goooboooogon
0 4820 1983 0 156—]?%6

Data Base Semantics Based on Intuitionistic Logics.
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Introducticn.

How semantics of data base is composed ? Semantics of the
relatienal data base model is .composed of basic relations in
relational algebra. Relational algebra is the set of relations
which have a sort of algebraic structure. We can regard it as a

sort of category(z). Topos is the category which has a one to one

correspondence to higher order intuitionistic logics(3). In this
paper, we construct a topos with sets of tuples. Suppose a
relation is a set of tuple. Then, by a one to one correspondence
to higher order intuitionistic logics, a relation corresponds to a
predicate in higher order intuitionistic logics. Therefore, we can
regard semantics of the relational data base model as predicate
calculus in higher order intuitionistic logics. ;

As semantics of natural language, Montague semantics is well
known. In this, semantics of a sentence is translated into a

(4)

formula in intensional logics by the Principle of

. . . 4
Compositionality. When we ignore intentional operators( ), we can
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jdentify formulas in intentional logics with those in higher order
jptuitionistic logics. Therefore, a part of semantics of natural
1anguage corresponds to predicate calculus in higher order
intuitionistic logics, namely semantics of the. relational data
pbase model, by topos. Also, we can make the correspondence from
a part of semanticé of the relaﬁional data base model to semantics
of natural language, by topos.

In this paper, we try to construct topos with sets of tuples

so that it is possible to make the above correspondence.



158

Definitions.

" Our aim in this section is to define tuples and relations.
At first, we define symbols as follows.
1) Sequence converter.

Let (tl,...,tn) be a list. ' The sequence of (tl,...,tn) is

defined as tireaety and denoted by Tt/ .../t ).
2) Length of a list, index list.

Let (t;,...,t ) be a list. The length of (tl,...,tn) is
defined as n and denoted by len((t;;...,t )). Let ord(n) be {m;

m is a natural number and m < n}. We define index lists of
(tl,...,tn) as sequences-that-are»composed of elements in ordftlen(.
(tl,...,tn))) without using the same element twice. Namely, if
o is a list (il""*in)’ 1z ij < len((tl,...,tn)), j=1,...,m and
-ii,;..,im'are disjoint, o is a index list of (tl,...,tn). Let o
be an index list-of a list t. We define & as an index list that
is composed of elements in ord(len(t)) in ascending order except
those of «.

3) Projectioﬁ.

Let t be a list. Let a be an index list of t such that o =
(il,...,im). The projection of t with.o is defined as (til,...,tim)
and denoted by t|a.

4) Selection set.

We define {T,F} as the select set. S denotes it.
5) Alphabet set.

z deno#es an alphabet set.

We define tuples, type of them and relations, types of them

as follows.
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1) Let a be an element of zt. \Let s be an element of S.
(a) and (s) are tuples of type (1) and (0), respectively.

2) Let»tl and t2
(El,Ez) is a tuple of type (EI’EZ)‘ (tl'tZ) is a tuple of type

be tuples of type ry and Tye respectively.-

(rl,rz).
3) Let R be a set composed of tuples of type t. R is a
relation of type t. |
4) Let R -be a relation of type t. If there is an index list
a of t such that R gives the mapping
{r]a; re ﬁ} > {r|d; r ¢ R},

then (R) is a tuple of type,t]atla.

We define D, as the: set.of all tuples whose types are t.

t
Especially, @ denotes D . Let R and a are a relation of type t

and an index list of t. R|a dénotes {r|oa; r & R} .-
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Topos.

Let Re be a couple of objects and morphisms which are defineg

as follows.
1) Object.
Relations are objects.
2) Morphism.
Let R, and R, be objects of type tl and type t2. If there

1 2
is an object R so that (R) is a tuple of type tlt2 and there

exists an index 1ist o so that
R|a=Rl, R|&=R2,
fhen (R) is -a morphism.

Since a morphism is a mapping, we define the composition of
morphisms as the same of mappings. Then, the associative law is
satisfied in these.compositions and there exists an identity
mapping. ,Therefére, Re is a category.

In a category Re, f:A —>B or A —£—>B denotes a morphism
from a object A to a object B. Especially, an identity mapping

d X .
>A, and an inclusion

mapping from A to B (st AC B) be done by i:A—>B or A—f£~>B.(5)

t

from A to A is denoted by id:A——>A or A =

And for each tuple (F) of type t, » A morphism-f:A____>B denotes

(F) and for each aeA, f(a) denotes a value correspondent to a

with f.
Next, we prove that Re is a topos.
Lemma 1. Let Rl and R2 be objects of Re. A product of Ry and R,

exists in Re.

