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1. 'Introduction

Let a control system be described by

d
Fe X(8) = Ax(x) + u(t)

on a Banach space X. We study the controllability of the system when the

bcontrol u(t) is‘given by a sum of delay feedbacks
m

u(t) = T a_x(t-h), 0<h. < «+-- <h .

This controllability leads to the following problem:
For the delay system

m ‘ .

d = -
¢ *(8) = Ax(y) + _Z-lArx(t h ), ,
= . (1.1
0,1 x(s) =g(s) - s € [-hm, Q),

x(0) = x.

does the reachable set (with respect to initial value X, and initial function

g) £fill X or become a proper subset of X ?
This problem is called pointwise completeness or pointwise degeneracy. The

problem was first proposed by Weiss [18] in his study of controllability for

retarded systems in Euclidean spaces.

- .n . . . .
In case of X = R , the pointwise completeness was investigated by several
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authors Brooks and Schmidt [3], Zmood and MaClamroch [19] and Zvérkin [20]
for autonomous and nonautonomous single delayed systems.

It was Popov [13] who gave an elegant answer of pointwise degeneracy for
autonomous single delayed systems in Rn. His result was extended by Asner
and Halanay [1] for autonomous systems with multiple commensurable delays.

For such gystems Charrier and Haugazeau [5] gave another extensions which
depend on linear operator theory. Kappel [11] also obtained similar results
for general nonautonomous retarded systems and gave a further analysis of
systems with commensurable delays. For systems of neutral type in’ Rn, the
problem was solved by Choudhury [6] and Asner and Halanay [2].

The only one papér which studies the problem in infinite dimensional spacé‘>
is Charrier [41. The paper gives an éxample of pointwise degénerate system
in a Hilbert space but does not give any detailed Study és in [1—3,5,6,11,13;
19].

The purpoée of this paper is to develop a genéral'theofy'fof pointwise
completeness and degeneracy of (1.1) in infinite dimensiénal (Banach) épaces.

‘We employ the delay system (1.1) studied by Datko [8]. In Section 2, we
give a definition of exact and approximate pointwiée completeness by taking
into account of X being infinite dimensional. A necessary and sufficient
condition and a negative result for exact pointwise completeness are establishe
in Section 3. Section 4 studies approximaté pointwise completeness and point-
wise degeneracy as a complementary‘concept. A main theorem is contained in
Sectioh 4, In/Seéfion 5 we specify the results of Section 4 to the syétems
with commensurablé delays. In specifying such results the representation of

fundamental solution of (1.1) given by Nakagiri [14]‘is effeétively used.
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2. System Description and Definition

Let, X be a reflexive Banach space with norm l|° ”. Consider the differ-

ential system with multiple delays

m
4 x(t) = ax(t) + I A x(t-h), t > o0, (2.1)
dt r r
r=1
S:
x(0) = xo, x(s) = g(s) s € [-h, 0). (2.2)
Here we assume that 0 < h1 < ... < hm = h are positive constants, x(t),

g(t) € X, operators Ar (r = 1,---, m) are bounded on X and A generates

a strongly continuous semi-group T(t), t 2 0 on X.

In the system S, xQ € X and g are called an initial value and an initial

function , respectively.

Under the above assumptions, R. Datko [8] has constructed the fundamental
solution G(t) ¢f the system S by the delay perturbation of T(t).
That is, G(t) satisfies the following relations:
i) G(t) = 0 (the null operator on X) if +t < 0. (2.3)
ii) G(t) is strongly continuous on R and satisfies

m

G(t) = T(t) + L f T(t-s)ArG(s—hr)ds if t 2 0. (2.4)
r=1’0
Let X, € X and g ¢ LP(—h,O; X), pe [l,°]. Then the function
0
m
x(t) =G(t)x. + L [ G(t-h -s)A g(s)ds (2.5)
0 i r r
r=lJ-—hr

makes sense, the integrals being Bochner integrals in X, and is strongly

+ .
continuous on R . Since x(t) depends on X and g, we denote this by
x(t; xo,g). It is proved in [8] that x(t; xo,g) satisfies the

integrated form of (2.1) and (2.2), i.e.,
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t

m
x(t; xo,g) = T(t)xO + JO{T(t-s)rilArx(s-hr; xo,g)}ds

v
o

if t (2.6)

In this sense this function x(t; xo,g) is called the mild solution of S.

