goooboooogn
04940 19830 46-57

46

REMARKS ON REAL-TIME DETERMINISTIC CONTEXT-FREE LANGUAGES

Yoshihide Igarashi
Department of Computer Science

Gunma University, Kiryu, 376 Japan

1. Introduction

The context-free 1aﬁguages are most important language family for the
study of compiler design techniques and language specifications. In parti-
‘cular; characterizations of deterministic context-free languages by automata
are important for parsing algorithms [3][7]. Several subclasses of determi-
nistic context-free languages have been studied in a way that we ask whether
placing restrictions on the deterministic pushdown automata affects the
family of languages accepted [4][5][6]1[10]. The real-time deterministic
context-free languages are one of such subclasses.

In this paper wé establish a pumping lemma for the real-time determi-
nistic context-free languages. The lemma is an interesting character of the
subclass and useful to show that a given deterministic context-free langu-
age is not real-time.

In the main we employ the definitions and notation given in standard
texts such as [3] or [8]. If w is a word (i.e., a string of symbols), |Wi
denotes its length. e denotes the word of zero length. If x is a pair
of words, |x| demotes the length of its second component (i.e., if x =
(q, o), le = Ia‘). If S is a set, #(S) denotes the number of elements
in S. A deterministic pushdown automaton (abbreviated DPDA) is a determi-
nistic acceptor with a one-way input tape, a pushdown tape, and a finite

state control. It can be specified by a 7-tuple (Q, %, T, &, 4y ZO’ F),

47

where
(1) Q 1is a finite set of states,
(2) © 1is a finite set of input symbols (the input alphabet),
(3): T is a finite set of pushdown symbols (the pushdown alphabet),
4) is in Q (the initial state),
(5) Z, is in T (the start symbol),
(6) F € Q (the set of final states), and
(7) & 1is a mapping from Q X(ZU{e})X T to the finite subsets of QX TI%*
which has the following restrictions: For each q in Q and Z in T
(a) either 6(q, a, Z) contains exactly one element for all a in I
and 8(q, €, Z) = @, or 8(q, €, Z) contains exactly one element and
§(q, a, Z) = @ for each a in I, and (b) if 8(q, w, ZO) # @ for
m in I V{e}, then 8(q, m, ZO) = {(p, Zoy)} for some p in Q and Yy
in T%*, |
Certain strings over I are interpreted as the contents of the pushdown
store. We assume that the bottom of the store is on the left and top on the
right. A configuration is a pair from QXT*. The initial configuration
(qO, ZO) is denoted by cg- A DPDA makes a move (q, aA)Fﬂ-(p, ay) if and
only if there is some tramsition 8(q, w, A) = (p, y). In particular, if
T = ¢, it is called an e-move. If 7 is in I, then thisvsymbol is considered
to have been read. A computation is a sequence of such moves through suc-
cessive configurations. Suppose w is a string over I. If we obtain confi-
guration c' from configuration c. by the successive read of w, the computa-
tion is denoted by cP[-c‘. A word w is accepted by DPDA M = (Q, Z, T, 6,
qo, ZO’ F) if for some configuration c with the first component of ¢ belong-
ing to F, (qO, ZO)FE-C.‘ The language accepted by M is denoted by L(M). That

is, L(M) = {w in z* | e, = (qo, ZO)PE-C, the first component of c belongs

-2 -

48

to F}. The language accepted by a DPDA is called a deterministic context-
free language (abbreviateé DCFL).

Let cFy-c1 be a computation. cl is a stacking configuration in the
computation if and only if it is not followed by any configuration of height
is a stacking confi-

<]c in the computation. Note that, whether or not ¢

1 1

guration depends on what computation is considered. That is, if we say that
c; is a stacking configuration in the computation c}—c', it means that 1

. . . . w
is a stacking configuration for the whole of c}—c'.