Proof. Let & and B be objects of Re. Let AxXB be the following
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relation.
{ (a,p); ac A, be Bl.

Then, the follow1ng relations I, and I, are subsets of Rl 2% 1

and R1 2XR2, respectlvely.v () and (Hz) are morphlsm Wl:RlxR2~

—>R

1 and m;:R,XR ———>R2, respectlvely.

172
I, = { (fl'fZ“rl)' 1eRl, rzeR },
Hz = { (rllrzlrz)' €R1' r2€R }

Suppose there are an object R and morphlsms £ R—~—>R1 and

g:R—>R Then, the following relation <F,G> is a subset of

2¢
RXRIXR2 and (<F,G>) is a morphism <f,g>:R-

<F,6> = { (E,E7),§TE); reR }.

>Ry *Ry-
For each element reR, v

™ <f,g>(r) = f(r),
g(r)

i

T, °<f,9>(r)
Therefore, w,°<£f,g> = £, Wz°<f'9> =9

and the follow1ng dlagram 1s commutatlve.

>RjXR éucﬁ fhat

Suppose there is’épother morphism!kiR 1 %R,

m; %k = £ and :ﬂ'zok = g.

Then, since for each reRy =~ 2°

Cemi ok, M %k> () = <my k() M, °K(2)>

‘‘‘‘‘‘‘

- <my°k,T;%k> = k.
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Since <ﬂl°k,ﬂ2°k> = <f,qg>, k = <f,g>.

Therefore, RlXR2 is a product of Rl and R2. QED.
Lemma 2. Re has a terminal object.
Proof. Let R be a relation. Rx{(T)} is the unique morphism froﬁ
R to {(T)}. Therefore, {(T)} is a terminal object.
Lemma 3. Let A and B be objects of Re. A power object of B with
A exists in Re.
Prrof. Let E and F be any objects of Re. ket EF be the following
relatiéh.

{({(Z,F(¥)); reA}); f is a morphism A —>B}.
Let (—)A be the functor satisfying the following conditions.
i) For each object C of Re, (~)A(C) = CA.

ii) For each morphism g;C —>D of Re, (—)A(f) is”morphism

C >DA, and

(=17 (@) (({(F,E®)) ; real)) = {(F,5°F(E)); real
for each element ({(T,F(T));reA}) of c>.

By Takeuchi's (3), if (—)A is a right adjoint functor of
(-)xa, BA is a power object. And if ﬁhe following is provable,

(-)A is a right adjoint functor of (-)xA.

There exists a natural isomorphism, namely

B,C

171 A

Re (B xA,C;) s >Re (B, ,C;")
o . B.C

1 Fl 171 1 F2

™"y eBz'Cz A

Re (B,*A,C,) o1 >Re (B,,C,")

B2C2 is commutative

where 0-1 is an’inverse mapping of © ,i=1,2 and F, and F, are
Bici BiCi 1 2

mappings such that for morphisms fc:Cl——->C2 and fB:Bl———>BZ, and

-7 -
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elements geRe(B xA,C ) and haRe(Bl,Cl )y
FI(g) = fc°g (-)XA(fB) and
= - A . oo
) Fj(h) = (’) (fc) h fB,’

Suppose for each element geRe(BxA,C) and each element beB
B c, (9) () = ({(r,g(b,x)); reA }) , i = 1,2.
Since g(b,r)eC for elements reA and beB, ({(r,g(b,r)); reA }) is

an element of CA. From the above definition,

F %05 (@) (0) = ({(x, (E;°9(EF;(B)),T)); reAa }) and
: 171
0 ¢°F, g)(b)
B,C, 2"

({ (x, (£:.79° (- )XA(f Y(b,T)); reA })

il

2 2 :
({(x, (£, °ge (g (b) T)); reA }.
2 2 o

for each element beB2 . Therefore,. the above dlagram is
commutative as to eBlcl and aBzcz .

suppose 6 p . (9) ((B3)) = £(a) and g(b) = ({(a,F(a@)); achA })

ii

for each element geRe(Bi,CiA), beBi, a¢A, i = 1,2 . Then,
g(b) (a)

£(a) : ©o and

c;(g)((B,E))
i

i

B c,(g)(b)(a) =g(b)(a), i = 1,2 for each aehA.

