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7. Weierstrass Points on Curves of Fermat Type
Hidetsune Kobayashi ( /I: 4ﬁ\ % 18)

§1. Introduction

An anlytic funcﬁion defined on a Riemann gurface
has some poles if this function is not constant valued.
Let g be the genus of the Riemann surface and let P
be a point on this surface such that theie is an analyfic
function having a pole of order y with v £ 9 and
holomorphic at any other point, then this point P is
called the Weierstrass péint. |

We calculated the Weilerstrass points on the curﬁe of

Fermat type :

n n n

X0 + Xl + X2 =0 ,
and obtained all Weierstrass points when n = 4,5,6,7, where

(XO’Xl’XZ) is a homogeneous coordinate system of the compléx
projective plane Eﬂ. We also obtained the gap sequence and
the Weierstrass weight of special Weierstrass points on
these curves with n> 4.

These results are obtained by using the Poincarée residue
map which is thé relation between the rational 2-forms on H’2
and abelian differentials on the Riemann surface‘corresponding
to the given curve.

In §2 we describe the method to obtaine Weierstrass

points by using the Poincareé residue map.
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And in §3, we show the algorithm to obtain:Weierstrass points

and we show the results obtained.

§2. The Poincare residue map
Let EPZ be the complex projective plane, (X l,X ) be

homogenebus coordinates, and let F(X ) be a:homogeneous

ll
polynomial. The set of all points satisfying the equation

F(X ,X ) =0

S
is called an algebralc curve, and we denote it as C . A
point P on ‘C is called a singular point if and only if
it satifies the equations |

3F/ax0(P) = bF/aXl(P) = b.FV‘sz(P) = 0 .
In our work we assume no points on C is singular.

Let 11? be a sheaf of germs of holomorphic 2-forms on
2 ,11?[c1 be that of rational 2-forms having a pole of
order at most 1 along the curve C , and let,fi. be the
gquotient sheaf .Q?lc] /Jl? , then we obtain-the exact
sequence of sheaves :

0 — jl — _Q?[C] — fi — 0 .

From thls exact seéuence, we obtain the exact sequence
of cohomology groups :

0o - 1%®?, %) — %®*, Ol — 1@, 0)

| | - wl@?, 0% — ... .

It is known that HC(®2, Q%) = HY(®%, Q%) =0 (11],p.118),

so we have the exact sequence :



‘ P.R. o
0 — HO(PPZ,_QZ[C] ) — HO(IPZ,[NL) —s 0 ,

where P.R. is the abbreviation of the Poincare residue map,

and the explicit correspondence will be given in (2.1).
Let x = Xl/X07, y = X2/X0 be affine coordinates and
let f(x,y) = F(1,x,y), then if F(Xy:X{/X,) is a homo-
geneous polynomial of degree n and if F does not co-
incide to X, , then f(x,y) is a polynomial of degree n.

0

Hereafter, we assume f(x,y) 1s of degree n (‘; 4).
Each element Of; HO(IPZ,JQ?{C] ) is expressed in the affine
coodinates: (x,y) as
(g/f)dxady,
where g(x,y) is a polynomial of degree‘less than or equal
to n - 3. ({11 p.22\). As we are assuming that this curve
C has no singular point,
Bf/ax(f) #0 or 2f/py(P) #0
at any point P = (p,q) of C. Wé may assume withouf loss
of generality tha£ 3f/ay(P) # 0 . Then by the implicit
function theorem, there is a function y = y(x) such that
f(x,y(x))= 0
and the domain of definition of y(x) is a neighbqrhood
of p.
In the neighborhood of p , the Poincare residue map is
g

—— dxady b —>

g(x,y(x)) - 5
7 dx

/Y (X, 7 (X X - (2.1)
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We denote W the right hand side of this correspondence.
It is easy to see that w is an abelian differential on
the curve C.

The order of zero at p of this ® is equal to the
number of intersection of C with the curve g(x,y) =0
at this point.

Now we calculate the order of zero at p of W@

Let
g(x,y) = b00 + blox‘+ ley + ... + bOmym ’
(m = n-3)
and let
y(x) = q + al(x-p) + az(x—p)2  oeeee
- then

g(x,y(x)) = Ay + A, (x-p) +'A2(X—p)2 o

Proposition « has zero of order v at p if and only if

AO = Al = .... = A = 0.

Proof. Omitted.

AO""’AD—l are linear forms with wvariables b b

00’ """ 0m~

We denote C(YP) the maximum number of linearly independent
linear forms among Agrec-rBy -

Let HO(C,Ig(—vP]) be the set of all abelian differen-
tials having zero at P of order at least V , then the
dimension of HO(C,Iﬁ[—VP] ) as a vector space over the

field of cbmplex numbers « 1is :
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Proposition

dimG:HO(C,Ql[—l)P] ) = (n-1)(n-2)/2 - C(VP).
Pfoof. The space of all polynomials of degree less thanh
or equal to n-3 1is of dimension (n-1)(n-2)/2 , and
the dimension of the space of solutions of the equations
AO = ... = A = 0
is (n-1)(n-=-2)/2 - C(VYP) . Q.E.D.