DPDAM = (Q, Z, I', §, 9y ZO’ F) is said to be quesi-real-time if and

1] ?

only if there exists an integer t > 0 such that for any q, q' in Q and Y, v
in T* (q, Y)FS~. . Pi (g', y') implies that the number of steps of this
computation is not greater than t. In particular, M is said to be real-time
if and only if t = 0 (i.ef, if and only if 8(q, €, Z) = @ for all q in Q
and Z in T). A language L is called (quesi-) real-time if and only if L =
L(M) for some (quesi-) real-time DPDA M. Our (quesi-) real-time DCFL's
correspond to AO—(quesi—) real-time languages defined in [4] and [6]. It is

known that the class of quesi-real-time DCFL's coincides with the class of

real-time DCFL's [4][6].

2. Pumping Lemmas for Real-Time DCFL's

The pumpihg lemma and Ogden's lemma are useful and fundamental proper-
ties of CFL's [1]1[3]{9][11]. Wise has eétablished a necessary and suffi-
cient version of the classic pumping lemma for CFL's [13], and Jaffe has
established a necessary and sufficient pumping lemma for regular languéges
[9]. Stanat has recently shown another characterization of regﬁlar languages
using a modified pumpihg lemma [12]. It is also interesting to ask whether

we can derive a useful pumping lemma for each of well-known subclasses of

-3 -

43

DCFL's, or to ask whether we can establish a necessary and sufficient pump-
ing lemma for such a subclass.

In this section we first show a simple pumping lemma for real-time
DCFL's. ' Then we show a version of the pumping lemma which will be useful to
show that a ianguage is not a real-time DCFL.

Definition 1. Let L be a language (i.e., a subset of £*). x in I* is

equivalent under L to y in I* (denoted by x EL y) if and only if for any w
in I* both xw and yw are in L or both xw and yw are not in L.

The relation EL is an equivalence relation on I*. X éL y means that x

and y are not equivalent under L.

Lemma 1 (Simple pumping lemma for real-time DCFL's). Let L be a real-

time DCFL. Then there are a pair of constants k

1> 0 and k,, depending only

on L, that satisfy the following property (*):

(*) If X1 X .»X_ are n strings on I such that

2’

(*-1) for any 1 <i < j<n x % x.,, and
= = i L]

(*%-2) for each i (1 i

A

n) there is v in I* satisfying

*_n_ ..

(%-2-1) x,;y; is in L, and

(*-2-2) Iyi] < (1og2 n)/k1 +fk2,
then for at least one r (1 rg n) we may write xr =xXx X X
such that

(*-3) |x_ | >1, and
r, =
(#*-4) for all t >0 x (x)t x_ y_-is in L.
= r;r, rr
Proof. Let L be recognized by a real-time DPDAM = (Q, Z, T, §, dps Z0

F). Without loss of generality we may assume that #(I') is not less than 2.

For w in I* let CONFM(W) be the configuration of M when input string w has
. _ w

been read (i.e., cg = (qO, ZO)F——CONFM(W)). Let k1

logz(#(r) - 1) - log2 #(Q))/log2 #(r)y - #(Q#(T) - 1. Let x

= log2 #(Tr) and k2‘=_(
10 0 ¢ o Xy be

-4 -

50

n strings over I that satisfy (*-1) and (*-2) above, and let h = max{ICONFM(
x)| | 121 gnb. From (*-1) all of CONF,(x;), CONFy(x,), . . . ,CONE,(x)
are distinct. Therefore, #(Q) (1 + #(T) + . . . + (#(P))h—l) > n. Note that

the leftmost symbol of the pushdown store is always Z Solving this in-

0
equality we have
h > (log, n + 1og2(#(r) -1) - 1og2#(Q))/1og2#(r)
= (log2 n)/kl + k2 + #(Q#(T) + 1.

