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FINITE-DIMENSTONAL REGULATOR DESIGN‘FOR

INFINITE—DIMENSiONAL SYSTEMS WITH CONSTANT/DISTURBANCES ~

Toshihiro Kobayashi (’\‘j%QEQQEZR)
Department of Control Eﬂgineering
Kyushu Instifute of Technology
Tobata, Kitakyushu 804 . (aLT:‘%k)v ’

In this paper we investigate a regulator problem for an infinite-
dimensional system with constant disturbances. The regulator problem
considered here is to determine a feedback control law which stabilizes and
regulates the system. From a practical point’of view we propose a. design

procedure of a regulator which can be realized in finite-dimensional theories

and techniques for an infinite-dimensional system. In the design' procedure it

is necessary to construct a state observer in order to estimate the system
state from observations. We present explicit sufficient conditions for the

convergence of the schemes.

1. System description and problem formulation.
We consider the system describeduby an evolution equation on a reflexive
Banach space X:

.1 gy mece) 0<t<t,, "u(0)=quD(A)

where u(t)eX is the systém state vector, ‘f(t)éEp iS the control fectbr

and WeX‘is an unknown constant disturbance vector. The operator A:D(A)~X is
a closed, linear, densely defined geherator of/a holomorphic semigrbup U(t)
on X. The control f(t) is assﬁmed'to be Holder coﬁtinuous. The oﬁeratof B
is a bounded linear operator from a p—dimensioﬁél Euclidéan spacé P to-X.

Then the system (1.1) has a unique solution u(t)eD(A) for t>0, continuous

for t>0 and continuously differentiable for t>0, given by
(1.2) u(t)=U(t)u0+ng(t—s)(Bf(s)+w)ds.

The controlled output y(t)eEr is given by
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(1.3)  y(t)=Cu(t), O<t<tl
where the output operator C:DCC)CX+Er is linear and defined on D(A), and
hence D(A)CD(C). The operator C is assumed to be A-bounded.

The key to finite-dimensional regulator design is to a decomposition of
the state space X based on the modes of the system. The operator A satisfies
the spectrum decompdsition assumption[6];then theie exists the projection P
such that |
(1.4) X=PX+(I-P)X
and PX, (I-P)X form A invariant subspaces of X. From the viewpoints of system
analysis and synthesis, it is practical and interesting to take PX as a
- finite-dimensional space. We shall aséume henceforth that PX is®*the N-
dimensional subspace.

Consequently from (1.1) and (1.3)

(1.5) "—dg—‘t‘(ﬂ:Appu(f)+PBf(t)+pw, Pu(0)=Pu,,

(1.6)  —SBEop quie)+QBE(t)+Qw,  Qu(0)=Qu,

(1.7)  y(£)=CpPu(t)+CoQu(t)
and

u = Pu + Qu ueX,

where Q=I-P and AP’ A are the restrictions of A to PX and QX, respectively.

Q

PB, QB are the restrictions of B to PX and QX, restrictively. CP’ CQ are the

restrictions of C to PX and QX. UP(t)=PU(t) is generated by AP and UQ(t)=QU(t)
is generated by AQ.

continuous holomorphic semigroup.

Actually AP is bounded on PX and Up(t) is a uniformly

We also assume that the operator A, is a genarator of a exponentially

Q

stable semigroup U,(t) such that for constants K>1 and 0>0

Q
(1.8) | |Ug(®)| |<ke™F,  t>o0.

Now we may pose the following control problem.

-2 -
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PROBLEM 1.
Find a linear feedback control law for the system (1.1) and (1.3) such that
(i) the resulting closed-loop system without a disturbance w will be exponen-
tially stable
and
(ii) the controlled output y(t) will be regulated so that y(t)+yd, o
independent on w where ydeEr represents a desired constant reference vector.
The assumption that the disturbance vector w and the reference vector are
constant in time t, is not the most general. We can treat polynomial signals
in time t. However, the constant vectors are most important and they allow us

to develop the theory without unnecessary mathematical complexity.

2. Construction of state féedback controllers.

In this chapter we‘construct‘a feedback controller which solves Problem 1.
The controller consists of two parts: the stabilizing compensator (Proportional
part of the confroller) and the servocompensator (Integral part of the controll
-er). The role of the servocompensator is to change the system steady state, so
that the output regulation y(tj—>yd will occur.

