ON THE CANONICAL MODULES

愛媛大理 青山陽一 (Yôichi Aoyama)

A ring will always mean a commutative noetherian ring with unit. Let R be a ring, M a finitely generated R-module and N a submodule of M. We denote by $\text{Min}_R(\text{M})$ the set of minimal elements in $\text{Supp}_R(\text{M})$ and put $\text{U}_M(\text{N})= \bigcap \text{Q}$ where Q runs through all the primary components of N in M such that dim M/Q = dim M/N. Let T be an R-module and a an ideal of R. $E_R(\text{T}) \text{ denotes an injective envelope of T and } H_{\underline{a}}^{\underline{i}}(\text{T}) \text{ is the i-th local cohomology module of T with respect to a}. We denote by ^ the Jacobson radical adic completion over a semi-local ring. For a ring R , Q(R) denotes the total quotient ring of R . Throughout this note A denotes a local ring of dimension d and with maximal ideal m .$

For elementary properties of canonical modules, we refer the reader to [6, §6], [7, 5 Vortrag und 6 Vortrag] and [2, §1]. It is not obvious that the localization of a canonical module is a canonical module of the localization ring, which was known only

for local rings with dualizing complexes, and Ogoma [9] showed that there is a non-acceptable (hence without dualizing complex) local ring with canonical module. Our purposes are to prove that $K_{\underline{p}}$ is a canonical module of $A_{\underline{p}}$ for every \underline{p} in $Supp_{\underline{A}}(K)$ (A is a local ring with canonical module K) and to consider endomorphism rings of canonical modules.

<u>Lemma 1</u>(Corollary to [5, Theorem 1]). Let B be a faithfully flat local A-algebra with maximal ideal \underline{n} . Then:

- (1) If B/mB is an artinian Gorenstein ring, then $E_A(A/m) \otimes_A B$ $\cong E_B(B/n)$.
- (2) If T is an A-module such that $T \otimes_A B \cong E_B(B/\underline{n})$, then $T \cong E_A(A/\underline{m})$ and $B/\underline{m}B$ is an artinian Gorenstein ring.

Theorem 2([4]). Assume that A has a canonical module K and let B be a faithfully flat local A-algebra. Then the following are equivalent:

- (a) B/mB is a Gorenstein ring.
- (b) $K \otimes_A B$ is a canonical module of B and $B/\underline{m}B$ is a Cohen-Macaulay ring.

(Proof) Suppose that $B/\underline{m}B$ is a Cohen-Macaulay ring and let y_1 ,..., y_r be a system of elements in \underline{n} , the maximal ideal of B, which is a maximal $B/\underline{m}B$ -regular sequence ($r = \dim B/\underline{m}B$). Let $R = A[X_1, \ldots, X_r](\underline{m}, X_1, \ldots, X_r)$ with indeterminates X_1, \ldots, X_r over A and let f be the natural A-algebra homomorphism from R to B such that $f(X_1) = y_1$ for $i = 1, \ldots, r$. Then f is a flat local homomorphism. By [7, Korollar 5.12], $C = K \otimes_A R$ is a canonical module of R. Hence we may assume that $B/\underline{m}B$

is artinian. Furthermore we may assume that A and B are both complete. In this case it is shown that $K \otimes_A B$ is a canonical module of B if and only if $E_A(A/\underline{m}) \otimes_A B \cong E_B(B/\underline{n})$ ([2, Proof of Proposition 4.1]). Hence the assertion follows from Lemma 1. (Q.E.D.)

Suppose that A has a canonical module K . Let M be a finitely generated A-module and $h_{\mbox{M}}$ the natural map from M to $\mbox{Hom}_{\Lambda}(\mbox{Hom}_{\Lambda}(\mbox{M},\mbox{K})$.

Proposition 3([2, (1.11)]). The following are equivalent:

- (a) The map h_{M} is an isomorphism.
- (b) \hat{M} is (S_2) and $\dim A/\underline{p} = d$ for every \underline{p} in $Min_A(M)$.

Corollary 4([1, Proposition 2]). A \cong Hom_A(K,K) if and only if \hat{A} is (S₂).