In what follows we study pointwise completeness and pointwise degeneracy by
means of the mild solutions.

To give a definition of pointwise completeness, the following set of reacha-

bility is needed.

RL)={xex:x=x(t; x /9) where x € X and g € L (-h,0; X)}.
t p 0 0 o)

DEFINITION 2.1. The system S 1is said to be

(i) Lp—exactly pointwise complete at time t if R (Lp) =X ;

(ii) Lp pointwise complete at time t if Rt(Lp) =

3. Exact Pointwise Completeness

In this section we study exact pointwise completeness.

For Banach spaces X, W and a densely defined linear operator L : D(L) < w
+ X, we denote their duai Banach spaces by X*, W*¥* and its adjoint operator by
L*, respectively. Tﬁe following abstract result is used to derive an equiva-

lent condition for exact pointwise completeness.

Lemma 3.1. Let X and W be reflexive Banach spaces and let L be a bounded
linear operator from W into X. Then the image of L fills X if and only

if there exists K > 0 such that

”x*”X*S K ”L*x* ”W* for all x* € X*. (3.1)
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This lemma follows from inverse mapping theorem [15,p.83] (see also [7]).

Lemma 3.2. G*(t) = G(t)* is strongly continuous on R+.
Proof. Since X 1is reflexive, the weak topology of X coincides with the
weak* topology. Then T*(t) = T(t)* is weakly continuous on 'R+. From the
property T*(t%s) = T*(t)T*(s) and a weii known reéult [10,p.306] that T*(t)
is strongly continuous on R+. By (2.3)

G*(t) = T*(t) is strongly continuous on [O, hl]’

th
so at t
G*(t) = T*(t) + J T* (s=h_)A*T* (t-s)ds
1 r
0
is also strongly continuous on [hl' h2]. ‘Hence G*(t) 1is strongly continuous
on [0, h2]. Continuing this procedure it is verified by (2.4) that G*(t) is

. ' +
strongly continuous on R .
Now we can give an equivalent condition for exact pointwise completeness.

THEOREM 3.1. Let p e (1,®). Then the system S 1is Lp—exactly pointwise

complete at time t if and only if there exists Kt > 0 such that
' 0

: ' X 1/q94 .
R P N K CE PO R FXTRES
for all i* € X*, (3.2)
where 1/p + 1/q = 1. Here the operator F;(s) is given by
| m

F¥(s) = L x A*G*(t-h -s) for all s € [~-h, 0] (3.3)
=1 T r

and Xr is the characteristic function of [—hr, 0] (r=1,+--, m).

Proof. Let W be the direct sum of X and Lp(—h,O; X) whose norm II.”W



93

is introduced by

e llg =11+ 1 el L, (-h,0; ).

We denote this Banach space W by X ® Lp(-h,O; X). Let the operator

Lt : X @Lp(—h,o; X) * X be given by
Lt(x,g) = G(t)x + Gtg(') for (x,9) € X @Lp(-h,o; X). (3.4)

Here Gt : Lp(-h,O; X) » X is given by
o ,

m
Gtg(-) = rilj[_h G(t—hr—s)Arg(s)ds for g€ 'LP(—h,‘O; X). - (3.58)
r

It is evident that Lt is linear and bounded. By (3.4) we have
L o« - : X =R .
t(X@Lp( h,0 )) t(Lp)
Then Lp—exact pointwise completeness at time t is equivalent to
X L (-h,0; X = X.
Lt( ® p( ))

Since pe (L), W=X@ Lp(—h,O; X) 1is reflexive and W* is i‘epréséhtéd by

is given by

W* = X* @ Lq(—h,O; X*) (1/p + 1/q = 1) whose norm H - HW*

(R [ g I N [P b. G

x*' L (-h,0; X*)
q

*
To apply Lemma 3.1, we shall calculate Lt' :

For x* ¢ X* we have

0
m -
<L (x,9),x*> = <G(t)x,x*> + <I [ G(t-h =-s)A g(s)ds,x*>
t _1J r r
- r=1’-h
r
0]
= <xX,G*(t)x*> + J <g(s),F:(s)x*>ds
-h



L*
= <(x,9), tx*>W,W* [

* *
where F;(s) is given by (3.3). Hence th* is expressed by (G*(t)x*,Gtx*)

*
and Gtx* is given by
0

. : ‘
<g,Gtx*> = J <g(s),F€(s)x*>ds
-h

L_(-h,0; X),L (-h,0; X*)
P q

for each g € Lp(-h,O; X).