Now if we put
(2.1)  A(®)=y(t)-y,,

we obtain from (1.1) and (1.3) the following system

1 0 Cli{n 0 -y
e [Ho kL

u) 0 AJ{uj (B w
(2.3) y=[0 C]{n]

u

in the extended state space Xr=ErXX, which will be a Banach space,

when equipped with the norm

-

|§r=u-1|§r+u~||§_

Before designing a compensator, it is useful to transform the state variable

as follows:
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(2.4) {g=“+5u

u=u
where S is a bounded linear operator from X to EP. By this transformation

we get from (2.2)

M !

that is,
2l rg ’
. hi -
| £ 0 CP+SPAp CQ+SQAQ g SB Sw yd:
(2.5) Pu |={0 Ap 0 Pul+ { PB |f +{ Pw
Quj {0 o - AQ' . Qu QB Qw

Since the operator AQ is the generator of a exponentially stable semigroup UQ(t),
the inverse A&l exists and is bounded. If we take Sp=0 and SQ—-CQAQ , th
operator S=(0,SQ) is actually a bounded linear operator from X to EP. 1In this

case (2.5) becomes

i

0 ‘cp 0\\( ¢ SQQB sQQw-'yd
(2.6) {Pal=|0 Ap O ||Puls| PB {f+| Pw .
lau, o o AQJ_Qp Lo ) | aw

Thus (2.2) and (2.3) become

| 1 fo Tle] (s8] [sw-v,|
(2.7)

= + f+
tu) [0 Aju B w

(z.8) y=[0 C](E]
. u

where E¥(CP,0), SB=S QB and Sw=S.Qw=-C_ A

QB=-Co’y Q= Cofq. Qw

For the system (2.7) we consider a linear feedback control law
(2.9)  £(t)=DE(t)+Fu(t)
= (DS+F)u(t) +DJ (v (s)-¥ )ds

where DeL(Er,Ep) and FeL(X,Ep). Then we get the closed-loop system

E] [sep  Tesmr|[g] [ow-y,
(2.10) = ‘ +
al | BD  A+BE ||u W

y=[0 CI(&).
u
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[Theorem 1]

Suppose that there is a stabilizing control f=Dg+Fu such that the system

o [ THE)

will be exponentially stable. Then regulation will occur in spite of a constant
disturbance w.
Proof.

Let us introduce the following notations

A o T A SBD C+SBF].
0 A BD  A+BF

The operator A, is a generator of a strongly continuous semigroup on Xr’ The

0

operator Af is a bounded perturbation of'AO. Thus A, is also a generator of a

f
strongly continuous semigroup Uf(t) on Xr‘ Since Af was assumed exponentially
stable, the inverse A;l exists and is bounded.

The unique solution of (2.10) is given by

E(Y) e} Sw-y4
=U,(t) +/ Ug (£-5) ds
u(t) u(0)) w
(E(0)] 1 ’8w-yd}
=U.(t) +f U (t-s)A A ds
£ a0t e v
(£(0)) - Sw-y ] Sw-y
=U (1) +Uf(t)A£1[ d —A%l[ di,
Lu(0) w o) w

Letting t-«, we have

1im| (V) |aZ S Ya)
troju(t)| w
since Uf(t) is a stable semigroup. The output is now given by

(2.12) lim y(t)=-[0 C]A%lg\sw;ryd}.

Tt

Next consider the equation

(2.13) Af{i:]{sw;yd]

which implies
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SBDg*+(EksBF)u*=5w-yd
BDE *+ (A+BF)u*=w.

From these equations.we obtain
SAu*-Eh*=yd

from which we get Cu*=-yd, since SA+C=C. vKuations (2.12) and (2:13) imply

o u*

g*
lim y(t)=-[0 C]{ ‘}=—Cu*=yd
which proves the regulation independent of w.