Next we show some elementary properties of the endomorphism ring of a canonical module. Assume that A has a canonical module K and put $H = \operatorname{End}_A(K)$.

Theorem 5([2, Theorem 3.2]). The following statements hold for H:

- (1) H is a semi-local ring which is a finitely generated A-module and A/U \subseteq H \subseteq Q(A/U) where U = U_A(0) = ann_A(K).
- (2) Every maximal chain of prime ideals in $\,\mathrm{H}\,$ is of length $\,\mathrm{d}\,$.
- (3) \hat{H} is (S_2) .
- (4) For every maximal ideal \underline{n} of H , K \underline{n} is a canonical module of H . (K is an H-module by the usual way.)
- (5) $\dim_{A} \operatorname{Coker}(A \to H) \leq d 2$.

(Proof) We may assume that $\operatorname{ann}_A(K) = U_A(0) = 0$.

- (1) Let \underline{p} be a prime ideal of A with $\dim A/\underline{p}=d$ and \underline{q} a minimal prime ideal of $\underline{p}\widehat{A}$. Then $\dim \widehat{A}/\underline{q}=d$ and $\widehat{K}_{\underline{q}}$ is a canonical module of $\widehat{A}_{\underline{q}}$. Since $\dim \widehat{A}_{\underline{q}}=0$, $\widehat{K}_{\underline{q}}\cong E_{\widehat{A}}(\widehat{A}/\underline{q})$. Since $K_{\underline{p}}\otimes_{A_{\underline{p}}}\widehat{A}_{\underline{q}}\cong \widehat{K}_{\underline{q}}$, $K_{\underline{p}}\cong E_{\underline{A}}(A/\underline{p})$ by Lemma 1(2). Let Ass(A) = $\{\underline{p}_1,\ldots,\underline{p}_t\}$ and $S=A \searrow \bigcup_{i=1}^t \underline{p}_i$, the set of non-zerodivisors of A. Since K is torsion free, so is H and the natural map $H \to S^{-1}H$ is injective. Since $S^{-1}K\cong \bigoplus_{i=1}^t K_{\underline{p}_i}\cong \bigoplus_{i=1}^t E_{\underline{A}}(A/\underline{p}_i)$, $S^{-1}H\cong Hom_{\underline{A}}(S^{-1}K,S^{-1}K)\cong \bigoplus_{i=1}^t A_{\underline{p}_i}\cong Q(A)$.
- (2) Because A is unmixed.
- (3) Because \hat{K} is (S_2) .
- (4) The map $h_K: K \to \operatorname{Hom}_A(H,K)$ is an isomorphism by Proposition 3. Hence the assertion follows from [7, Satz 5.12] and (3).
- (5) We may assume that A is complete. Let <u>p</u> be a primt ideal such that height $\underline{p} \leq 1$. Then $A_{\underline{p}}$ is Cohen-Macaulay and $K_{\underline{p}}$ is a canonical module of $A_{\underline{p}}$ because A is complete and $U_{\underline{A}}(0)$ = 0. Hence $A_{\underline{p}} = H_{\underline{p}}$, that is, $\operatorname{Coker}(A \to H)_{\underline{p}} = 0$, which means $\dim_{\underline{A}} \operatorname{Coker}(A \to H) \leq d-2$. (Q.E.D.)

Theorem 6([2, Theorem 4.2]). Let $(A,\underline{m}) \to (B,\underline{n})$ be a flat local homomorphism and M an A-module. If $M \otimes_A B$ is a canonical module of B, then M is a canonical module of A.

Corollary 7([2, Corollary 4.3]). Assume that A has a canonical module K and let \underline{p} be an element of $\operatorname{Supp}_A(K)$. Then $K_{\underline{p}}$ is a canonical module of $A_{\underline{p}}$ and $\hat{A}_{\underline{q}}/\underline{p}\hat{A}_{\underline{q}}$ is a Gorenstein ring for every minimal prime ideal \underline{q} of $\underline{p}\hat{A}$.

Before proving Theorem 6, we show two lemmas.