Since G*(t) is strongly continuous (Lemma 3.2), Fz(s) is strongly continuous

on [-h, 0] except for s = hr' r=1,---, m-1. = Then it follows by (3.6) that

0 .
| Loxx|l = max { || a* oy, <[ | exsraer || Las) M9} <on, (3.7)

Then applying Lemma 3.1 with W = X @)Lp(—h,o; X) and L = Lt’ we obtain condi-

tion (3.3) for Lp—exact pointwise completeness from (3.7).
Since G(t) = T(t) for t € [0, hl]' we have the following corollary.

COROLLARY 3.1. If T(t) is a strongly continuous group, then S is Lp—exacte

ly pointwise complete at any time t € [O, hl] for each p € (1,o).

Next we are concerned'with a negative result for exact pointwise completeness.
Such a fact for mild solutions in non-delay systems is first pointed out by
Kuperman and Lepin [12] and more detailed researches are given by Triggiani
[16,17]. In these works some types of compactness of operators are assumed to
show such a fact called the lack of exact controllability. We shall show that a

similar situation, which is called the lack of exact pointwise completeness, can

be viewed for our delay system S.
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Lemma 3.3. Let p e (1,21 and T(t) be compact for all t > O. Then G(t)

and Gt are compact for all t > O.

Proof. It is easily verified by (2.4) that T(t) is compact for all t > O
if and only if G(t) 1is compact for all t > O. By (3.5) and changes of inte-
gral variables the compactness of Gt ‘follows from those of Gi : L (0, hr; X)

b

-+~ X given by
" r :
G g(-) = J G(t-s)A g(s)ds for g e L (0, h ; X) (3.8)
t o r’ p r

for each t >0 and all r=1,--*, m. It is not difficult to prove the compa-

ctness of Gz. We remark that this lemma does not hold if " p = 1.

THEOREM 3.2. Let X be infinite dimensional and let p € (1,®1. .. If T(t)

is compact for all t > O, then S is never Lp-eXact pointwise complete at ahy

time t > 0.

Proof. We shall prové this theorem by Baire category theorem as in- Triggiani

[16,17]. Let R =L (S ), where S is the closed ball in X® L (-h,0; X)
nm n m m D p T

of radius m with center the origin (0,0). Since Lt(x,g) = G(t)x + Gtg(-),
L is compact for all t > 0 by Lemma 3.3. .Hence an is compact in X
for each n, m=1,2,--°- . Since X is infinite dimensional, -R.nm cannot"

contain any open ball and hence is nowhere dense in X. This implies by Baire

category theorem [15,p.80] that
x-ulR_:n, m=1,2"" }#09.

Since

U Rt(L )= u UR_<cU { R_tmn, m= 1,2, 1},
t>0 p n=1 m=1

S 1is never Lp—exactly pointwise complete at any time t > O.



4. Pointwise Completeness and Pointwise Degeneracy
It follows by Definition 2.1 and Hahn-Banach theorem that - S is. not .Lp
pointwise complete at time t if and only if there exists x* # 0 in X* such
. : . . l - . : N ' B N
that x* ¢ R (L) ,i.e.,
t p

<x,x*> =0 for all x€¢ R (1L).

: AR . t.p
In thisvcasev S 1is said to be Lp pointwise degenerate at time t with respect
to x*. If S is Lp pointwise degenerate at time t with respect to every

x* € E* for E* € X*, S 1is called Lp pointwise degenerate at time t with

respect to E¥*.

The following lemma is fundamental in the arguments below.