From the above deflnltion,

F 202 o (9) ((B,@) = £,0071 () °(-)xalfy ) ((B,3))
_ 1% : —1 ) o
- £, 'Blcl(g) ((£5(B),@)) -
Suppose g(f (b)) ‘be ({(a,F7(a)); aeA }). ‘Then,
Fl°0 s o (9)((B,8) = £,°£'(a)  and -
A& ¢ A
O ayc, T2 () (B = 6l o (1 (50) °9755 (6,3)
- "1 'o;A o a
= Bﬁc (-) (fc)vg((fB(b).a))
= £,°f' (a) .
Therefore, the aboVe ‘diaqram is commutative. QED.
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(3)

Lemma 4. Re has a subobject classifier .

Proof. By Takeuchi's(3)

, if a morphism t: {(T)}—>Q satisfies
the following conditions, t is a subject classifier.

(1) For each morphism f: A —>Q of Re, there exist morphisms
g, -h and an'object,B such that

(D1) B h _SA

s | Lt
t- (4 . .
{(Ty—->=>a is pull back.

>A, there exists uniquely

(2) For each monomorphism f£:A'
the morphism g such that

(Dz) Al f >A

.
{(TH———Ef—¢>QQ » S is puii back.

Suppose t((T)) = (T). . |

First, we consider the condition (1). Let’B be {a; f(a) =
(T) .}. Then, there exists a relation {(a,f(a)); aeB} and it is a
subset of {(a,g(a)); aea }. ({(a,f(a)); acB }) is a monomorphism
B ——>A . Let h be a morphism ({(a,f(a)); aeB }). Since {(T)} is
a terminal‘ij??t'“tPEfefexisﬁs a morphism B —>{(T)} . Let g be‘
the morphism. Then, diagrényﬂkly.is;commutative.

Suppose there exist an object.C and morphisms j and m such

= |

{T)}H——>Q - is commutative. .

that - o -C

Then, cC={c; ceC, £°j(c) = (T) } .

-0 -
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Let j(C) be { j(c); ceC } . Then, JjC)e{ a; f(a) = (T) }
and . 3(C)EB. |
| Therefore, j is a morphism C —>B and from definitions of h
and the terminal object,
h°j =3 and
g°j =m . o
Suppose there exists a morphism k such that hek = j and
g°k = m . Then, from the definition of‘h‘and,the above proof,
N , ,
Therefore,'(Dl) is pull back.
Next, we con51der the condltlon (2) Let f(A ) be {f(a )- a'eA'

. There exists the relatlon Kf such that

= (@G, f(a Yef (A") IV { (3" F)i £(a® )¢f(A )}
(Kf) is a morphism Xg ¢ A —>Q such that for each aeA,
xgla) = (T) if acf(a’ ),
[ (F) otherw1se.:
ﬁet g be Xge Then, (D2) is commutative.ﬁ

Suppose there exist an object B and morphisms m and‘nneueﬁv

that » n .
A' - f o N >A. . ) P
|
KT}————————>Q ’ isvcom@utetiﬁe.'4id

Let n(B) be {n(b); beB } . Then  n(B)CE(A') .
Since f is a monomorphlsm, f 1s a 1nto-mapp1ng. Therefore, there

ex1sts the relatlon {(a ,a), aéf(A ), a eA' f(a ) = e } and it is

the 1nto—mapp1ng f 1; f(A ) >A' such that for each a f(A )

-10--
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f(a') = a and f-l(a) = a'

Let k be a morphism's composition f—l°n . Then, f°k = n .
Similarly to (1), if there exists k' such that h°k' = j and
g°k' = m , then k = k' . Therefore, (D2) is pull back.

Suppose there exists the morphism g’ éuch that (D2) is pull

back. Let Ag' be { a; atA, g{(a) = (T)} . Then,

A, 1
gl |
K wpis £ a
l | s
{{)}————>0 is commutative.