Let r be an index such that h = ICONFM(xr)l. From this inequalitj and
- (*-2-2) |CONFM(xr)[>HQ#(T) + 1 + Iyr(. Therefore, for the whole compu-
tation of the input string Xy there are at least #(Q)#(T) + 1 stacking
configurations among the configurations from o to CONFM(xr). Hence,there
~ are at least two configurations in this part such that their pairs of the
states and top pushdown tape symbols are identical. Let these .configurations
be CONFM(xrl) and CONFM(xrlxré). Since Xy, is in L, forvall t >0
X (xr)txr ¥, is in L, where x = x_x_ x£ and]xr | >1. Q. E. D.

1 "2 3 1°2°3 2

The notation CONFM introduced in the above proof will be used in the

following. The above lemma is not stfong enough to use it as a tool for

proving that a given DCFL is not real-time. For example, L = {albjckai]
120,32k 0} is not'a real-time DCFL. However, we cannot lead any
contradiction by using Lemma 1 from the assumption that L is a real-time
DCFL. We, therefore, are requested to prepare a powerful version of Lemma 1
for this purpose. This situation is analogous to the fact that Ogden's
lemma is more powerful than the classic pumping lemma for CFL's. The next
lemma is such a version for real-time DCFL's.

Lemma 2 (Strong pumping lemma for real-time DCFL's). Let L be a real-
time DCFL. = Then there are constants k

k2> 0 and k,, depending only on L,

19
that satisfy the following property (*):

3’

(*) Let n be an integer such that n > kl’ and let m be an integer. If

there are n strings x s e X on ¥ such that for each pair of i

1)

and j (1 <i<mn, 1 <] m) there is a string yij satisfying

fin
L

(#-1) for each i (1 <

A
e
A

< n) and for any pair of jl and j2’(1 < jl
<Jpzm *1713, AL % 13,

(*#*-2) for any pair of i, and i, (1 <i; <1, < n) and for any pair

2

< m) the concatenation of X,

1

A

£ 3y
and any initial substring of v i and the concatenation of
1°1

x, and any initial substring of y, ., are not equivalent under

2 t292
L (i.e., if y, ., 1s an initial substring of y; . , and if

ilj 1.3

—- 1l 1°1
y. . 1s an initial substring of y, ., , then x, y, . ¥

1pd Ap) SR

X, V., .), and
T2 1ol

(#-3) for each pair of i (1 <i

of jl and j2 1

A

n) and j (1 £ J < m) there exists

a string wij such that Xiyijwij is in L and‘[wijl (1og2 m)/k2

+ kg, ,

kA

then there exists at least one pair of p and q (1 < p

A
=}
M
l.—l
LA
Nal
A

m) such that
(*-4) we may write x =x X_ X_, where lx] >1, and
Pl Pz P3 pz -
(#-5) for all t >0 x (x)tx y_w__ is in L.
= P; P,” Py P9 P4 .
Proof. Let L be accepted by a real-time DPDA M = (Q, Z, T, 6, 45 ZO’

F). Without loss of generality we may assume that #(T) is not less than 2.

The proof will = proceed as the proof of the previous lemma. Let kl

5 = log2 #(T), and let k3 = (

1og2 (#(ry - 1) - log2 #(Q))/log2 #H(T) - #QH#T) - 1. Ifm< kl’ then (

HQ @ + #T) + . . .+ @Dy

log2 m)/k2 + k 0. In this case, for any pair of 1 (1 < 1 < n) and j (1

A

<
3
< J £ m) there does not exist W satisfying (*-3). Therefore, in this case

the assertion of the lemma holds. We suppose that m > kl and that there

exist x, (1 <i<mn), vy (1<i§n,l_<_j§m)andwij 1<1i<mn, 1<
1 = = = = = = = =

13
< m) satisfying (*-1), (*-2) and (*-3), where n > kl'

Consider the following classes of strings in I*.