Lemma 4.1. - Let X and W  be Banach spaces and let L be a densely defined

linear operator from W into X. Then
* 1
Ker L = (Range L).

e — *
‘Especially,  {Range ) =-X -if and.only if Ker L = {0}  in  x*.
By lemma 4;1, we dbtain the following result.

THEOREM 4.1. Let pe [1,9). The system -S is Lp pointwise degenerate at

time - t >~0‘iWith:respect to E* if and only if"
E*:cher G* (t) h;{ 6‘{ Ker‘Fé(s) : s € (~h, O)\{ —hl,o--, —hm}}‘}. 4?4.1)
Moreover, the system Sv is ﬁp pointwise compléte at time t >0 if and only if
{0} = ker e*(t) n { n { ker FX(s) : s € (-h, VO)\{ =h e, —hm}} 1. (4.2)

Proof. By Lemma 4.1, the system s is Lp pointwise degenerate at time t

with respect to E* if and only if

E* ¢ R (L )l = (Range L )t = Ker L*
t ' p t t°
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Then by (3.6) it follows that

G*¥(t)x* = 0 in X* for all x* € E*

and Gtx* =0 in Lq(-h,O; X*) for all x* € E*,

where 1/p + 1/g =1 and q # 1. Hence if x* € E¥*,

0
<o G x> j g . . .
* - _
ELAETaNS § (=h,0; X), L (=h,0; X*) g9 S),Ft(s)x ds 0
P q ~-h
.. for all g € Lp(_h!07-x)'
This implies
F;(s)x* =0 in. X*  for a.e. s € [-h, 0]. . (4.3

Since Fz(s) is strongly continuous on [-h, 0] except for s =h,, 1i=1,--

m-1, we have by :(4.3) that
Fg(s)x* =0 in X* for all s € (-h, 0)\{ —hl,"',—hm} .

Thus x* belongs to the left hand side of (4.1).

The latter part of this theorem will be clear.
The condition (4.1) 1is equivalent to that for all x* ¢ E¥%,

G*(t)x* = 0 in X* and F;(s)x* =0 in X*
£ 1 ' _ {_ oo -h }
or all s § {(-h, ON hl' ,~h
(4.4)

Since (4.1) and (4.2) do not depend on the space of initial functions
Lp(—h,O; X), we omit Lp in the terminology of Lp pointwise completeness and

Lp pointwise degeneracy.
We now write the second condition in (4.4) by

-10-



<x,F;(s)x*> =0 for all x € X and all s € (—h,+

j+1’ —hj)

j=0,1,+--, m-1. (4.5)

It then follows by (3.3) and changes of integral variables that (4.5) is equi-~

valent to

m

< I G(t+s—hr)Arx,x*> =0 for all x € X and all s ¢ [hj, h 1,

j+1
r=j+1 _
j =0,1,°*+, m=1. (4.6)
Lemma 4.2. The fundamental solution G(t) of S satisfies the following
relation:

0]
m

G(t+s) = G(t)G(s) + L J G(t-G—hf)ArG(0+s)dG for all s, t 2 0.
r=1’-h
* (4.7)

Proof. Since this lemma follows easily by direct substitutions, we omit

its proof.
The following lemma is due to R. Datko [9,Lemma 2.4].

Lemma 4.3. If x € D(A), then. G(t)x is strongly differentiable for

+ . e
almost everywhere on R and satisfies

) m
L G(t)x = AG(E)x + I A G(t-h )x
dt r r
r=1 .
m +
= G(t)ax + I G(t—hr)Arx for a.e. te R . (4.8)
r=1

The following theorem gives an infinite dimensional version of the results

by 2Zmood and MaClamroch [19,Theorem 2] and Kappel [11,Theorem 2.1].

-11-
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THEOREM 4.2. The system S 1is pointwise degenerate at time t > 0 with

respect to E* if and only if
E* © N Ker G*(s). (4.9)
st

Moreover, the system S is pointwise complete at time t > 0 if and only if

{o} = n ker G*(s). : (4.10)
st

Proof. It is sufficient to prove this theorem that

x* € N Ker G*(s) (4.11)
s2t
if and only if
x* € Ker G*(t) n{ n { Ker F¥(s): s € (-h, 0)\{—hl,---, —hm}} }. (4.12)

The condition (4.11) 1is equivalent to that

<x,G*(s)x*> = <G(s)x,x*> = 0 for all x € X and all s 2 t. (4.13)

First we shall show that (4.12) implies (4.11). Let (4.12) Dbe satisfied.