Now we have proved that if the eugmented system (2.11)vcan be stabilized,
‘then regulation will automatically occur. The next step is to show that there
exists a Stabilizing control of the form f=D+Fu where DEL(Er,Ep) and FEL(X,EP).
The key to stabilizability for the system (2.11) is a decomposition of the
system state u on the modes of the system. -

Decomposing the state u by Pu and Qu, we obtain from (2.11)

[ E]fo ¢, o[ &}
|Paj=l0 A, ollPu i
lQﬁJ 00 A Qu} B

For this system let us consider a linear feedbeck control law

(2.14) f(t)=DE(t)+FOPu(t)
=DSu () +F  Pu(t)+DJ ¢ (¥ (s) -y ) ds
where FoeL(PX,Ep). Then we have the closed-1loop system

£l [sBD Cp*SBF, 0 £
Pt |=| PBD. AL+PBF 0 || Pu |.

qQu) | QBD QBF, A, Qu

If the (r+N) dimensional system

e ([ 8]

is controllable, there exist feedback control operators D and FO such‘that all

the eigenvalues of AfP
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SBD CP+SBFO

A =
£P {
PBD AP+PBFO
can be determinedv

The feedback operators D and F

have negative real parts
by pole allocation or optimal regulator design for the usual finite-dimensional

system{8].
Now we have for constants Kzil and w>0

wt t>0.

2

[Iexp(Afpt)l[;Kze

This implies
g (O _ £ (0)
(2.16) 5K2e , t>0.
{Pu(t) B Pu, -
Let us estimate Qu(t). Since
£(s)
Pu (s;]d

Qu(t)= =Uq (8 Quy +f0 Q(t s)QB[D F ][

from (1.8) and (2.16) we have

|| Que)]| <k [Qug| [ &7 Fer g, | Q8] ] ] 0 Fomu( “”}1 0 (t-5) sy

<K | ‘
K] Qg |7 oty ool [0 71111 “”]H———

where we choose w such that w#c. Consequently we obtain

[aao) o™ O FO|

(2.17)
aB|lfltp FO]H—B%J)ZHQH)

[pIP cxx,

where cl=/§max(K,/£?

Moreover the estimates (2.16) and (2.17) give

£ )./ T
Hg t)]li/lla(t)ll | |Paco) ~0u(e) ||

vk 2 Zwtll[g( )}l|2+ 2 ~2min (o, m)tll{g(o)}]|

£(0)
;Cze—mln(c w)tH[ }H, t;O.

Thus we have obtained the following estimate
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(2.18) | |ug(e)]]ze,e™MTE 120

where CZ=V?(K%+C%)max(/§;/IQTEﬂE).

It has been shown that theisystem (2.11) is exponentially stabilized by
the feedback control law f=DE+Fu where F=FOP. We have obtained the following
theoerem.
tTheorem 2]

- If the (r+N) dimensional system (2.15) is controllable, then thefe.exiéts a
feedback contrpl law »
f(t)=DSu(t)+FU(t)+Df8(y(s)-yd)ds
which exponentially stabilizes and regulates the system (1.1).
Remark 1. |

It is easily shown the (r+N) dimensional system (2.15) is controllable if the

N dimensional subsystem (AP,PB) is controllable and

rank[SB Cé]=r+N§p+N.
PB A,

In our design schemes it is not clear how fast the output y(t) will
converge to the reference vector Yq- If for the Systém (2.7) we apply the
feedback control law (2.14), we get the closed-loop system -

(2.19) u£=Afug(t)+wS

where ug(t)=(g}, ws={§w-yd]. The solution is giVen by
u w ' '

4, (£)=Ug (D), (0)+ U (e-s)wgds.
Differentiating this:in t, we obtain
ﬁg(t)=Uf(t)(Afug(O)+wé).
From (2.18)
. —mi ,w)t oy
|lag (0 || < e e™P (0 w)V[|Afug(0)+wsll, £20.

Since (2.4) implies é(t)?ﬁ(t)+8ﬁ(t)=(y(t)-yd)+SQQﬁ(t); we get the estimate
(2.20) |ly(t)-ydll;ponst.e"mi“(°’9)ti|Afu€(0)+wsll, 0.
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This estimate says that the controlled output y(t) will converge to the
constant reference vector Y4 with an arbitrarily assignable exponential decay

rate by the feedback controller (2.15).