A1) = {lell’ X Y995 ¢ ¢ ¢ ’lelnﬁ
A(2) = {x2y21, X Yogs + v ’x2y2m}
A(n) = {Xnynl’ X Yigs ¢ o - ’Xnynm}'
From (*-1) for each i (i < 1 < n) all of CONFM(Xiyil)’ e . ’CONFM(Xiyim)

should be distinct. Therefore, for each i (1 ig n) there exists at least

one element 1n»A(1), say xiyiji’ such that ICONFM(Xiyij,)I > g, where g is
the least integer satisfying #(Q)(1 + #(I) + . . . + (#(F))g—l) >m. Let

these strings be lelj s o e e ’Xnynjn' For each i (1

1
Y

an initial substring of y,, such that |CONF (x.?.
131 MY 131

y.. 1is an initial substring of yij} . From (*-2) all of CONFM(X

Vi)
R L] bl
g i 1 1Jl

o ' . .
s CONFM(xnynj) should be distinct. From this fact and n > k, there
n

A

i < n) let ;.. be

min{[CONFM(xiyiji)|

1

exists at least one element, say x ? . , among x1§l, s o e o X % ., such
. iy n'nj
v

that ICONFM(Xprj)| > #(Q#(r) + 2. That is, for any initial substring
_ p —_

y 3 of y 3]CONFM(X v 3)!: #(Q)#(T) + 2. Hence, for the computation from

P p P P PP P :
cg to CONFM(xpypj) there are at least #(Q)#(I') + 1 stacking configurations

in the first |x steps. Since |CONF (x . >g and |w . < (log, m)/k
|p| p | M(ppr)Lg lin=(g2)2,

P
+ k3, the height of the pushdown tape during the last !ij I steps of c, =

(qo, ZO)F— .. .f— CONFM(xpypjpijp) is at least #(Q)#(T) + 2. Hence, for

the computation c e . CONF, (x LW, the first # #(T) + 1 stack-
pu S}— - M(pprp pJp) (Q#(T) ‘

ing configurations locate in the first |Xp[steps of the computation. Thus
there are at least two stacking configurations in the first [xpl steps of the

computation cg . . . CONFM(xpy . w_,) such that their pairs of states

PJP PJD

and top pushdown tape symbols are identical. Let these configurations be

53

CONFM(xpl) and CONFM(gplXPZ)f where |gp2| > 1. Removing or ;epeatlng the
part of the computation corresponding to Xp2 does not affect the last state

is in L, for all t >0 x

of the whole computation. Since x y . pl(

i_"pi
X \ is in L, where =j and X =X X X .. . E. D.
%p2) *p3Vpq¥pq ’ 179 p T Fprfp2fp3t
For a certain string in a real-time DCFL Lemma 2 specifies a range of
the pumping position of the string, whereas Lemma 1 does not. This speci-

fication of the pumping position is indispensable to use the lemma as a tool

to show that a given language is not a real-time DCFL.

3. Applications

Strong pumping lemma (Lemma 2) guarantees a scheme for proving that a
given language is not a real-time DCFL. We show this proving scheme by

examples.

Example 1. L, = {abla’, alb'e” | 1, j 21}

Harrison and Havel proved that Ll is not a Az-real—time language (

Theorem 2.4 of [4]). The class of Az—real—time languages is properly in-

cluded in the class of Ao—real—time languages [4] (i.e., real-time DCFL's of

this paper). By using Lemma 2 we can easily show that L1 is not a real-time

DCFL.

Assume for the sake of contradiction that Ll is a real-time DCFL. Let

kl, k2 and k3 be constants described in Lemma 2. Let n > kl and let m be

3° We choose X, = a, yij b~ and
i <n) and each j (1 < j g m). Then (*-1), (*-2)

an integer such that n

A

(1og2 m)/k2 + k

w,, = a1 for each i (1
1]

and (%-3) are satisfied. Then from (*-4) and (*-5) for some pair of i and j

i, i i it
a la 2a 3, where 12 >1 and for all t >0 a l(a 2) 3

A

i, . .
. i i
we may write a = a “bla

is in Ll' This is a contradiction. We, therefore, conclude that Ll is not

a real-time DCFL.