From the definition of pull back, there exists only one morphism

k such that f°k = i . Since f°k(Ag) = i(Ag,) = Ag, ’
f(a')>a .
) g’

Since f(a') Ag '
f(a*) = Ag, .
Therefore, g = x. . QED.,

Therem 1. Re is a topos.
Proof. By Takeuchi's (3), the category which has products
of any objects, the terminal object, power objects and a subobject‘?
classifier is a topos. . QED;f
Let Rys.../R be objects of Re. We define Re(Rl,...,Rn) as a'é
couple of the following objects and morphisms. A
(1) (Object).
a) Rl""'Rn’¢ and ! are objects.
b) Surpose R is an object. Any subsets of tuples in R

are objects. Let t and o be a type of R and an index 1list of

_ll -
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t . Then, R|o is an object.
c) Suppose R and U are objects. Then, RxU, RYU, RaU and
R-U are obiects.
- d) Suppose R is an object. If (R) is a‘morphism of Re,
{(R)} is an object.
(2) ‘(Morphism). ‘ft“fs*€he*5ame»as'the~mbrphism?off3€;f
Aﬁy;hérpﬁféﬁézwﬁiéﬁ are ‘used to prové above lemmas satisfy -
above conditions. Thereforé, as to PRé(Rl,.;.?Rh), abovg lemmas
are provable.
Cor l;f”Pﬁe(Ri;(;.;Rﬁ) is a'topqs; SRR
Also, PRe(Rl,...}Rﬁ)’ié*a’éubéategOry of Ré. Rules of -
(object)hb)'and c) éf PRe(Rl;;:.;Rﬁ)'are'those of operations of

relatioﬁal algebra(l)i The rule of (object) d) and (morphism)

are not contained in relational algebra(l). Theses rules ‘are
necessary for ‘higher order intuitionistic logics, namely topos.
In these, as mappings must be relations constructed by ruiesaa);
b), ¢), and 4d), constructions of relations which are mappings must
be explicitly expressed. Therefore, PRe(Rl,...,Rn) is ‘constructed
by relations which are generated from base relations Rl,...,Rn by
rule d) and operations of relational algebra.

Similarly to PRe(Rl,...,Rn), as to Re, we can find base

relations. They are relations D, for any types t because any

t
objects of Re are those which are generated from them by rules a)

d).

- 12 -
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Relations and Intuitionistic logics.

Topos here is one of those which are defined in the previous
section. By Takeuchi'(3), the relation A which is an object of
topos has one to one correspondence to type A predicate set in
higher order intuitionistic logics. Let t be a type of relation
A. Let Bt be the union of all relations which are objects of

topos. Then, the following relation K, is a subset of ﬁth'

A
KA = {(-EIT); rEA}U{(?IF); rd:A} .
Since Bt and ﬁtXQ are objects of topos, KA is an object of topos.
Also, since (KA) is a mapping ﬁf—e—>9, it is a tuple of type 0t

and is an element of an object QDt of topos.

Sincev{(T,(KA))} is a subset of {(T)}XQBt, it is an object of
topos and is a,mapping {(T)}———>Qﬁt . Therefore, ({(T,(KA))}) is
a morphism of topos. By correspondence to higher order

intuitionistic logics, the morphism corresponds a predicate of

type Dt .

Let (G) be any elements of QDt. (G) is a morphism g:ﬁt———>9y

The following relation Kg is made from g.

Kg = {(x,T); reﬁt, g(r) =.(T)}.

t

Kg;= (G). | _

Therefore, each element of a relation QDt is determined by each

Since Kg is a subset of D, , it is an object of topos and

relation A of type t. Each predicate of type th in higher order

intuitionistic logics has a one to one correspondence to each

relation of type t. Accordingly, the following theorem is

provable.

- 13 - l
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Theorem 2. Each relation which is an object of topos has a one
to one correspondence to each predicate in higher order
intuitionistic logics.

(1) that Dr, Codd proposed construct

Relational algebra
relations from the other relations. By the previous section,
topos contain relational algébra. We consider here what of
relational algebfa correspond to hiher order intuitionistic logics.

At first, we translate each operation of relational algebra
by our notation and consider the morphism Correspondent to it.
(Relational algebra).

i) (Cartesian product). Let A and B be relations. AxB is
the cartesian product of A and B.

AxB = {(a,b); aeA, beB }.

2) (Union, intersection, difference). Let A and B be
relations of the:same type. The-union, the intersection and the
difference of A and B are AYB, A.B and A-B, respectively and

AYB = { a; acA or aeB },
A~B = { a; aeA, aeB } and
A-B .= { a; aehA, a¢B } .

3} (Projection). Let A and o be a relation of type t and an
index 1list qf t, respectively. The projection of A on o is Ala
and Ala = { ala; aeA }.