3. Construction of output feedback controllers.

Theorem 1 and Theorem 2 give the basic solution for Probleﬁ 1. However we
assume that the knowledge of Su and Pu in the feedback control law (2.14). In
this chapter we shall show that even if we use the state v of an observer .in.
place of u, the feedback control law (2.14) still gives the solution of Probler
1. |

Consider the measurement output.z(t) given by
(3.1) z(t)=Mu(t), t>0
where the mesurement operator MiD(M}+Eq is linear and defined on D(A), and
hence D(A)CD(M). The operator M is assumed to be A—bounded;

‘ Now we construct an identity observer |
(3.2) v(t)=Av(t)+Bf(t)-G(Mv(t)-z(t)), O<t<t1, v(0)=0-

Here G is a compact operator from E? to X. Then A_=A-GM generates a holomorphic

G
semigroup T(t) on X[12] and the solution (3.2) is given by
v(t)=/T(t-5) (Bf (s)+6z(s))ds.

The solution veC(0,t X).' We can prove the following lemma.

1;
Lemma 1.
If the N dimensional syétem (AP,MP) is observable; then there exists an operatc
G such that the semigroup T(t) will be exponentially stable.
Proof. |

Consider the system

V=AV (t) -CMV (1), V(0)=v,eD(A) .

We choose G such that QG=0, that is,

0

Gz={G'Z on PX for ZEEq
0 on QX

where GOSL(Eq,PX)1 Decomposition v by Pv and Qv, we have

-9 -



PV=A, Py~ G, (M Pv+MQQv), PV (0)=PV,

(3.3) ’
QV' Qv, QV(0)=QVO'

Since PX is the N dimensional subspace of V, from finite dimensional theory{[8],

we can find a GOEL(Eq,PX) such that 311 the eigenvalues of AGP AP GOMp have

negative real parts. Thus there are constants KG;I and y>0 such that

(3.4) llexp(AGPt)|];§Ge—Yt, t>0.

From (3.4)

— N o — t - J—
Pv(t)—exp(AGPt)on—foexp(AGP(tfs))GOMQQv(s)ds.
The estimates (1.8) and (3.4) imply

g

<Kol [Py ] e Pakk |6y 1S ge

R N IR A e

197 | <k P e Sarllad 7

1
t y(t s) -39S 5. .
ll ‘zlilds,

-0t
t
<K I]PVOIIe Ytxx |]G |I ( )]](-—Qy—g——**JZI‘QV /1
since we can choose such that 2y%o. Here. we have assumed
(3.5) LOtEq.
(3.5) My Q( )6 ( )
Consequently we have

|vee) ] ] [pvee) | +] laven ||

-min (%:Y) t
<o 1711, 0
where c3={Kd|PH+thH(1+KGlE&HI ( ﬂl . Thus we obtain the estimate
2y~ m
-min(3,v)t
(3.6) ]!T(t)|{;;3e , t>0.

From (1.1), (3.1) and (3.3) the estimated error vector e=v-u satisfies

(3.7) é(t)=AGe(t)—w, e(0)=-uo.
Even if the operator AG generates an exponentially stable semigroup T(t), there

remains an estimated error in the steady state, since w is a constant vector in

time t.

- 10 -



However we can show that the feedback control law
(3.8) f(t)=DSv(t)+Fv+ng(y(t)-yd)dt

gives the solution for Problem 1. From (2.7), (3.7) and (3.8) we get the

closed-loop system

&) [Ag 0 0 el [-w
(3.9) £ |=|SBDS+SBF  SBD  C+SBF|| & Sw-y 4
G} {BDS+BF BD A+BF Jlu) \w

y=[0 0 C][g}

L
in the extended state space Xq=XXEqXX, which will be a Banach space, when
equipped with the norm

IBIFE R B
q »

X*

Corresponding to Theorem 1 the following theorem holds.
[Theorem 3]

If the system

“ e Ag 0 - 0 ‘” e
(3.10) £ |=| SBDS+SBF  SBD C+SBFH\£
) | BDS+BF BD A+BF JLu

is exponentially stable, then regulation will occur in spite of a constant

disturbance w.