Then by Lemma 4.2, we have
0

<G(t)G(s)x,x*> + J <Ft(O)G(0+s)x,x*>dG
_h .

<G(t+s)x,x*>

0]
J <G(0+s)x,F€(o)x*>dO =0  for all x € X and
-h

s 2 0.

This shows (4.11).

Conversely, let (4.11) be satisfied. Then by Lemma 4.2 and (4.13), we

have

-12-



100

0
. m

f(s,x) = X <G<t40-hr)ArG(o+s)x,x*>do
r=1 -hr

= <G(s+t)x,x*> - <G(t)G(s)x,x*>

=0 for all x € X .and all s 2 0.

If x € D(A), by Lemma 4.3 we can differentiate . f(s,x) for a.e. s € R

obtain that

m . .
£'(s,x) = L <G(t+s-h )A x,x*>
r r
r=1
. ,
o
+ Z <G(t-0-h )A G(s+0)Ax,x*>dg
Y r
r=1"-h
X
0
m o om ) : ,
¥ I <G(t-g-h )A (I G(s+0-h.)A.)x,x*>d0
r=1’-h j=1 7
r
=I.(s) + I.(s) + I,(s) =0 for e r'
= 15 2S 35 = (o] a.e. S -

Since Iz(s) = f(s,Ax), we see from (4.14) that

IZ(S) =0 for all s 2 O.

13(5) can be decomposed as

m m m 0 .
I(s) = L1, .(s)= 2 (2 <G(t-0-h_)A_G(s+0-h.)A.x,x*>d0) .
3 . 3,3 . ¥ r J 2
j=1 j=1 r=1"-h_
If 0 < s’<'hj, G(s+0—hj) =0 for each O € [-h, 0] so that
I, .(s) =0 for 0<s <h..
3,3 J

If s 2 h,, we use Lemma 4.2 again and obtain from (4.13) that
]

_13_

(4.14)

and

(4.15)



I, .(s) = <G(t+s-h,)A_ x,x*> - <G(t)G(s-h.)A.x,x*> = 0.
3,3 J 3 J 3]

Hence 13 j(s) =0 for all s 20 and j = 1,-+-, m. Then by (4.5),
, .

+ . . . . .
Il(s) =0 for a.e. s € R . Since Il(s) is piecewise continuous and

tts-h 2 t if s 2 h, it follows by (4.13) that

m ~ .
= r < +s-—- A *> = .
Il(s) - G(t+s hr) XX 0 for s ¢ [hj, hj+l] ,
r=7j+1 :

Since D(A) is dense in X, (4.6) holds. This proves that (4.12) implies

(4.11) ‘and completesrthe proof.

It follows from Theorem 4.2 that S is pointwise degenerate aﬁ all t‘2 tO
with respect to E* if S 1is pointwise degenerate at timé to with féépéé£~
to E¥*. | | | |

By Theorem 4.2, we shall call N Ker G*(s) the degenerate spaéé‘of s' a£ |

szt . .
time t. It is clear that the degenerate space is a closed subspace of X*.

Example 4.1. Let X = LZ(O' 1). We define the semi~group T(t) by::

T(t)f = g ; g(s) = | f£(s+t) if. 0.2 s+t =1

0 if s+t > 1.

It is easy to verify that T(t) 1s a strongly continuous semi-group on L2(0,_l),

T(t) = 0O for all t > 1 and its infinitesimal generator A = d4d/dt.

