REMARKS ON REAL-TIME DETERMINISTIC CONTEXT-FREE LANGUAGES

Yoshihide Igarashi

Department of Computer Science

Gunma University, Kiryu, 376 Japan

1. Introduction

The context-free languages are most important language family for the study of compiler design techniques and language specifications. In particular, characterizations of deterministic context-free languages by automata are important for parsing algorithms [3][7]. Several subclasses of deterministic context-free languages have been studied in a way that we ask whether placing restrictions on the deterministic pushdown automata affects the family of languages accepted [4][5][6][10]. The real-time deterministic context-free languages are one of such subclasses.

In this paper we establish a pumping lemma for the real-time deterministic context-free languages. The lemma is an interesting character of the subclass and useful to show that a given deterministic context-free language is not real-time.

In the main we employ the definitions and notation given in standard texts such as [3] or [8]. If w is a word (i.e., a string of symbols), |w| denotes its length. ϵ denotes the word of zero length. If x is a pair of words, |x| denotes the length of its second component (i.e., if $x = (q, \alpha), |x| = |\alpha|$). If S is a set, #(S) denotes the number of elements in S. A deterministic pushdown automaton (abbreviated DPDA) is a deterministic acceptor with a one-way input tape, a pushdown tape, and a finite state control. It can be specified by a 7-tuple $(Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$,

where

- (1) Q is a finite set of states,
- (2) Σ is a finite set of input symbols (the input alphabet),
- (3) Γ is a finite set of pushdown symbols (the pushdown alphabet),
- (4) q_0 is in Q (the initial state),
- (5) Z_0 is in Γ (the start symbol),
- (6) $F \subseteq Q$ (the set of final states), and
- (7) δ is a mapping from $Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma$ to the finite subsets of $Q \times \Gamma^*$ which has the following restrictions: For each q in Q and Z in Γ (a) either $\delta(q, a, Z)$ contains exactly one element for all a in Σ and $\delta(q, \epsilon, Z) = \emptyset$, or $\delta(q, \epsilon, Z)$ contains exactly one element and $\delta(q, a, Z) = \emptyset$ for each a in Σ , and (b) if $\delta(q, \pi, Z_0) \neq \emptyset$ for π in $\Sigma \cup \{\epsilon\}$, then $\delta(q, \pi, Z_0) = \{(p, Z_0\gamma)\}$ for some p in Q and γ in Γ^* .

Certain strings over Γ are interpreted as the contents of the pushdown store. We assume that the bottom of the store is on the left and top on the right. A configuration is a pair from $\mathbb{Q} \times \mathbb{F}^*$. The initial configuration $(\mathbf{q}_0, \mathbf{Z}_0)$ is denoted by \mathbf{c}_s . A DPDA makes a move $(\mathbf{q}, \alpha \mathbf{A}) \stackrel{\pi}{=} (\mathbf{p}, \alpha \gamma)$ if and only if there is some transition $\delta(\mathbf{q}, \pi, \mathbf{A}) = (\mathbf{p}, \gamma)$. In particular, if $\pi = \varepsilon$, it is called an ε -move. If π is in Σ , then this symbol is considered to have been read. A computation is a sequence of such moves through successive configurations. Suppose \mathbf{w} is a string over Σ . If we obtain configuration \mathbf{c}' from configuration \mathbf{c} by the successive read of \mathbf{w} , the computation is denoted by $\mathbf{c} \stackrel{W}{=} \mathbf{c}'$. A word \mathbf{w} is accepted by DPDA $\mathbf{M} = (\mathbb{Q}, \Sigma, \Gamma, \delta, \mathbb{Q}_0, \mathbb{Z}_0, \mathbb{F})$ if for some configuration \mathbf{c} with the first component of \mathbf{c} belonging to \mathbf{F} , $(\mathbf{q}_0, \mathbb{Z}_0) \stackrel{W}{=} \mathbf{c}$. The language accepted by \mathbf{M} is denoted by $\mathbf{L}(\mathbf{M})$. That is, $\mathbf{L}(\mathbf{M}) = \{\mathbf{w} \text{ in } \Sigma^* \mid \mathbf{c}_s = (\mathbf{q}_0, \mathbb{Z}_0) \stackrel{W}{=} \mathbf{c}$, the first component of \mathbf{c} belongs

to F}. The language accepted by a DPDA is called a deterministic context-free language (abbreviated DCFL).

Let $c \mid^{\underline{w}} c'$ be a computation. c_1 is a stacking configuration in the computation if and only if it is not followed by any configuration of height $\leq |c_1|$ in the computation. Note that, whether or not c_1 is a stacking configuration depends on what computation is considered. That is, if we say that c_1 is a stacking configuration in the computation $c \mid^{\underline{w}} c'$, it means that c_1 is a stacking configuration for the whole of $c \mid^{\underline{w}} c'$.