The next step is to show that the system (3.10) will be exponentially

stable, if both the sémigroup T(t) generated by A, and the semigroup Uf(t)

G

generated by Af are exponentially stable. Introducing the notations
ug= gl, Bf= SBDS+SBF{,
u BDS+BF
we get from (3.10)

e(t)=T(tje(0)

ug (£)=Ug()u, (0) +f8Uf(t—s) Be(s)ds.

- 11 -
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Using (2.18) and (3.6) we can estimate

—mih (%—,‘Y )t ]
[Te(®)]]zege lle@]], o0
[!ug(t]||ép2e'min(0,m)tlIUE(O)!]+c2c3[|Bf|le(o)l‘fge—min(c,m)(t-s)
_mln (%,Y ) S
xe ds
._ O
-min(,y)t Lo 0.0t

e—min(c ,(.u)tl Iu (0)! ]+c2c3| IBf| ! e . _-€ = ! !e(O)I I
3 _ min (0,0)-min (5,Y)

=2
since we can shoose w and y such that min(c,w)#min(%yy).

Thus we have

—min(y,w,%)t e(0)
(3.11) [‘ug(t)||;p4e ~u€(0 , t20
where
| . I
c4—m1n(c2+c203bf, 2max(c2,0203bf)), bf

Imin(o,m)-min(%yY)l

Consequently . we obtain

. . 0]
—mln(Y’w)'z—)t
(3.12) I!UG(t)]Iégse , t0

=S 2402 . )
where cs_/¢3+cu The semigroup UG(t) is generated by AGf

L 0 0
A ¢=| SBDS+SBF  SBD C+SBE|.
BDS+BF BD A+BF

We can obtain the following theorem from Theorem 2 and Lemma 1.

[Theorem 4]
If the (r+N) dimensional system (2.15) is controllable and the N dimensional

system (AP,MP) is observable, then there exists a feedback control law (3.8)

which exponentially stabilizes and regulates the system (1.1).

Moreover if for the system (2.7) we apply the feedback control law' (3.8),

we get the closed-loop system
(3.13) ueg=AGfue€(t)+w

- 12 -



81

e
gU. WS

where u ={%'}, _l{—w] The solution is given by
. £
_ t. o =i
ueg(t)—UG(t)ueg(O)+fOUG(t—s}wdS.
Differentiating this in t, we obtain

ueg(t)=UG(t)(AGf E(0)+W)

From (3.12)

_ ) —mln(Y,w,z
Hoge (0112 ege HAgf O
which implies*that the‘estimate
' C 0 -min(y, w,2) ‘
(3.14) [ ly(t)- yd||<Const e IIAGf g(0)+w[|

This.estimate saysithat the controlled output y(t) willfconverge;io.the constant
reference. vector ydswith,an arbitrarily assignable exponential decay.rate by the
feedback controller (3 8).

However, the 1nf1n1te dlmen51onal observer (3. 2) 1s>£ot so éasy to
realize. We can show that the system (1.1) and (1. 3) is stablllzed and regulated
by output feedback through a finite-dimensional observer.

Define the other projections P, and QL'such that

L
X=P X#Q; X
and PLX is the L dimensional subspace where L;N; We construct an observer
(3.15)  V(t)=Av(t)+P BF(t)-G(Mv(t)-z(t)), O<t<t,, v(0)=0.

Then we get the following system corresponding to (3.10)

&) [A;-QB(DS+F) ' -QBD -Q;BF|fe]
(3.16) £ |= |SBDS+SBF SBD C+SBE|| £
U] | BDS+BF BD A+BF JLu

This system operator is added a bounded perturbation

-QB(DS+F)  -Q;BD  -Q,BF
B, = 0 0 0
0 0 0

- 13 -



to AGf' The operator AGf+BL generates a strongly continuous semigroup U (t),

defined by ’

ﬁé(t)uq=UG(t)uq+f o(t-8)B,T c(S)u ds, u eX .
Moreover from (3.12) we obtain the estimate [2],[6]
_ . (—min(y,w,%)+c5[|§i|[)t )

(3.17) I}UG(t)II;gse , t>0.
If we choose L such that -min(y,w,%)+c5]|§L112;8<0, the system (3.16) is
exponentially stable. In this case the control law (3.8) still stabilizes
and regulateé the system (1.1) using the observer (3.15) in place of the
observer (3.2).