We now consider the delay system

— = Ax(t) + A -1). 4.
at x(t) (t) lx(t 1) (4.16)
If A, = I (the identity operator on X), then the system (4.16) is pointwise

1
complete at all 't > 0. Next consider the case where Al = T(1/2). In this

case the system (4.16) is pointwise degenerate at all t > 0 and the degenerate

-14-
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space of the system at time t > 0 is given by

IA -

[ { g* ¢ L,(0, 1): g* = for x € L,(0, 1} if o<t< 12

X1-¢, 11%

IA
t
IA
=

x for x e L0, 1}l if 1,2

) bg* e 1,00, D g% = Xpy 5 g

{ g*er_ (0, 1): g = .3 x for x e L_(0, 1)} if 1< t < 3/2
2 ['Z'_tr l] 2

X* if t z 3/2,

where XI is the characteristic function of I. Note that the degenerate

space is infinite dimensional for all t > O.

Example 4.2. (Extended Charrier's example [4]) We consider the single

delay system (4.16) on a general Hilbert space X. The inner product and the

norm are denoted by < , % and l| ”X' respectively. A in (4.16) 1is assu-

med to generate a semi-group T(t) on X. Let E* = EE.{ x{,---, x; } ana
{ XI,---, x; } < p(a*). We assume that there exists a set { yl,-", yn} < D(a)
such that

* =6 * = ’ * =
<yk,xj>X K,3’ <T(1)yk,xj>X 0 and <T(1)Ayk,xj>X 0

for all k, j=1,--+, n.

Then if Al is given by

n
= 7 * - < ke kS ,
A_X k=1{ <T(l)x,xk>XAyk T(l)x,A.xk ka}

the syStem (4.16) is pointwise degenerate at time 2 with respect to E¥*,
It is possible to extend this example to the case where E* is spanned by

infinitely many elements xi,~~-, x;,--- in X*.

-15-
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5. Systems with Commensurable Delays

In this section we consider the system S with commensurable delays hr =

r , r=1,-+-, m T > 0.
To give a useful formula of G(t) in this special system, we need some pre-

paration. First we define the index sets A5,k) for all j, k=1,2,--- by

A(Jlk) ={ (ill"'l lj): 1= il,"'r lj <m and ll+ ""+ l] =k }.

Next we define the operators Tk(t), k=1,2,---, by

T, () = T(t)
k-1 € °1
T, (t) = jil A(j?k—l) JOT(t—sj_l)Ail---- [0 T(sl—s)AijT(s)dsdsl---dsj_l,
k 2 2. (5.1)
t
Then Tz(t) = JOT(t—s)AlT(s)ds, for example.

For each natural number i, we define the matrix of operators Ti by

T (t) = [ T(t) O cevenmenn o )
Tz(t) T(t) .- S
E .'. . 0
T, () ~--- T_(t) T(t) (5.2)
.t 2 J

where Ti(t) are given by (5.1).

We denote the transpose of i direct sumof X, (X®X® --- @X)t, by Xl.

Lemma 5.1. Ti(t) is a strongly continuous semigroup on X" such that its

infinitesimal generator Ai is represented by

-16~
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A. = A O csescecccccse (@)
i
Al A O .
-0 :
m m-1 A
. L .0
O+ OA A «--A_ A 5.
L m m—1 1 ) . (5.3)
i ' t
on D(A)” = (D(A) @ D(A) @ --- @D(R)) .
Lemma 5.1 says that D(Ai) = DgA)l. But we can not give such representations

k k -
of D(Ai) in terms of the domains of operators A , Ak lAr etc. for k = 2.

k-1

We define Di c X by Di =N D(Ak_JA Aj_l) for r=1,---, m and
j=1 *
k=1,2,"°" . Then we have the following lemma.
Lemma 5.2. . D(Ak) > D(Ak) n Dk N «<=++n Dk, .
— i 1 min(i,m)
“ k N
D(A
\ (i—l) y,
DrD(Ak)nD n----nDk, .. )
1 min (i, m)

\ : o (5.4)

Since the proofs of Lemma 5.1 and Lemma 5.2 are complicated and tiresome, we-

omit the proofs. ‘The following lemma is an easy consequence of (5.1) and (5.2).
- Lemma 5.3. ~If - T(t) 4is analytic,: then Ti(t) is also analytic for each

-17-



Now we define Zi inductively by

Z =1 and Z = 1 for i 2 2. (5.5)
T T)2
i—l( ) i-1
It is shown in Nakagiri [14] that G(t) is represented by

G(t) = IiTi(t—(i—l)T)Zi when t e [(i-1)T, iT), (5.6)

where Ii = [0,+--+, O, I1.

oo

Let X, be the largest subspace of X such that Z.Xi c n D(A?)_ It
n:
then follows by Lemma 5.2 that if

o0
n (0@ n Dt n...on D9
k=0 m

is dense in X, then Xi is also dense in X.
The following theorem is a consequence from Theorem 4.2 and (5.6).