4) (Join). Let 6 . be a predicate on D, xD, -, namely a

B t t ,
- - a B
morphism D, XD, —>f. Let A and B be relations of type(tl and t2

ta tB

yrespectively and do o and B be index 1ist of tl and t2 such

that t = t;ja and tB'='t2|§ , respectively. The GaB—j01n of A

- 14 -
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on o with B on B is A{aeaBB]B and

Alad oB1B = {(a,b); ach, beB, GaB(ETa,BTB) = (T)}.

be a predicate on D_ xD, , namely

B t, tB

a morphism Et Xﬁt —>Q. Let A, o and B be a relation of type t
a B

and index lists of type t such that ta = t|a and tB = t|8 ,

~restriction of A on o and B is A{aea

5) (Restriction). Let ea

respectively. The o, Bl

B B

and A[aeaBBI = {a; aea, GaB(ETa,ETB) = (T)} .

Since the operation division is constructed by the other
operations, we don't ccnsider it here.

The following lemmas make a correspondence from above
4operations 1), 2) to morphisms and algebraic structures in topos.

Let A be an object of type t of topos. The following relation
K, is a subset of ﬁtXQ. Therefore, it is an object of topos.

XK, = {(&,T); aea } {(a,F); aeD A }.
Also, (KA) is the following mapping Xar namely morphism.

{(T) if rea ,

XA’

: Df———>Q such that for each reDt, xA(r)
(F) otherwise.

XA(r)

By the proof of lemma 4, is the classifier of the inclusion

Xn

mapping iA : A >5t and the following diagram is pull back(B).

A___..__._______
(T >0 .

According to theorem 2, corresponds - to the,prédicate which

Xa
corresponds to an object A of topos.
Let I and NI be relations {(T,T,T)} and {(T,F)}, respectively.

I and NI are subsets of {(T)}xQxQ and {(T)}xQ, respectively and

- 15 -
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are objects of topos. Also, (I) and (NI) are morphisms {(T)}—>
ox2 and {(T)}xQ, respectively. By Takeuchi's (3), there exist

classifiers of (I) and (NI)(3)’ (5).

A and -7 denote classifiers
(I) and (NI), respectively. |

Let UQ be the relation {(T,F), (F,T), (T,T)}. UQ is a subset
of OxQ and is an object of topos. There exists the inclusion
mapping i : UR—>0xQ and it is a morphism of topos. Topos have :

(3Y, . (5) |\ genotes it.

the classifier of i
By the definition of classifier, each of A, 7 and V is only

one morphism such that each of the following diagrams is pull

_back.
{(T) }——Q—)——mxg {(T) }——@—I—)——mxn Usz-—_i———_>9xsz
| A [ L
{(T) }————-—>Q , MM} —m—m> and {()}—m8—>Q.

Let A and KA be an object of type t of topos and the
following relation, respectively.

- = my . Ur = . =
KA = {(a,T); acA }¥{(3E,F); aeDﬁ—A } .

Then, KA is the mapping th——>Q. Xa

Lemma 6. Let A and B be objects of topos. Then, AXB is an object

denctes a morphism (KA).

of topos.
Proof. Trivial.
Lemma 7. Let A and.B be objects of the same type E of topos.
XAnB =A°(Xpr Xg) o
XavB =V°(XA’ XB) and
Xa-g = A°(Xzr 7°xg) -

.—16_
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Proof. 1) Suppose acAnB. Then,

(a) = (T)

Xa.B
] -_— o
A (XA(a)’ XB(a)) = A°((T,T))
Suppose aeD,—A,B. Then,

XAnB

t

(a) = (F)

A (xa(a) . xg(a)) =(A°((T,F))

Therefore,

Ae((F,T))

Ne((F,F))

= AO©
Xaqas T A" g Xg)

2) Suppose acAYB. Then,

Xpup(a) = (T)
Ve (xy (@), xgla)) = 1V°((T,F))
Ve ((F,T))
Suppose aeﬁt—A—B. Then,
Xpug (@) = (F)

V° (X, (2) s Xg(a)) = VO((F,F))

Therefore,

Xpvp = V° Xar Xp)

3) Suppose atA-B. Then,

Xa-B

(a) = (T)

X

A xy(@),7%xg(@)) = A°((T,T)) .=

Suppose aeﬁt—(A—B). Then,

Xpp (@) = (F)
A (xp (@) 7°xg(a)) ={A°((T,F))
Ae((F,T))
A°((F,F))
Therefore, Xa_p = A (Xzr 7°Xp)

- 17

(T) .