<u>Lemma 8</u>. Assume that A is complete. Let T be a finitely generated (S_2) A-module such that dim $A/\underline{p}=d$ for every \underline{p} in $Min_A(T)$ and $H_{\underline{m}}^d(T) \cong E_A(A/\underline{m})$. Then T is a canonical module of A. In this case A is (S_2) .

(Proof) By Proposition 3, the map h_T is an isomorphism. Since $\operatorname{Hom}_A(T,K) \cong \operatorname{Hom}_A(H_{\underline{m}}^d(T),E_A(A/\underline{m})) \cong \operatorname{Hom}_A(E_A(A/\underline{m}),E_A(A/\underline{m})) \cong A$, $T \cong \operatorname{Hom}_A(A,K) \cong K$, a canonical module of A. (Q.E.D.)

Lemma 9. Let R be a finite over-ring of A such that \dim_A R/A \leq d-2 and \dim R_p = d for every maximal ideal p of R. If T is a finitely generated R-module such that T_p is a canonical module of R_p for every maximal ideal p of R, then T, as an A-module, is a canonical module of A.

(Proof) We may assume that A is complete. For every maximal ideal \underline{p} of R , $\operatorname{Hom}_A(R,K)_{\underline{p}}$ is a canonical module of $R_{\underline{p}}$ by $[7,\,\operatorname{Satz}\,5.12]$ (K is a canonical module of A). Hence $T_{\underline{p}}\cong \operatorname{Hom}_A(R,K)_{\underline{p}}$ for every maximal ideal \underline{p} of R and therefore T $\cong \operatorname{Hom}_A(R,K)$. Since $\dim_A R/A \leq d-2$, we have $\operatorname{Hom}_A(R/A,K)=0$ and $\operatorname{Ext}_A^1(R/A,K)=0$ (cf. [2, (1.10)]). Hence, from the exact sequence $0 \to A \to R \to R/A \to 0$, we have $\operatorname{Hom}_A(R,K) \cong \operatorname{Hom}_A(A,K) \cong K$, a canonical module of A . (Q.E.D.)

(Proof of Theorem 6) We may assume that A and B are both complete and $\underline{m}B$ is \underline{n} -primary. Let K (resp. L) be a canonical module of A (resp. B).

(I) The case that B is (S_2) : Since B is (S_2) , B \cong Hom_B(L,L), i.e., $H_{\underline{n}}^d(L) \cong E_B(B/\underline{n})$. Since $H_{\underline{m}}^d(M) \otimes_A B \cong H_{\underline{n}}^d(M \otimes_A B) \cong H_{\underline{n}}^d(L)$ $\cong E_B(B/\underline{n})$, $H_{\underline{m}}^d(M) \cong E_A(A/\underline{m})$ by Lemma 1(2). Since L is (S_2) ,

so is M . Since $\operatorname{Ass}_B(L) = \{ \underline{q} \in \operatorname{Spec}(B) \mid \dim B/\underline{q} = d \}$, Ass $A(M) = \{ \underline{p} \in \operatorname{Spec}(A) \mid \dim A/\underline{p} = d \}$. Hence we have $M \cong K$ by Lemma 8.