Lemma 2 is powerful enough for our purpose. In fact, we do not know at
present any DCFL that is not real-time but that cannot be proved by Lemma 2
not to be real-time. However, it may be valuable to prepare a version of
Lemma 2 that seems to be easier for the reader to use it. 1In the rest of
this section we describe such a version although it is essentially the same
as Lemma 2.

Definition 1. Let f(n) be a function from nonnegative integers to

nonnegative integers. A language L. is f(n)-characteristic if and only
if the following property (*) is satisfied:
(*) For arbitrary positive integers n and m there exist n strings X1s

e . ,xn and nXm strings Yy (1 <i

A

n, 1 <jc< m) such that
(*-1) for each i (1 <1 <n) and for any pair of jl and j2 (1 < jl<

*_ . ¥ . 3 3 3 3 -
(*-2) for any pair of i, and i, (1 i <1y < n), any i1 and iy (

1< jl <m, 1 < j2 < m), the concatenation of X, and any ini-

- B - 1
tial substring of y, . and the concatenation of x, and any
llJl 12
initial substring of i i are not equivalent under L, and
272

(*-3) for any pair of i and j there exists a string wij such that

(*¥-3-1) iwij] < f(n),

(0—3—2) Xiyijwij is in L, and

(*~3-3) for any non-null substring x; of X there exists a non-

. . TN . .
negative integer t such that x!(x") x.y..w,, is not in L,
i7i i74i3 743

where x, = x! x" x..
i i

i %
Lemma 3. If there is a function f(n) such that L is f(n)-characteristic,
then L is not a real-time DCFL.

Proof. Let L be f(n)-characteristic. Assume for the sake of contra-

diction that L is accepted by a real-time DPDA M = (Q, %, T, §, 9 ZO’ F).

99

Let n and m be integers such that n > kl and f(n) < (log2 m)/k2 + k3, where

k k2 and k,_, are constants given in the proof of Lemma 2. Let Xy dzi

3

1z<ign,1<j<m and Y 1zi

1’

<mn), vy n, 1 < J < m) be strings

A

ij
satisfying conditions (*-1), (¥#-2) and (*-3) of Definition 1. These strings
satisfy conditions (*-1), (*-2) and (*-3) of Lemma 2. Therefore, (*-4) and
(*—5)’of Lemma 2 should hold since L is assumed to be a real-time DCFL.

However, (*-4) and (*-5) of Lemma 2 are contrary to (*¥-3-3) of Definition 1.

We, therefore, conclude that our assumption is wrong. That is, L is not a

real-time DCFL. ' Q. E. D.
Example 2. L2 = {aibjai, aibjcbjai | i, j >1}. This language has

been given by Gisburg and Greibach(z) as an example of a DCFL that is not

real-time. By using Lemma 3 we prove that L2 is not a real-time DCFL. Let

f(n) = n. For n >1 and m > 1 we choose X, = ai (T 21ignm), yij = bj

and W = al (Lgign 1gigm. Then (1), (+2) and (*-3) in

Definition 1 hold. That is, L2 is n-characteristic. From Lemma 3 L3 is

not a real-time DCFL.

Example 3. L3 = {a'pdcfat | 1 >1,32r >1}. Let f(n) =n + 1. For
n>1andm3>1 we choose x, = a” (1 <igmn), Yij = b @ <izgn, 123
<m) and w, = ca® (T zdizgm L<3g m). Then (*-1), (*-2) and (%-3) in -

1]

Definition 1 hold. Therefore, L, is (n + l)-characteristic, and from

3

Lemma 3 it is not a real-time DCFL.

Example 4. L, = fa'vlcPa? | 4, 3, p, q >1, i#qand j #p}. Let
i ‘ R
as (Lgigm), yyy=

n, 1 < j <m). Then

f(n) =n! + n + 1. For n > 1 and m 2 1 we choose X,

j+1

it+i

b (lél n,l:jém)andwij=cd (1

A

i

A
A

it is obvious that (*-1), (*-2), (*-3-1) and (*-3-2) in Definition 1 hold.