On the other hand since I>N, the restriction of G to P.X is G, and the

L 0

“restriction of G to QLX’is 0. The observer (3.15) is decomposed as foilows.
PLV(t);(APL_GOM?L)PLV(t)+PLBf(t) G0 QLQ V(t)+G z(t)
where A_PL and A are the restrictions of A to P_X and QLX’ respectlvelyt MPL

QL : "L
and MQL are the restrictions of M to PLX and QLX.
We are free to choose QLV(0)=0 and this implies that,QLv(t)=0, t>0. Thus

an L dimensional compensator is given by

P v(t) ( )P v(t)+P Bf(t)+G z(t)
(3.18) Ap1~Co¥py,

?(t)=(Ds+F)PLv(t)+Df3(y(s)—yd)ds.

Therefore if we choose L such that —min(Y,w,%)+c5||BLII§;6<O, we can
stabilize and regulate the system by output feedback through'an L dimensional

observer. For the L dimensional compensator (3.18) Theorem 3 and Theorem 4

still hold. Moreover y(t) will converge to Y4 with the exponential decay

-8t
rate e .

- 14 -



Example.

Let us consider the system

( au(t,x)‘_azu(t,'x)
2

i v4nu(t,x), xe(0,0.2)U(0.2,0.7)U(0.7,1)
90X

(3.19) '< u(t,0)=u(t,1)=0 t>0, u(O,x)=uO(x)

0.5+_
L [ux(t,O.S)]O-S_—d

where [f(s)]zt denotes the change of the value of the function at the point s
and d is an unknown constant.
The control is given by

[ux(t,O.Z)]g:§i=f1(ﬂ, [u(t,0.2)] "2 =0

(3.20) . w0
[, (6,071 "7 =6, (9, [u(t,0.71g°7"=0

The mesurements at the points 0.3 and 0.6 should be reguiéted so that

- y (£)=u(t,0.3) > 1=y
yz(t)=u(t,0.6) -> 3=yd2.
For this example we consider the case when zl(t)=y1(t), Zz(t)=y2(t).
The operator A:D(A) - LZ(O,I), Au=u”+4ﬂ2u, where D(A)={ueL2(0,1)|u,u' are
absolutely continuous, u"eLz(O,l), u(0)=u(1)=0}, has the eigenset

¢n(x)=¢§éinnnx, kn=—(nw)2+4w2, n=1;2,———.[

Now we méy define a set of Hilbert spaces

o0

nI n§1 <}

o 2 2
th{u=n§1(u’ ¢1’1)0¢ ‘Bnl ktI (U, ¢H]O|

with the following inner prodﬁct

o]

(w,v) = B e 17 0 )0 0v,0.),

.2 ' _ 2 :
where HO—L (0,1) and Bn—kn-4w , n=1,2,---.

We note that AeL(Ht,Ht_l) is a closed linear operator A:D(A)=Ht > Ht-l
with the same eigenfunctions for all teR.

It can be shown that the problem (3.19), (3.20),(3.2%) can be written as

- 15 -
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the control problem

du
(3.22) dt

y (t)=Cu(t)

——=Au(t)+Bf(t)+w

in the Hilbert'space X=H The operators A, B ,C, M and the disturbance w

-1/2°
are given as

Au=n§1An(u,¢n)0¢n forvall ueHi/z‘

£,.(t)

BE(t)=-[,£,6, (0.2 , £ ¢ (0.7)¢,] f ©

w=-d £ ¢_(0.5)¢_

nil(u,¢n)0¢ ©.3)] [ue©.3

Cu=Mu=| for all ueHl/z.

GRS (0-6) u(o;s)

The operator B 1s a bounded 11near operator from E2 to H—1/2

»Moreover since
call ueH1/£:C(O,1), a pointwise observation at xoe(o,l) can be defined with the

aid of an element c=n§1¢n(xo)¢neH_l/2. Then

® © 1 .2 . @ 2
|1 (008, (x ) | < n§1T§“¢n(X0):nglﬁﬁn}(u,¢n)0

HCH 1/2HuH1/2 IICH l/zll(A 4w )ull 1/2
<47T HCH l/zllull 1/2+HCH 1/2HAU‘H 1/2 fOT all UEH1/2=D(A)

which proved that the pointwise observation are:A-bounded. This implies that

C:Hl/2 > E* is A-bounded also. Thus the presented theory can be applied.

