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Feedback Stabilization of Linear Diffusion Systems
‘YosHIYUKT sakawAT (3R 4o %\‘% )
Abstract. This paper treats the feedback stabilization

of linear diffusion systems by using a finite~dimenéional
feedback dynamic controllér; We construct a finite-dimensional
" observer using the output functions from seﬁsofs,*and the
control inputs toithe system are given by'the feedback of the
observer output. Assuming, for some fixed finite number L, that
the first L modes are controllable and observable, -we prove

that it is possible to construct a finite-dimensional feedback
dynamic controlléf Suéh that fhe diffusion system has an

arbitrarily large damping constant.

#Department of Control Engineering, Faculty of Engineering

Science, Osaka University, Toyonaka, Osaka 560, Japan.
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1. Introduction

In our previous paper [15]7, we discussed feedback stabi-
lization of linear diffusieon systems by designing actuator
influence functions or sensor influence functions properly.
In this paper, given arbitrary actuator and sensor influence
functions, we construct a finite-dimensional feedback dynamic
controller using an gbserver. By using the pole assignment
theory for finite-dimensional linear systems [16], it is
possible to stabilize the distributed sysfems so that it has
an arbitiarily large damping constant.

Balas [3] discussed the same problem undervthe assumption
that no observation "spillover" [2] is present. He also
discussed the feedback stabilization problem for dissipative
hyperbolic systems [4]. We do not neglect the observation
spillover in this paper, and we obtain a sharper estimate for
the influence of the control and observation spillovers on
the stability of the system. It will be proved that the
influence of the spillover on the stability of the system
can be made arbitrarily small, if we increase the number of

state variables of the dynamic controller.

2. Diffusion Systems

Let Q be a bounded domain in a finite-dimensional
Euclidean space, and let LZ(Q) denote the Hilbert space of
all square integrable real-valued functions with the inner

product
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(ula uz) = JQUI(X)UZ(X)dX.

We consider diffusion processes in Q described by the linear

differential eQuation

du(t)
dt

+ Au(t) = Bf(t) =
'k

fl o~

bEek ey, > 0, (1)
1 |

where u(t) € LZ(Q),,bk;e LZ(Q), fk(t) are scalar functions

Hélder—contihuous on [0,-«), and.

B = (bls ...’:br)3
1 (1)
() =

ff (o]

We assume that A is a selfadjoinf operator with the domain
‘D(A) which is dense in‘Lz(Q),'that“tﬁe résolvent (A - A)_l
of A exists and is compact for some.A, énd that A is bounded
ffom below.

From the assumption we see that A is closed’[9; p:16],

that there is a constant y such that [8, p.278]

(Au, w) > y(u, w), ue D(A), (2)

and that the resolvent (A - A)-l

exists and is compact for
any real A satisfying X < vy [8, p.187].
From the Hilbert-Schmidt theory [11, p.159] for the

compact selfadjoint operators, it 1s well-known that there

exist the eigenvalues Ai and the corresponding eigenfunctions
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¢ij(x) of the operator A satisfying the following conditions
[6]1, [11, p.167]:

(i) v AL <Ay < ores <A <o, dim Ay = e

(i) Ad.. = A.¢.., j =1, -+, m

where mi < o for each i.

(iii) The set'{¢ij(-)} of the eigenfunctions forms a

complete orthonormal system in Lz(Q).

Since u ¢ LZ(Q) has a unique expression

w

i
u(-) = iZl jzl(u, ¢ij)¢ij(')3

D(A) consists of all elements u ¢ LZ(Q) such that

) mi

11 %, 6,07 <o ®)
i=1 j=1 J
The semigroup e tA generated by -A is analytic in t > 0, and

is expressed as [11, p.309]

o Mi ot
e ™u= 7 Te l(u 4,065, t20, (4)
i:l j:l 1) J
2
where u € L7(Q).
From (4) we see that
~A.t
le ™ <e 1, t2o. (5)
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If x; < 0, the diffusion system

1

2w = 0 | (6

is clearly unstable. We consider this case, and we synthesize
the input functions fk(t) by using a feedback dynamic
controller so that (1) is stabilized.