THEOREM 5.1. The system S is pointwise degenerate at time tO e [(k-1)71,kT

with respect to E* if

® ® **n*

E*c n nKer Z.(A)'T.. (5.7)
. it ti
i=k n=0

Moreover, the system S 1is pointwise complete at time t0 e [(k-1)T, k1) if

n nker 2. (AOTT = {o}. (5.8)
. 1 1 1
i=k n=0

Especially for the pointwise completeness, we obtain the next theorem.

THEOREM 5.2. The system S is pointwise complete at time tO e [(k-1)T1, kT)
if

Xx=sp {T.A"Z.X.: i =k, kt1,***, n=0,1,2,--- } (5.9)
1 11 1 |
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or, more generally, if

—_ n '
X = sp { IiAiTi(Si)ZiXi :i=%k, k¥l,*--, n=0,1,2,--- }’

s, arbitrary in Ji' (5.10)

where Jk = [tO—(k—l)T, T) and Ji = [0, T) for i 2 k+1.

Conversely if T(t) is analytic, Xi is dense in X for each 1 = k, k+1,

... and the system S is pointwise complete at time tO € [(k-1)T, kT), then
x=sp { TA'T. (s)I.X, : i=k, ktl,---, n=20,1,2,--- } ,
iiiTititi
N s, arbitrary in Ji—{O}. (5.11)
Remark 5.1. The condition (5.7) ((5.9)) is not necessary for pointwise dege-

neracy (pointwise completeness) in general. But if Xi = X for all i =k,

k+1,* - , i.e., A is bounded, (5.7) ((5.9)) is necessary and sufficient.

COROLLARY 5.1.. Let A be bounded. Then S is pointwise degenerate at time

tO € [(k-1)T, kT) with respect to E* if and only if (5.7) holds or

Ex © ( sp { IiAri‘Zix :i=%, k+l,+-, n=0,1,2,--- ht. (5.12)

Furthermore, S is pointwise complete at time t, € [(k-1)Tt, kT) if and only

if (5.8) holds or
x=sp { TALZZX : i =k, ktl,=*, n=0,1,2,-+- . (5.13)

To give a generalization of rank condition for pointwise completeness, we

consider the condition (4.2). First we give the representation of Ft(s)
without using characteristic functions. Let t ¢ [(k-1)T,kT) Dbe fixed. Let
Xi . (i=1,2,-+, *r = l,?--, m) be the largest subspace of X such that
’
[e o]
Zax _c np(AD).
“iri,r i
n=0
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For negative integers i = -1, -2, --- we put X, r =X for each r=1,.--,
i,
. 0 1
m. We now define Xi' xi by
0 m ' m
X, = . X, = N X for i = .. .
i . Xk+1-—r,r' i U k+i-r,x * L r 0
. r=i-1 r=i

Then we obtain by Theorem 4.1 and differentiations of (5.6) the following

result.

THEOREM 5.3. The system S 1is pointwise complete at time tové [(k-1)T, kT)

if
5 z " L }
= I : i= EIRrY = c e e
X =sp b GlegX, (r_i kti-r kti-r kei-pop) Xg 7 AThertoeme n=0, 1,2
(5.14)
or, more generally if
— o AP 0 0
_ v 1 T z
x=sp Latex, (r_i_l kti-r kti-r kti-rSi) kbi-rPran) ¥t
by n 1 1
(Z I A T (S )Z A )Xi . i:l'...,m’ n=0’1’2,-.. },

_ikarkarkar i’ k+i-r'r

s? arbitrary in [O, to—(k—l)T) and si arbitrary in [tO—(k—l)T, T)

(5.15)
. . . 0 1 )
Conversely if T(t) is analytic, Xi' Xi are dense for all i =1,---, m
and S 1is pointwise completé at time to € [(k-1)T, kT), then
£ 1 A 0,7 0
= sp T
x=sp Lotedx €2 b A ki ) i e %5
: r=i-1
5 AN T (sh1 A XS ¢ i=l 0,1,2 }
(r—i ktior kti-r kti-r i) Tkei-rPp) Xy =L o Teme n=0.1,2, ’

sg arbitrary in (O, to-(k—l)T) and si arbitrary in (to-(k—l)T, T).