DPDA M = (Q, Σ , Γ , δ , q_0 , Z_0 , F) is said to be quesi-real-time if and only if there exists an integer $t \ge 0$ such that for any q, q' in Q and γ , γ' in Γ^* (q, γ) \vdash^{ε} . . . \vdash^{ε} (q', γ') implies that the number of steps of this computation is not greater than t. In particular, M is said to be real-time if and only if t = 0 (i.e., if and only if δ (q, ϵ , Z) = \emptyset for all q in Q and Z in Γ). A language L is called (quesi-) real-time if and only if L = L(M) for some (quesi-) real-time DPDA M. Our (quesi-) real-time DCFL's correspond to Δ_0 -(quesi-) real-time languages defined in [4] and [6]. It is known that the class of quesi-real-time DCFL's coincides with the class of real-time DCFL's [4][6].

2. Pumping Lemmas for Real-Time DCFL's

The pumping lemma and Ogden's lemma are useful and fundamental properties of CFL's [1][3][9][11]. Wise has established a necessary and sufficient version of the classic pumping lemma for CFL's [13], and Jaffe has established a necessary and sufficient pumping lemma for regular languages [9]. Stanat has recently shown another characterization of regular languages using a modified pumping lemma [12]. It is also interesting to ask whether we can derive a useful pumping lemma for each of well-known subclasses of

DCFL's, or to ask whether we can establish a necessary and sufficient pumping lemma for such a subclass.

In this section we first show a simple pumping lemma for real-time DCFL's. Then we show a version of the pumping lemma which will be useful to show that a language is not a real-time DCFL.

<u>Definition 1.</u> Let L be a language (i.e., a subset of Σ *). x in Σ * is equivalent under L to y in Σ * (denoted by $x \equiv_L y$) if and only if for any w in Σ * both xw and yw are in L or both xw and yw are not in L.

The relation Ξ_L is an equivalence relation on Σ^* . $x \not\equiv_L y$ means that x and y are not equivalent under L.

Lemma 1 (Simple pumping lemma for real-time DCFL's). Let L be a real-time DCFL. Then there are a pair of constants $k_1 > 0$ and k_2 , depending only on L, that satisfy the following property (*):

- (*) If x_1, x_2, \dots, x_n are n strings on Σ such that
 - (*-1) for any $1 \le i < j \le n$ $x_i \ne_L x_j$, and
 - (*-2) for each i (1 \leq i \leq n) there is y in Σ * satisfying

(*-2-1)
$$x_i y_i$$
 is in L, and

$$(*-2-2) |y_i| \le (\log_2 n)/k_1 + k_2,$$

then for at least one r (1 \leq r \leq n) we may write $x_r = x_r x_r x_s$ such that

$$(*-3) |x_{r_2}| \ge 1$$
, and

(*-4) for all
$$t \ge 0$$
 $x_1(x_2)^t x_1^y$ is in L.

<u>Proof.</u> Let L be recognized by a real-time DPDA M = (Q, Σ , Γ , δ , \mathbf{q}_0 , \mathbf{Z}_0 F). Without loss of generality we may assume that $\#(\Gamma)$ is not less than 2. For w in Σ^* let $\mathrm{CONF}_{\mathbf{M}}(\mathbf{w})$ be the configuration of M when input string w has been read (i.e., $\mathbf{c}_s = (\mathbf{q}_0, \ \mathbf{Z}_0)|^{\frac{\mathbf{W}}{\mathbf{W}}} \mathrm{CONF}_{\mathbf{M}}(\mathbf{w})$). Let $\mathbf{k}_1 = \log_2 \#(\Gamma)$ and $\mathbf{k}_2 = (\log_2(\#(\Gamma) - 1) - \log_2 \#(Q))/\log_2 \#(\Gamma) - \#(Q)\#(\Gamma) - 1$. Let $\mathbf{x}_1, \ldots, \mathbf{x}_n$ be

n strings over Σ that satisfy (*-1) and (*-2) above, and let $h = \max\{|\mathsf{CONF}_{M}(\mathbf{x}_{1})| \mid 1 \leq i \leq n\}$. From (*-1) all of $\mathsf{CONF}_{M}(\mathbf{x}_{1})$, $\mathsf{CONF}_{M}(\mathbf{x}_{2})$, . . . , $\mathsf{CONF}_{M}(\mathbf{x}_{n})$ are distinct. Therefore, $\#(Q)(1+\#(\Gamma)+\ldots+(\#(\Gamma))^{h-1}) \geq n$. Note that the leftmost symbol of the pushdown store is always Z_{0} . Solving this inequality we have

h >
$$(\log_2 n + \log_2(\#(\Gamma) - 1) - \log_2\#(Q))/\log_2\#(\Gamma)$$

= $(\log_2 n)/k_1 + k_2 + \#(Q)\#(\Gamma) + 1$.

Let r be an index such that $h = |CONF_M(x_r)|$. From this inequality and $(*-2-2) |CONF_M(x_r)| > \#(Q)\#(\Gamma) + 1 + |y_r|$. Therefore, for the whole computation of the input string $x_r y_r$ there are at least $\#(Q)\#(\Gamma) + 1$ stacking configurations among the configurations from c_s to $CONF_M(x_r)$. Hence, there are at least two configurations in this part such that their pairs of the states and top pushdown tape symbols are identical. Let these configurations be $CONF_M(x_r)$ and $CONF_M(x_r x_r)$. Since $x_r y_r$ is in L, for all $t \ge 0$ $x_r (x_r)^t x_r y_r$ is in L, where $x_r = x_r x_r x_r$ and $|x_r| \ge 1$. Q. E. D.