(II) The general case: Since $\operatorname{Ass}_A(\mathbb{M}) = \{ \ p \in \operatorname{Spec}(\mathbb{A}) \mid \dim \mathbb{A}/p = d \}$ and $\operatorname{Mp} \cong \operatorname{E}_A(\mathbb{A}/p)$ for every $p \in \mathbb{N}$ in $\operatorname{Ass}_A(\mathbb{M})$ (cf. Proof of Theorem 5(1)), we have $\operatorname{ann}_A(\mathbb{M}) = \operatorname{U}_A(0)$. Hence we may assume that $\operatorname{U}_A(0) = 0$ and $\operatorname{U}_B(0) = 0$. Put $\operatorname{R} = \operatorname{End}_A(\mathbb{M})$ and $\operatorname{S} = \operatorname{End}_B(\mathbb{L})$. Since $\operatorname{R} \otimes_A \mathbb{B} \cong \mathbb{S}$ is a finite over-ring of \mathbb{B} , \mathbb{R} is a finite over-ring of \mathbb{A} . For every maximal ideal \mathbb{P} of \mathbb{R} , dim $\mathbb{R}_p = \mathbb{R}$ because \mathbb{A} is unmixed. We have $\operatorname{dim}_A \mathbb{R}/\mathbb{A} \leq \mathbb{R} \leq \mathbb{R}$ because $\operatorname{dim}_B \mathbb{S}/\mathbb{B} \leq \mathbb{R} \leq \mathbb{R} \leq \mathbb{R}$. Let \mathbb{P} be a maximal ideal of \mathbb{R} and \mathbb{R} a maximal ideal of \mathbb{R} lying over \mathbb{P} . Since $\mathbb{M}_p \otimes_{\mathbb{R}_p} \mathbb{S}_q \cong \mathbb{L}_q$ is a canonical module of \mathbb{S}_q by Theorem 5(4) and \mathbb{S}_q is (\mathbb{S}_2) by Theorem 5(3), \mathbb{M}_p is a canonical module of \mathbb{R}_p by the case (I). Hence we have that \mathbb{M} is a canonical module of \mathbb{R} by Lemma 9. (Q.E.D.)

Remark. Goto (Nihon University) proved the following lemma and gave another proof of Theorem 6. ([3, Appendix])

<u>Lemma</u>. Let $(A,\underline{m}) \to (B,\underline{n})$ be a flat local homomorphism such that $\underline{m}B$ is \underline{n} -primary. If there is a finitely generated A-module T such that $T \otimes_A B$ is a canonical module of B, then $B/\underline{m}B$ is a Gorenstein ring.

By virtue of Corollary 7, we can prove the following proposition by induction on dim A (cf. [1, Proof of Proposition 2]). Assume that A has a canonical module K . For a finitely generated A-module M , $h_{\rm M}$ denotes the natural map from M to

 $\text{Hom}_{\Lambda}(\text{Hom}_{\Lambda}(M,K),K)$.

<u>Proposition 10([2, Proposition 4.4]).</u> The following are equivalent:

- (a) The map $h_{\rm M}$ is an isomorphism.
- (b) \hat{M} is (S_2) and dim A/p = d for every \underline{p} in $Min_{\Lambda}(M)$.
- (c) M is (S_2) and dim $A/\underline{p} = d$ for every \underline{p} in $Min_A(M)$.

<u>Corollary 11</u>([9, Proposition 4.2] and [4]). The following are equivalent:

- (a) $A \cong \text{Hom}_{\Delta}(K,K)$.
- (b) \hat{A} is (S_2) .
- (c) A is (S_2) .

Remark. The implication (c) \Rightarrow (a) was first proved by Ogoma (Kochi University), not by induction. (See [9, §4]. cf. [3, (\Rightarrow)])

Corollary 12([4]). Assume that A has a canonical module and dim $A/\underline{p}=d$ for every \underline{p} in Min(A). Then the (S₂)-locus of A is open in Spec(A).

<u>Corollary 13([4])</u>. Assume that A has a canonical module. Let $(A,\underline{m}) \to (B,\underline{n})$ be a flat local homomorphism such that $B/\underline{m}B$ is a Gorenstein ring.

- (1) Let M be a finitely generated (S₂) A-module such that $\dim A/\underline{p} = d \quad \text{for every} \quad \underline{p} \quad \text{in} \quad \text{Min}_A(\text{M}) \quad . \quad \text{Then} \quad \text{M} \otimes_A \text{B} \quad \text{is} \quad (\text{S}_2)$ and $\dim B/\underline{q} = \dim B \quad \text{for every} \quad \underline{q} \quad \text{in} \quad \text{Min}_B(\text{M} \otimes_A \text{B}) \quad .$
- (2) If A is (S_2) , then B is also (S_2) .

Next we show that the endomorphism ring of a canonical module is characterized by the properties described in Theorem 5. Theorem 14([4]). Assume that A has a canonical module K. Let R be a ring satisfying the following conditions:

- (i) R is a finite (S₂) over-ring of $A/U_A(0)$,
- (ii) For every maximal ideal \underline{n} of R , dim $R_{\underline{n}}$ = d , and
- (iii) $\dim_{\Lambda} \operatorname{Coker}(A \to R) \le d 2$.