(5.16)

If A is bounded, then G*(t) is analytic in t € ((k-1)T, kT) " for each

k=1,2,---. Let tO € [(k-1)T, kT). Then we see easily that

-20-



N Ker G*(t) = n Ker G*(t),
tZtO t2(k-1)T

€ [(k-1)T, kT)

so that S is pointwise complete at tO

pointwise complete at to = (k-1)T.

COROLLARY 5.2. Let A be bounded. Then S

t, € [(k-1)T, kxT) with respect to E* if and only if

if and only if S is

Thus we obtain the following corollary.

is pointwise degenerate at

0
* ok ® m * * * '
* C 2’1" o { n n L oaxZ A ny
E* € Ker £ 1 n ker (Loaxl o A L ) } (5.17)
i=1 n=0 r=i
or
— m n 1
* C 1127 v 1 R = e
E ( sp{ N kX, (r_i Kbior ktior k+i-rAr) i=1, ,p, n=0,1,2, o,
(5.18)

¢

Furthermore, S 1is pointwise complete at tO

m
=sp 1112 T 1 noz . =1, -
e (i—i Kti-r kti-r kti-gip X ¢ Lo em

€ [(k-1)T, kT)

if and only if

n=0,1,2,--- 1},

(5.19)
or
m *® ' m *
7*1" noon YA * ny } = {o}.
ker 2T, 0 1 ker (Farly i  Picy) Taaiy)) = 10 (5-20
i=l n=0 r=i
Especially if m = 1, (5.19) is reduced to
— n
X = sp { Ikax, LAZAX ; n=0,1,2, }. (5.21)
‘ N
Consider the finite dimensional case where X =R, A and Al are N X N
are N X Nk, Nk X Nk, Nk X N matrices, respec-

matrices, so that Ik’ Ak' Zk

tively.

rank | Ika,

In this case the condition (5.21) is equivalent to that

This fact follows by the Cayley-Hamilton theorem and gives the main result by

Zmood and MaClamroch for Euclidean N-space [19,Theorem 3].
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We next specify Theorem 5.2 and Theorem 5.3 in the special case where m = 1
[e o] .
. n . .
and Al commutes with A. Let X = N D(A). Clearly X, is dense in X.
: n=0

COROLLARY 5.3. Let m=1, A commute with A and T(t) be analytic.

1

Then S is pointwise degenerate at t0 € [(k~1)T, kT) with respect to E* if

©o . 00

E* ¢ n n Ker (A’l*)l(A*)n
i=k n=0
or if
k o0 .
E* c Ker 6*((k-1)T) 0 { 0 nKer a5 @an" }.

i=1l n=0

Furthermore, S is pointwise complete at tO € [(k-1)T, kT)  if

X = sp { AiAnXm.: i =k, ktl,---, n=01,2--1}

or if

x =sp { AA'X, G((-1)TIX : i=l,+-:, m, n=0,1,2,--+ }.

' We now recall the definition of approximate controllability. Let A genera
a semi-group T(t) on X and let B be a bounded operator from a Banach space
U into X. Then the system {A, B} is said to be approximately controllable

~

X. We define Zi by

if U T(t)BU
t>0

1o . for i22.,

N
]

H

5

o
~NR
]

o) Ti—l(T)71_1

The following corollary is immediate from Theorem 4.2 , Lemma 5.3 and (5.6).

COROLLARY 5.4. Let T(t) be analytic and the system { Ak’ Zk} beyappro—

ximately controllable on x*. Then S is pointwise complete at any time t €

[0, xT).

=22~
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