We assume that there are p sensors, whose outputs are

given by

Y0 = (K, u), k=1, e, o, ()

where ck(x) are sensor influence functions in‘LZ(Q). Let us
define the Butput vector function
y(t)
y(t) =
yP(t)

Let 0 > 0 be a given damping constant. We take an

integer & such that
Al+l >0, _ (8)

We take another integer n such that n > &, and we define the

orthogonal projection operators Pn and Qn by

n M
p = . . .. ..
au izl jzlcu, 63300555
m.
@ -PJu= T F (u, 6::)6
Wt = w07k gk Yty



Let u(t) be the solution of (1) satisfyihg the initial

condition

lim u(t) = uy € L2 (q).
t>+0 .

Since u(t) '€ D(A) for-t > 0, from (1) we obtain

Pnﬁﬁf) +‘APnu(t) Pan(F),

Q () + AQu(t) = QBE(L).

(9)

(10)

The solution of (9) with the initial condition P_u(0)

= Pnuo'can be expressed as.
) Z
P u(t) = u. (t)¢ (=),
i=1 j=1 1] 1]

where u. (t) is the unique solutlon of

B30+ Aguy (0 = gy,

séfisfying the initial condition
ulj (0) = (uoy (bij)'

In (12), bij is a row vector defined by

'1 g;_ T
k

k = .
where bij = (b, ¢ijJ"

Now let us define the following vector and matrix

an

(12)

(13)
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- 7 r n r 1 T A
uip () bi1 bj1" +-e by
u, (£)=] , %i = : = | . : e (14)
Uy, () i, Dim. Dim. '
L i i i ] _ i i
Then (12) can be written as
4 (1) + Asug(t) = %if(t),' i=1, «++, n. . - = (15)
Furthermore, let
L = m, * +mg, N = my; + +omy

Since & ¢ n, L ¢ N. Let us define an L-dimensional vector

and L x L diagonal matrix A1 by

xl(F), L x r matrix By,
u, (t) , %1
xp () = : > Br=
Cu (6| ¥, (16)

A = diag(-xlxmi,»---, A, I z)"

where Im denotes an m.x'm unit‘matrix. Then from (15) we obtain
Xl(t) =,A1xl(t):+ Blf(t)., (17)

Similarly, let us define an (N-L)-dimensional vector xz(t),;

(N-L) x r matrix B and (N-L) x (N-L) diagonal matrix AZ by

2’

Ugep (8D | [ Ea 1

x,(t) = : o By =) s
u_(t) B J L (18)
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Then we obtain

&Z(t) = A,x,(t) + Byf(t). (19)
We see that (17) %s controllable if and only if [7],
[13]
i

rank %i = m., i=1, <<, 2. ’ (20)

In order that the relation (20) holds, the number r of the

control inputs should satisfy

T > max{ml, s, ml}, (21)

Since

u(t) = P u(t) + Qu(t),

the output functions (7) are expressed as

Koy = ] TesMun (o ¢ ek, o u(o) (22)
Y 181 551 ij - 7ij : n- > *n 7
k=1, -, P,
- k _ .k .- .
where cij = (c, ¢ij). © By defining the matrices
v N N
[ 1 1
C. C.
il im
¥, - i
i b
P ... P .
| €i1 Cim., | > (23)
1 s
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C1=[al> MR &2.]3 C2=[ agﬁ_’l,“"s&n]sJ.
the output vector function can be expressed as
y(t) = Cxq(8) + Cx,(t) + S Qu(t), (24)

where SnQnu(t) is called the observation spillover [2], and

the operator Sn mapping QnLZ(Q) into RP is defined by

(Qc™, u)

n .
S u = : . ue QnLZ(Q), | (25)

(Q,cP,
The system (Al, Cl) is observable if and only if [7], [14]

rank Ei = my, i=1, <<+, L. (26)

In order that the rank condition (26) holds, the number p

of sensors should be such that

p 2 max{my, ---, my}. (27)

3. Feedback Control Using Observers

First, we construct two kinds of finite-dimensional observer

defined by
21(t) = (Al_Glcl)Zl(t)‘+ Gl[y(t)-szz(t)] + Blf(t), - (28)

éz = A,z, + B £(t), (29)
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where‘zl(t) is an L-dimensional vector and»zz(t) is an (N-L)-
dimensional vector which»estimate:xl(t) and Xz(t), respectively,
and G1 is an L x p matrix to be determined.