= (F).

= (T).

(F).

(T).

= (F).

and

and

and

and

and

and

QED
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remma 8. Let A and o be an object of type t of topos and an

index 'list of t. Then, there exists th: morphism such that

A >Ala.

proof. Since {(a,aJa); acA } is a subset 6f AxAla, it is an object

of topos. Also, the relation is the mapping A—>A|a. QED.
Let A and B be objects of type tl and t2 cf topos,

respectively. Let a énd 8 be index list of tl and t2,

respectively. Let 0 be the following.

{(ETGIHBIT); aceA, beB, eU.B (ETOL,HB) (T)}
{(ETG'IFTBIF); acA, beB, eas(a_alm-s)

Then, O is a subset of A|laxB|BxQ and is an object of topos. (0)

(F)} .

>0. 6_ denotes this morphism.

is a morphism of topos A|axB|B T

By definitions, A[a@aBSJB is a subset of AXB.

Therefcre, A[aGQSBJB is an object of topos and there exists the
morphism i : A[QGQBB]B———>AXB in our topos.

Lemma 9. The following diagram.is pull back.

' i
(D1) A[aeaBB]B ————————>AXB

| | =

(M} ——> 2 .

Especiaily, suppose‘eas is "=" and morphisms PA : Ala=8]B '>A,v

Py :A’[a=5]B—'————>B, P, ot A—>AlaxB[g and Py B—>A|axB|B are
({(3,b,3); (3a,B)eala=pIB }), ({(a,B,B); (a,b)eala=8]B 1),
({(a,afa); aeA }) and ({(b,b[B); beB }), respecﬁivély; Then, é}#ce
the type of Ala is the same type of B[B, morphisms P,, Py, Py and Py

are those of our topos and make the following diagram be pull back.

) T
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(D2) . Ala=RI1B >A

PB ch

B £ >AjaxB|B . . |

Proof. 1) The proof of (Pl). By definitions of i and GT, this
diagram is commutative. Suppose there exist an object C and

morphisms m and n such that the following diagram is commutative.

C - n
Ao, 8]B i T.axsm
" | o
{(T)} >Q .
Let i(A[o8 gB1B) be { i((a,b)): (E,E)eA[aeaBB]B }. Then,
since i is aﬁ into mapping, there exists an inverse mapping of i

-1 .
i 7 1(A[a8aBB]B)

>A[a8a88}B in our topos.v Similarly to the
proof of lemma 4, there exists only one morphism k such that
i’k = n . »
2) The proof of (D2). By Goldbatt's (5), it is trivial. QED.;
Let A, o and B be an object of type t of our topos and index
list of t. Let © be the following.
{(a,T); aea, eaB((ﬂu.—a—fB))
= (F)} .

n

() }V{(@,F); aen, 8 . ((afa,a[B))

Then, Since 0 is a subset of AxQ2 , it is an object in our topos
and (6) is a morphism A ——>Q in our topos. eT denotes this

morphism.

Lemmma 10. The following diagram is pull back.

i

A[aeaBB]B —_——_>A
| | o
{(m)} >Q .
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proof. Similarly to the pre&ious lemma, it is provable. QED.

By lemma 6 ~ 10. Each operation of relational algebra
corresponds to a morphism or an algebraic structure of our topos.
Next, by taking theses correspondences, we make correspondences
from operations of relational algebra to highef order intuitionistic
logics. ‘

{1) (Product). Let A and B be objects of type t1 and t2 of
our topos, respectively. Similarly to lemma 7, XAXB = V°(XA,XB)
is provable. Therefore, by theorem 2 and the coorespondence(3)
from our topos to higher order intuitionistic logics, if predicates
correspondent to Xa and Xg areAPA(a) and.PB(b), respectively. XAXB
corresponds :to

Pp(a)VPL(p) .
(2) (Union, intersection, difference). By lemma 7 and the

(3), (5) f¥om our topos to higher order intuitionistic

correspondence
logics, if predicates’correspondent to Xp and Xg are PA(a) and PB(a),
respectively, XAvB’ XanB and Xa B correspond to

PA(aﬁ/PB(a), PA(a)APB(a) and PA(a”V7PB(a) ,respectively.