Now A2=0, k3=—5n2 and then we can take N>2. Here choose
PX=span{¢n(x);n=1,2}, QX=span{¢n(x);n=3,4,———},

then N=2 and ‘
UQ(t)uoanZeXp(Ant)¢n(u0’?n)0‘

In this case

—Sﬂzt

(3.23)  [|up(®)|]zexpOrgtr=e™
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which implies that K=1 and 0=57r2 in (1.8).
Relative to the basis ¢1,¢2 for PX, we have

AP={3W } Coppe 01002 001 gy fer0.5) 0y(0.3)
0 6,(0.2) ¢,(0.7) $,(0.6) 6,(0.6)

$,(0.5)
Pw=-d ¢2(0.5) .

Moreover the operator SeL(X,EZ) is defined by

-1, 1 Yo (0.3)
Sw=S .Qw=-C. A "Qw=- L _=—w{'n ,- weH

where w = (w,¢n)0. Then

® 1 ¢ © 1 . :
SB=-C A'l _ nES A n(0'2)¢n(0'3) ngz—)\_¢n(0-7)¢n(0.3)
- QQ QB= n |

@ 1 @ 1
n§3-7;¢n(072)¢n(0'6) n§3_7;¢n(0'7)¢n(0'6)

Next we investigate controllability of the 4 dimensional system (2.11) by

Remark 1. -Since ¢n(0w2)#0, ¢n(0.7)#0,‘n=1,2, rank (PB APPB]=2. "Thus if the

SB C
ran P =4
PB AP

holds, the system (2.11) is controllable.

condition

Analogously sufficient conditions for observability of the 2 dimensional
system (A,,Mp) are ¢_(0.3)#0, n=1,2 (or ¢_(0.6)70, n=1,2).
So an output feedback regulator through an identity observer for our systen

is given by

£,(t) - £
(3.24) £,(t) =DSv (t)+F Pv(t)+DS (y(s)-y )ds

, ,
VIV L, 2 v(t,0.3)]. ~|lu(t,0.3)
SE”axz ATy 'G[v(t,o.6£]+G[g(t,o.6J
(3.25) v(t,0)=v(t,1)=0, v(0,x)=0

0.2+ _
0.2-"

0.7+_
0.7-

[V, (£,0.2)]0"5"=£, (£),  [v(t,0.2)]°5 =0

0.7+

[v, (£,0.7)] 577 T=6, (8),  [v(£,0.7)]"; =0

- 17 -



d d 521v1(t)+522v2(t)

where
d d s.. V. (t)+s. v, (t)
D={ 11 12]’ FOPV(t)= 1171 12°2

21 22

v(t,0.3) g g :
G v(t,0.6) =n=1ghy(t,0.3)¢n(x)+n=1g2y(t,0.6)¢n(x)
| T
s [P S o ol B11 ngJ
01851 Spp) 0181 82

We construct the matrices D, F, and G0 such that all the eigenvalues of

0

0 CP SB
A, = + [D F.]
00 a] lps 0
P
and AGP=AP-GOMP have negative real parts.

Moreover, relative to the basis ¢1,———,¢L for PLX, the L dimensional

observer (3.18) becomes

v, (0] [, 0 v, ()] [6,0.2) ¢ (0.7
(3.26) vz“(t) = A, v, () |- ¢2((:.2) ¢2(o'.7) £,()
TN
| “ E o )
v (] 0 gl @) [#00.2) 0 (0.7))
g1 %) g1 1] (Vl(tﬂ
+ 812 822 {u(t,o.s)]- 812 822 $,(0.3) 4’2(0-3)'“%(0-3)} vy ()
1
O u(t,0.6) O 9,(0.6) ¢,(0.6)---¢; (0.6) '
v / | ».VL(t)/
and
£ (t) | ¢_(0.3)
" p 53——;—\/ W)l +F0Pv(t)+Df8(y(s)—yd)ds.
£,(t) = Ay ¢ (0.6)

- 18 -
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