Tt is clear from (19) and (29) that

S e ) Azt " ' S
CX(8) -z (t) = e T o(xp0 - Z50), (30)
where X509 = xZ(O), and Zy0 = ZZ(O).; Let_us:define a 2L-dimension-

al vector ql(t) by .

x, (t)

- qq(8) (31)

'ZiGt)
. Let the control input vector function f(t) be given by
f(t) = Elzlﬁt)" . B A - (32)

where F; is an r x L matrix to be determined. Substituting

(32)  into (10), (17), and (28), and using (24) and (30)

gives
d qls(t) ' A]_l” VAIZ“ .qll(‘t) ' v(t) | _ |
_d—t— SLen b = ‘ BN B B : + e - (33)
Quu(t) Ay Ayl |Quult) 0
where
5
Al’ B»lFl | 0
All = 15, Alz — S
6161 21761617 Fy 652+

10
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Ayy = 10, Q. BF;1, App = ARy, J
b = At . | (35)
GiCae 7 (X0 = Z3p)
We see that
I. 0 1[ A B, F 1M1, o171
L 1 BiFy. L
I Ip)|C1Cy ArGyCytBiFr T Iy
Ay*BiFy BiFy R o
= ; . (36)
0 AlfGlcld

Suppose the rank conditions (20) and (26) hold. Then the linear
system‘(Ai, Bl’ Cl)-is controllable and observable. Conse-

quently, there exist matrices Fy and Gy such that élllthe'eigén—
values‘of the matrices A1+B1F1 and:Al-Glcl;take any preassigned
values {-vl, Vo, -VZL}[IOj, [16]. Here, the real numbers

Vi > 0 are such that
(37)

Let us construct the matrices F, and G; as stated above.
In view of (34) and (36), we see that the matrix All is similar

to the diagonal matrix

11
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diag(-vy, -vas s “Vgp)s

Allt

and the matrix e is also similar to the diagonal matrix

~=v,t  -v,t -V, T
diag(e s € 2’ e, € 2L)°

In other words, there is a nonsingular matrix T1 such that

(11, [5]

A .t : -v,t -V, t
Te 11 Tl~1 = diag(e 1 , tee, € 2Ly (38)
From (38) we obtain
At -v,t
le 2] cme 1, o, (39)

where M; is the so-called condition number of a nonsingular

matrix T1 defined by

R S I o I PR (40)
Since
m.

At o 1 -A.t

22 _ i
e Qnuo - i=1§+l jzle (QnUO’ d)ij)d)ij, (41)

It is clear that
A .t -A t

e 227 ce ™, 0. (42)

Let us define the operators

12



Let us introduce infinite-dimensional vectors

q, (t) | | [w(t)
w(t) = , Y = ,
Q u(t) l 0
with the norm
lweedl = a1 % + loueol /2.

Then (33) can be written as
W) = X+ Bwen) ¢ P,

It is clear that

and that

13

99

(43)

(44)

(45)

(46)

(47)
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Since 0 < vi < A and Mi 2 1, it follows from (39) and (42)

n+l’ ;
that
Te X g™ 0l BT
From (43) we see that
(1< naxC A, | 1Ay D g maxA el 151, Loy 1S, (49)

where

I Bl = dobI? + -+ + [ b" B)1/2 -
N (50)

o 142 Ly 2,1/2
Isyl s dogetl? + oo + TP Y/2
The second relation of (50) is dérivedﬂfrom (25).
Now, applying the perturbation theory of semigroups
[8, p. 495], [12, p. 80], we obtain
- (v Mg Bt
feeByey gy 1P (51)

Let

5, = vy - Ml ¥

since bl e L2(R) (i=1, ---, 1), ¢t e L2(®) (i=1, ---, p), and

‘ M1 is independent of n, in view of (49) and (50), for any small

number € > 0 there is an integer n(> %) such that

MIE] g e (52)

14
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Since Ag,q < vy from (37), proper choice of n gives the relation
vq- (53)

The solution of (46) is clearly given as

o t \ v
w(t) = e (A+B)tw0 + Joe(x+%)(t-s)$(s)ds. ‘ (54)

By using (51), | w(t) | can be estimated as

vt 't VqS .
MOV B K FIOTRSE (55

From (18) we see that

ALt -A t
le 2 1=e¢ *1, t3zo0. (56).
Using (35) and (56), we obtain
-A t
n, 2+1
¥l s ho,llc,l e | xy9 - 250 - )
Substituting (57) into (55) yields
Ayt
lwee) | s mye ¥, vy o0, (58)
where
. - -1,
MZ = Ml[“ WO “ + “ G]_“ " Czu (\)1_}\5&"'1) “ Xzo'zzon]- ‘ (59)