. T i ry . . .
For any non-null substring a~ of a~ r = [a [is a divisor of il!. Thus we

(11/r)+1 _ il

. i-r, r .
can write a (a”) Therefore, for any.r (1 < r < i) and

- 10 -

o6

. . e D141 i+ 1
i-r t+1b3+1cd1 +o_ al +i,] lcdl i

T
t = dil/r, a”.

(a™) is not in La, . Thus

(*~3-3) in Definition 1 hold, too. Therefore, L4 is (n!4+n+l)-character-

b

- istic, and from Lemma 3 it ‘is not a real-time DCFL.

‘Note that L5 = {albjcra1 | l<jgzr, i> 1} is a real-time DCFL.

Therefore, for any function f(n) L5 is not f(n)-characteristic. For
i .
example, suppose that for n.> 1 and m >1 we choose X, = a 1<1icg n),

and yij = pJ 1zs4ig<gmn, 1 <3¢ m). In this case, when m is sufficiently

large compared with f(n), say m = 2 f(n), we cannot choose any Wij (1 <ig

n, 1 < j ¢ m) that satisfies (*-3-1) and (*-3-2) in Definition 1 simultane-

A

ously. Therefore, these choices of X, 1<icg n) and yij (1 <3 <m are

not successful to show that L_ would be f(n)-characteristic.

5
We do not know at present whether Lemma 2 is a sufficient condition for
real-time DCFL's. We invite‘the reader to consider the following problems
‘worfhy of further investigation:
(1) 1Is Lemma 2 a necessary and sufficient cqndition for real—time
DCFL's ?
(2) Find an elegant characterization of real-time DCFL's that is a

necessary and sufficient condition for real-time DCFL's.

(3) Find an. elegant characterization of each subclass of DCFL's,

References

[1] C. Bader aﬁd A. Moura, A generalization of Ogden's lemma, J. ACM 29
(1982) 404-407.

[2] S. Ginsburg and S. Greibach, Deterministic context-free languages,
‘Information and Control 9 (1966) 620-648.

[3] M. A. Harrison, Introduction to Formal Language Theory (Addison—Wesley;

Reading, MA, 1978).

- 11 -

[4]

[5]

[6]

(7]

[8]

[9]

(101]

(11]

[12]

[13]

M. A. HarrisonvandAI.’M; Havel, Eeal—tiﬁe st%ict deterministic lan-
guages, SIAM J. Comput. 1 (1972) 333—349.

M. A. Harrison and I:tM. Havel, Sﬁrict deterministic grammars, J. Compul
System Sci. 7 (1973) 237-277.

M. A. Harrison and‘I. M. Havel, On a family of deterministic grammars,
in: M. Nivat, ED., Automafa, Languages and Programming (North-Holland,
Amsterdam, 1973) 413—442.

M. A. Harrison and I. M. Havel, On the parsing of deterministic lan-
guages, J. ACM 21 (1974) 525-548.

J. E. Hopcroft and J. D. Ullma, Formal Languages and Their Relation to
Automata (Addison?Wesley, Reading, MA. 1969).

J. Jaffe, A necessary and sufficient pumping lemma for reguiar language
SIGACT NEWS 16(2) (1978) 48-49.

A. J. Korenjak and J. E. Hopcroft, Simple deterministic languages, Proc
7th IEEE Symposium on Switching and Automata Theory (1966) 36-46.

W. Ogden, A helpful result for proving inherent ambiguity;‘Mathematical
Systems Theory 2 (1968) 191-194. |

D. F. Stanat, A pumping lemma for regular languages, SIGACT NEWS 14(1)
(1982) 36-37. |

0. S. Wise, A strong pumping lemma for context-free languages, Theo-

retical Computer Sci. 3 (1976) 359-369.

- 12 -