(3) {(Projection). By Takeuchi's (3), wé define a morphism
3A)f : Y —>0 for each morphism f : AxY —>Q, in our topos. Let
Fp A —>0 be ({(a,F): aeA }). Then; Fa is a morphism of our
topos and for each acAh, F,(a) (F) . By the definition of topos,
A (3)

]

there exists the morphism ’FA) : Y —>Q such that the following

diagram is commutative.

- AXY
idfoAW l FoxY
A ev

AXQ > Q
“ - 20 -
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In Takeuchi's (3) if f and g are morphism A >B and A —>C,

respectively,
<£,9> = ({(£(3),9(2)); aeA }).
We define (3A)f as follows.
(3a)f =-7°(=QA)°<§,fFA‘>(3).
By Takeuchi's (3), (=QA)°<£,fFA‘> is a morphism of our topos.
Therefore, (3A)f is a morphism of our topos.

In Takeuchi's (3), (Vo) £ (3) corresponds to the universal
guantifier and the existential quantifier is constructed by Vﬁv—>
and A. In topos, this composition of ¥, —> and A coincides with
(3a)f. Therefore, we can make~(3A}f correspond to the existential
quantifier.

Let A and o be an object of type t of our topos and an index
sequence of t. Then, the following lemma is provable.

Lemma 11.
Xajo =@Del0)x, -

Proof. Suppose a|acA|a. By Takeuchi's (3),

1
(]
—~
[

B =D lgye<y ,(F= ..
( D la)°x,(aa) =7°(=D &) °<x,, FDtl& >(ala)

0
N
o
0
©
o+
o]
0o
<
5
-
r
O
&

= (T)
‘Suppose alueﬁtla—A . By Takeuchi's (3),

( D la)°x, (a]a) =’7?(=95t|a)°<XA'(Fﬁtl&1>(alq)
D

= (F) L . QED.
If the predicate correspondent to Xa is PA(a), (Projection)

corresponds to

-

Xala -
3 xp, ((x,a))

(3)

- 21 -
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4) (Join) .
Lemma lé.

— ,0.,0
XA[ue gB1B ATSA (XA'XB)’,GQLB>
Proof. Suppose aed and beB. '

Xalab_ B]Bua /B)) = 0gg ( (3T, BTB)) | and
A°<A° (xA.xB) 10,5 ((@:B)) = A°(A°((T,T)),8 ,((aTa,B[8))
| o = 0,5((@0,BTB)) .
Suppose at¢A or b¢B. \ ‘
XAW%BBJB“E’E” = (F) | ~ and
A<A% (XprXg) 18,5> ((@,D)) = A°(F,6 . ((&Ta,B8)))
= (F) . gEp.

If predicates correspondent to XA' and 6 are P (a), P (a)

X
" 3 B a8
and Pe((ala,blg)), respectively. XA[ae B]B corresponds to

P, (a)a Py (b)AP ((_ra,—l'B)) .

'5) (Restriction). Slmllarly to lemma 13,
- o

‘ ; XA[aS BB] A <XA,6 S> 1s provable

If predicates correspondent to x, and ] «g 2T P (a) and P ((_Ta,_TB))

P respectlvely* XA[ue 8] corresponds to

Py (a)AP (("Td,_TB))

Predlcate of 1) n~ 2) satisfy the follow1ng condltlons 1n hlgher

order intuitionistic loglps.,

Pyla), By(b) |= By(aVry() .
Py(a), Pg(a) |- P, (alVey(a)
P,(a), Py(a) [— P, (a)aPg(a)
P,(a), 7P5(a) [~ P,(alA=Pg(a) ,

- Pp((@fa,afB)) |- I'xp,(@ETa,x)

- 22 -
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Pp(a), Py(b), Py((afa,b[B)) |- Pp(a) Pp(b)AP,((3a,BT8)),
and

Py(a), Py(afa,als)) |- P(alaPg((afa,als)) .
In above reductions, if pemises are satisfied, we can gain
operations of 1) ~ 5). Namely, relatioal algebra is expressed by
above reductions.

Let s be the following term in higher order intuitionistic
logics.

- (3)
{p ..,Pn,Q_ ![U(pl,...,Pn) —>V(Pys... P )IAQ = V } .

1’
By Takeuchi's (3),

-3 .
Let Al,...,An and B be types of yreeesXy and y. If
| }—-V‘xl...xna'!y s(xl,...,xn,y)’--——(a),
there exists the morphism Alx""xAn~*—>B (3). Above reductions
satisfy (a) when U and V are the premise and the conclusion,
respectively. Since/the quantifier'a'!y means that there exists a

certain function, this function is the conclusion V(Pl,...,Pn),
namely each operation of relational algebra.