15



Define a 2(N-L)-dimensional vector qz(t) by

x, (t) ,
q,(t) = . - (60)
‘ z,(t)
From (19) and (29) we obtain
4,(t) = Ray(e) + Bz (), (61)
where
X A, 0 X B,F,
A = v , B = . (62)
0 A2 BZFl
Integrating (61) gives
.(t) _ e At . eAt-5)8, (5)ds (63)
12 920 0 1 ’
where A9 = qZ(O)‘ Using the estimates
A At -A t
le “lcle 2 1= ™ e, tao,
181 < vZ1 B 0 13,1, | RO
-2 t
lzy ()1 < lw) ] ¢ Mpe *H, £ 20,

we obtain the following relation

16
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1

"ot 1. (69)

" qZ(t) " S »e [“ qzo" + ‘/_Z‘Mz " Fln “ Bzu -(K,Q)*'l - o)

Putting (58) and (65) together, we finally obtain
‘ - -1y -ot
lwee) | g Mty l + V21 6,1 1C, 165, - 2pup) Hagy e %, (66)

lay ()1 € M V2] B L DB, IChg,, - o) Ml wyl + {1

+ 2 JE DTG B, hc I, - 03 hGy - Ag, ) M Hayl1e™@F, (67)

. P . . oY
for t 2 0. Define an infinite-dimensional vector w(t) by

-

[ ay(8)

=2

(t) = | q,(0) | e &% x qri(@).

Qu(t)

It is obvious that %(t) represents the state of the diffusion
system as well as the state of the dynamic controller. From

(66) and (67) we see that

Iw(e) ] < ke YW, t o0, (68)

where K is a constant dependent on £, n, etc..

Thus we can summarize what we have discussed so far as
follows:

Theorem. Given an arbitrary damping constant o > 0, suppose
that the rank conditions (20) and (26) hold, where £ is an integer

satisfying (8). Then a finite-dimensional feedback dynamic con-

17
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troller, described by (28), (29), and (32), can be cqnstructed
such that the state %(t) of the overall system satisfies (68),
where K is a constant dependent of 2, n, and so on.

Remark i. The bouhded operator ¥ defined by (43) results

from the control and observation spillovers [2]. If

I
e
-
-
=
-

b () e P Li@), K

'ck(f) e PnLZ(Q), k

[
ot
ol
»

for some integer n, then;% = 0.

Remark 2. If & = n, (52) does not hold. Because in this
case the constant M1 deﬁends on £ = n and Ml + o (2 > »), in
general. Thus, boundedness of Miﬂ%ﬂ-wifh respect to n is not
clear. The key point of this paper lies in the introduction of
two different integers 2 and n. |

Remark 3. In_this paper, an identity observer has been
- used for estlmatlng the state of the first L modes of the dlffu51on
system. It is also p0551b1e to construct a feedback dynamlc
controller by use of a reduced order observer [10]f

Remark 4. Curtain [17] discusses, under some conditions;
the case where operator B in (1) and the observatlon operator
C defined by y(t) = Cu(t) are not bounded. |

Remerk:S. Mitkowskl [18] considered the stabilization of
" 1linear distributed systems by using an infinite-dimensional

observer. The idea in this paper is partially due to Mitkowski.

18
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In this section, we show an example of partial differential
equation as well‘as boundary condition which can be described
in the abstract form as in. (1).

Let us consider the partial differential equation

ou(t, x)

22 - - cult, 1) = ] bR, (69)

w
I 1
(-]

where x € Q, A denotes the Laplacian, and c(x) is a bounded
measurable function. The boundary condition is assumed

to be either of the Dirichlet type
u(t, x) =0, t>0, xeT, (70)
or of the third kind

du(tﬁ x) ., s(x)u(t, x) = 0, t >0, xel, - (71)

where T is a sufficiently smooth boundary of @, d/dn is the
derivative in the direction of the inner normal, and o(x) is
a sufficiently smooth function on T'. In view of (69), let

us define the operator A by
Au = (-A + c(x))u(-). (72)

It is proved in [11] that the operator A defined on the

domain

D(A) = {u ¢ HZ(Q) : %% +ou=0 (or u=20) onTl} (73)

19
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is selfadjoint, where HZ(Q)_is the Sobolev space of order 2,
that D(A) is dense in LZ(Q), that the resolvent (A —‘X)-l

exists and is compact for any real A satisfying A < inf c(x),
. ‘ o xeQ

and that A is bounded from below. Therefore, therdiffusion
system_(69) with the boundary condition (70) or (71) can be

expressed as in (1).
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