Then $R \cong \operatorname{End}_{\Lambda}(K)$ as $A - \operatorname{algebras}$.

(Proof) We may assume that $U_A(0) = 0$. Put $L = \operatorname{Hom}_A(R,K)$. Then $L_{\underline{n}}$ is a canonical module of $R_{\underline{n}}$ for every maximal ideal \underline{n} of R. By Lemma 9, we have $L \cong K$. From this isomorphism, we have an A-algebra isomorphism $\operatorname{End}_A(K) \xrightarrow{\sim} \operatorname{End}_A(L)$. Since $\operatorname{End}_A(K)$ is commutative, so is $\operatorname{End}_A(L)$ and $\operatorname{End}_A(L) = \operatorname{End}_R(L)$. Since R is (S_2) , $R \cong \operatorname{End}_R(L)$. Hence we have $R \cong \operatorname{End}_A(K)$ as A-algebras. (Q.E.D.)

In the following we assume that A has a canonical module K , d \geq 2 and U_A(0) = 0 . Put H = End_A(K) and \underline{c} = A:_AH , the conductor. Let T be the \underline{c} -transform of A , i.e., T = { x \in Q(A) | $\underline{c}^t x \subseteq$ A for some t } . Let \underline{q} be a prime ideal of \hat{A} containing $\underline{c}\hat{A}$ and \underline{p} an associated prime ideal of $\hat{A}_{\underline{q}}$. Since U_{\hat{A}}(0) = U_A(0)\hat{A} = 0 and height $\underline{c} \geq 2$, we have dim $\hat{A}_{\underline{q}}/\underline{p} \geq 2$. Hence by [8, Proposition(2.7)] we have:

(15.1) T is a finitely generated A - module.

The following two assertions are obvious:

- (15.2) $\dim_{A} T/A \leq d-2$.
- (15.3) T is (S_2) .

Hence, from Theorem 14, we obtain the following

Proposition 16([4]). $T \cong H$ as A-algebras.

We denote by A^g the global transform of A , i.e., $A^g = \{ x \in Q(A) \mid \underline{m}^t x \subseteq A \text{ for some } t \}$. Since $U_A(0) = 0$ and $d \ge 2$, A^g is a finitely generated A-module by [8, Proposition (2.3)].

Corollary 17([4]). $A^g \cong H$ as A-algebras if and only if depth $A_{\underline{p}} \geq \min \{ 2, \dim A_{\underline{p}} \}$ for every non-maximal prime ideal \underline{p} of A. In particular, if $H^{\underline{i}}_{\underline{m}}(A)$ is of finite length for $i \neq d$, $A^g \cong H$ as A-algebras.

Ehime University

References

- [1] Y. Aoyama: On the depth and the projective dimension of the canonical module, Japan. J. Math. 6 (1980) 61-66.
- [2] Y. Aoyama: Some basic results on canonical modules, J. Math. Kyoto Univ. 23 (1983) 85 94.
- [3] Y. Aoyama: On canonical modules with appendix by S. Goto (in Japanese), R.I.M.S. Kokyuroku 465, 46-53, Kyoto Univ., 1982.
- [4] Y. Aoyama and S. Goto: Note on endomorphism rings of canonical modules, in preparation.
- [5] H-B. Foxby: Injective modules under flat base change, Proc. A.M.S. 50 (1975) 23 27.
- [6] A. Grothendieck: Local cohomology, Lect. Notes Math. 41, Springer Verlag, 1967.
- [7] E. Kunz, J. Herzog et al.: Der kanonische Modul eines Cohen-Macaulay-Rings, Lect. Notes Math. 238, Springer Verlag, 1971.

- [8] J. Nishimura: On ideal transforms of noetherian rings, I and II, J. Math. Kyoto Univ. 19 (1979) 41-46 and 20 (1980) 149-154.
- [9] T. Ogoma: Existence of dualizing complexes, to appear.