, Apr. 1975. |
C.D.Thompson and H.T.Kuﬁg, "Sorting on a Mesh-Connected
Parallel Computer", CACM, vol.20, no.4, Apr.1977.
D.Nassimi and S.Sahni, "Bitonic Sort on a Mesh-Connected
Parallel Computer", IEEE Trans. Comput.,'vol;C—ZB, no.1,
Jan. 1979. . ‘
M.Maekawa, “Parallel Sort and Join for Highr Speed
Database Machine Operations”, AFIPS»Conf. Proc., vol.SO,
June 1981.

L.E.Winslow and Y.C.Chow, "Parallel Sorting M#chines

:Their Speed and Efficieny”, AFIPS Conf. Proc., vol.50,

- June 1981.

23

96

(21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[301]

T.C.Chen, V.Y.Lum and C.Tuhg, "The Rebound Sortér:An
Efficient Sort Enginevfor Large Files", Proc. 4th VLDB,
pp.312-318, Sept. 1978.

H.Yasuura gnd”N.Takégi, "A High-Speed Sorting Circuit

bsing Parallel Enumeration Sort", Trans. IECE, vol.J65-

D, no.2, p§.179—186, Feb.1982 (in Japanese).

S.Todd, "Algorithm and Hardware for a Merge Sort Using

"Multiple Processors", IBM ' Journal of R. & D., vol.22,

no.5, Sept. 1978.
Y.Tanaka, Y.Nozawa and A.Masuyama, "Pipeline Searching
and Séfting Modules as Components of a Data Flow Database

Computer”, Proc. IFIP80, pp.427-432, Oct. 1980.

' 'H.Yasuura, "Hardware Algorithms for .VLSI", Proc. Joint

 Conf. of 4 Institutes Related on Electric Engineering,

34-4, Oct. 1981 (in Japanéée).

J.E.Savage, "The Complexity. éf Computing", Wiley-

Ihtersciénce, Reading, Mass., 1976.

S.H.Ungef, "Tree Realizations of Iterative Ciréuits",

IEEE Trans. Comput., vol.c-26, no.4, pp.365-383, Apr.

1977.
H.Yésuura, Y.O0oi and S.Yajima, "On Macroscopic'Dépth
Rédudtion for Combinational Logic 'Circuité“; ‘1ECE

Technical Rep. EC8l-1, Apr. 1981 (in Japanese).
H.Yasuura, "Width and Depth of Combinationai'Logic

Circuits", Information Processing Letters, vol.l3,

no.4, 5, End, pp.191-194, 1981.

C.E.Leiserson, "Area-Efficiency Graph Layout (for VLSI)",

21

[311]

[32]

(331

97

Proc. 21st FOCS, Oct. 1980.

L.G.vValiant, "Universality Considerations in VLSI
Circuits™, IEEE fTrans. on Comput., vol.C-30, no.2,
pp-153-157, Feb.1981.

H.Yasuura and S.Yajima, "On Area of Circuits on VLSI"
(to appear).

T.Sakai, Y.Tsuchida, H.Yasuura, Y.Ooi, Y.Ono, H.Kano,
S.Kimura and S.Yajima, "An Interactive Simulation System
for Structured Ldgic Design —-- ISS", Proc. 19th DA Conf.,

June 1982.

25