Letv HO(C, obrPl) be the space of all analytic
function havihg only one pole of order at most VY at P,
and let L(vP) be the dimension of this space, then by
the Riemann-Roch theorem

4WP) =¥ + 1 - g + (n-1)(n-2)/2 - C(YP) . ({1 p.2%5)
Here, g is the genus of the curve C and this coincidgs
with (nfl)(n~2))2 because the curve C is assumed to be
nonsingular.

We have

L2 ®WP) - L((WY-1)P) = C((¥V-1)P) - C(¥YP) + 1 . (2.2)
From this equation, we see o

L(vp) - L((¥-1)P) = 1 or 0.

1f f(ypP) - {((W-1)P) = 1, then there is only one analytic
function except multiplication of constant number, such
that this function has only one pole of order Yy at P.
If this order ) 1is less than or equal to g , then

this point P 1is called the Weierstrass point.
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£ »pP) - {((¥-1)P) = 1 if and only if C((¥-1)P) = C(¥P),
and if the linear forms with variables bog r---- bom 7
Ay seeer Ay
are not linearly independent, there is a number Vv (£ q9)
suéh that
C(YP) = C((¥-1)P) .

From this discussion, we have

Theorem Let AO oy Ag-l be linear forms obtained from

the expansion around P, and let D be the determinant of
the matrix consisting of coefficients of the linear forms

0.1 Ag—l , then P is a Weierstrass point if and only if

§3. The algorithm and the results obtained
We use new coordinates (u,v) such that
u=x-p and v = y - (.

Let v be a polynomial

+ 9-1

5
v =c,u + c,u 4+ ... c u .
g-1

1 2

the coefficients c; ,..., Cg-1 2re determined by the

1
equation
1+ (urp)™ + (viq)™ = 0.
We substitute the polynomial
2
q + cyu +cyu” + ...

for y , and substitute u + p for x in

- m
glx,y) = bOO + blOX + bOly + c.. + bOmy .



Then we obtain a polynomial

2 g-1

AO + Alu + A2u + ... + Ag_lu -

Let M be a gxg matrix (mij} such that

m.. = the coefficient of b. in A. ,
ij . J i-1

where we renamed the variables bOO 7ennz bﬂm as bl R

ey bg.
Finally we calculate the determinant of M which we
deﬁote as AX . Each root of the equation
AX = 0
gives a x-coordinate of the Weierstrass point.
The polynomial AX in the table at the last of this
sectifon determines the Weierstrass points on the Cﬁrve
| x) + x] + x] = 0.
The case n = 4,5,6 are omitted.
The point (1,0,z) with =z =3-1, is on the
curve ‘
Xg + X} +X) =0 .
Theorem ({27, )
(a) (1,0,2) is a Weierstrass point.
(b) The Weierstrass weight of this point is
2.2, (1+i)(n-2-i)(n-1-i)/2 .

(c) The gap sequence at (1,0,z) is

1,2,...,n=2,n+l,...,20-3,...,kn+l,..., (k+1)n-k-2,...,

n=2 n-3 ‘ n-k-2
(n-3)nt], .
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Table.

COMPUTER CENTRE, UNIVERSITY OF TOKYO

DATE 82-87-23 TIME 15:01:08 PAGE 1

3 3 3 36 35 34 33 32
1) *(2*2 + 1) *(2 + 2) *(9444843%2 + 178807174*2 - 84P65730966*2 - 158770786877*2 - 2424680015179*2
31 39 29
- 2443833181p000*2 - 124622040636384*2 - 1998574581555088%2 + 1519823955156461*
28 27 26 25
4 + 13516123799328326™2 + 59277489469031722*2 + 173796016162807951%2 +
24 23 22
354163522740082544*2 + 457491209325473008%2 + 148744997471980283*2 -
21 29 19
920224057351991726*2 ~ 2695918832393204176%*2 - 4464275587034399447*2 -
18 17 16
'5215161393220145251*2 - 4464275587034399447%*2 - 2655918832393204176*2 -
15 14 13

920224057351991726*2 + 148744997471980283%2 + 4574912069325473008%*2 +

12 11 19
354163522740082544%2 + 173796016162807051*2 + 582774894¢69031722*2 +

‘ 9 8 : 7 €
mewmwquwmmmmwmm;N+Hmwmmmwwwmwmm»mw*w|Hmwmmq»mwpwmmmman|HNpmn~Qp&mwmwm»xN

5 4 3 2
- 24438331810000*2 - 2424680015179*2 -~ 159770786877*2 - 8406573066%2 + 170807174

*2 + 9444843)
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