Besides above reductions, we can many sorts of reducticns and
show that for each reduction, there exists the function (3).

Therefore, by taking reductions, we can consider constructions of

relations, namely semantics of relational data bases.

- 23 -
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According to the Principle of Compositionality in Montague
(3)

semantics, the expression of ". of ." is the following term
{ 2,0 | 0@A¥®(Q(X)AP(a,x))]} .

By taking this term, we can express "parent of parent" as follows.

{ P,0 | 9(a)a3"x(Q(a)aP(a,x))} (FM, 3 "zFM(b,z))

3'zFM(a,z),\;'x(a',zf‘M(x,z)AFM(a,x))

By previous sections, we can abstract operations from

reductions which are made in the higher order intuitionistic

logics correspondent to PRe(R). Namely, from the reduction

FM(b,a) |- 3°xFM(b,x) ,
“we can gain the relation Rla-.
"name of parent" and "parent of parent" are conclusion of
the following reductions. v
N(a), FM(a,b), N(b) F N(a)a3 x(N(x)AFM(a,x))

FM(a,b), FM(b,c) b 3 zFM(c,z)s ¥ x(3" 2FM(x,2)A FM(cC, %))

and

These reductions are constructed by those of (intersection),
(join) and (projection) in previous section. Therefore, §e,cah
gain relations correspondent to "name of parent” and "parent of
parent" after using £hese operations on R|o R|G and R|d according
to each correspondent reduction in the previous section.
ﬁy taking the composition of each attribute of R and "~ of ."

, we can construct the new relation froﬁ R whose attfibutes are
"name of parent" and "parent of parent" (2).

{ P,0 | O of P} denotes {P,Q | 0(a)a3 x(Q(x)aP(a,x))}. In

higher order intuitionistic logics, this is a term of type

QQD(l)XQD(l)xD(l) and the following reduction is provable.
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Relation and natural language.

In this section, we use Montague semantics as semantics of
natural language and consider it in higher order intuitionistic
logics. Formulas which are considered here correspond to objects
of topos, namely relations. By this correspondence, we can
iﬁtroduce semantics of natural language to that of relational
data bases, namely constructions of relations by operations.
Here, as an example, we consider semantics of ". of .".

Now, we consider the following relational data base R.

R : name parent

(-r
<]
o

1 -1

t_ ; a b
n n n

Since PRe(R) consturcts the higher order intuitionistic logics

whose types are objects of PRe(R) (3)

, we can consider Montague
semahfiés in this logics. In this semantics, attributes of R
"name"‘éﬁd “parent" are translated into predicates in this logics.
N(a) éh& P(a) denote predicates which express "name" and "parent"

;respectively. Semantics domains of Nfa) and P(a) are ﬁla”R[& and

S AR R S ; _ R|a'R|G
R|3, respectively. Therefore, types of N(a) and P(a) are Q

and QRIa, tespectively. By taking a predicate FM(a,b) such that

aris-a “baréht"ﬁofvb’in R, P(a) is expressed by 3'xFM(a,b) and the
v ~ v ~

type of it is QRla R|axR}a Rla.

By taking the above, the sentence in natural language "name

of parent“ is expfessed‘as follows.

N(a)y I x(N(x)AFM(a,x)).

- 24 -



181

N(a) FM(a,b), N(b) FM(b,c) |- N of FM (b) FM of FM (c) .
This is constructed by reductions of N(a) and FM(a,b), namely
reductions of 1) ~ 5) in the previous section. Therefore, this
reduction show,how to make the relation whose attributes are
"name of parent" and "parent of parent" from R.

In stead of N and FM, for any predicate of type Qt and tht ,
this reduction is prdvéble. Therefore, if predicates of these
types P,(a) and Pz((E,E)) express attributes of any relation R,
we can gain the relation whose attributes are expressed by
Pl of P2 2

it. In this case, we can construct it by operations of relational

(1)

(a) and P2 of P, ((a,b)) from R and show how to construct
algebra
By taking the above way, we can introduce a part of semantics
of natural language to those of relational data base.
Topos in this paper have not a correspondence to a intensional

(4)

operators which is used in Montague semantics. Therefore, we
can't irtroduce all of Montague semantics to those of relational

data bases in this model.
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