The notation ${\rm CONF}_{\rm M}$ introduced in the above proof will be used in the following. The above lemma is not strong enough to use it as a tool for proving that a given DCFL is not real-time. For example, L = $\{a^ib^jc^ka^i\mid i\geq 0,\ j\geq k\geq 0\}$ is not a real-time DCFL. However, we cannot lead any contradiction by using Lemma 1 from the assumption that L is a real-time DCFL. We, therefore, are requested to prepare a powerful version of Lemma 1 for this purpose. This situation is analogous to the fact that Ogden's lemma is more powerful than the classic pumping lemma for CFL's. The next lemma is such a version for real-time DCFL's.

Lemma 2 (Strong pumping lemma for real-time DCFL's). Let L be a real-time DCFL. Then there are constants k_1 , $k_2 > 0$ and k_3 , depending only on L, that satisfy the following property (*):

- (*) Let n be an integer such that $n > k_1$, and let m be an integer. If there are n strings x_1 , ..., x_n on Σ such that for each pair of i and j $(1 \le i \le n, 1 \le j \le m)$ there is a string y_{ij} satisfying (*-1) for each j $(1 \le i \le n)$ and for any pair of j and j $(1 \le i \le n)$
 - (*-1) for each i $(1 \le i \le n)$ and for any pair of j_1 and j_2 $(1 \le j_1 < j_2 \le m)$ $x_i y_{ij_1} \not=_L x_i y_{ij_2}$,
 - (*-2) for any pair of i_1 and i_2 ($1 \le i_1 < i_2 \le n$) and for any pair of j_1 and j_2 ($1 \le j_1 \le m$, $1 \le j_2 \le m$) the concatenation of x_{i_1} and any initial substring of $y_{i_1j_1}$ and the concatenation of x_{i_2} and any initial substring of $y_{i_2j_2}$ are not equivalent under x_{i_2} (i.e., if $\overline{y_{i_1}}_{j_1}$ is an initial substring of $y_{i_2j_2}$, and if $\overline{y_{i_2j_2}}_{j_2}$ is an initial substring of $y_{i_2j_2}$, then $x_{i_1}y_{i_1}$ and y_{i_2} is an initial substring of y_{i_2} , then x_{i_2} and y_{i_2} and y_{i_2} , and y_{i_2} and y_{i_2} , and
 - (*-3) for each pair of i $(1 \le i \le n)$ and j $(1 \le j \le m)$ there exists a string w_{ij} such that $x_i y_{ij} w_{ij}$ is in L and $|w_{ij}| \le (\log_2 m)/k_2 + k_3$,

then there exists at least one pair of p and q (1 \leq p \leq n, 1 \leq q \leq m) such that

(*-4) we may write $x_p = x_p x_p x_p$, where $|x_p| \ge 1$, and (*-5) for all $t \ge 0$ $x_p (x_p) x_p y_p y_q w_p q$ is in L.

<u>Proof.</u> Let L be accepted by a real-time DPDA M = (Q, Σ , Γ , δ , \mathbf{q}_0 , \mathbf{Z}_0 , F). Without loss of generality we may assume that $\#(\Gamma)$ is not less than 2. The proof will proceed as the proof of the previous lemma. Let $\mathbf{k}_1 = \#(\mathbf{Q})(1+\#(\Gamma)+\ldots+(\#(\Gamma))^{\#(\mathbf{Q})\#(\Gamma)})$ and $\mathbf{k}_2 = \log_2 \#(\Gamma)$, and let $\mathbf{k}_3 = (\log_2 (\#(\Gamma)-1)-\log_2 \#(\mathbf{Q}))/\log_2 \#(\Gamma)-\#(\mathbf{Q})\#(\Gamma)-1$. If $\mathbf{m} \leq \mathbf{k}_1$, then ($\log_2 \mathbf{m})/\mathbf{k}_2 + \mathbf{k}_3 < 0$. In this case, for any pair of i $(1 \leq i \leq n)$ and j $(1 \leq i \leq m)$ there does not exist \mathbf{w}_{ij} satisfying (*-3). Therefore, in this case the assertion of the lemma holds. We suppose that $\mathbf{m} > \mathbf{k}_1$ and that there

exist x_i $(1 \le i \le n)$, y_{ij} $(1 \le i \le n, 1 \le j \le m)$ and w_{ij} $(1 \le i \le n, 1 \le j \le m)$ satisfying (*-1), (*-2) and (*-3), where $n > k_1$.

Consider the following classes of strings in Σ^* .

$$A(1) = \{x_1y_{11}, x_1y_{12}, \dots, x_1y_{1m}\}\$$

$$A(2) = \{x_2y_{21}, x_2y_{22}, \dots, x_2y_{2m}\}\$$

•

 $A(n) = \{x_n y_{n1}, x_n y_{n2}, \dots, x_n y_{nm}\}.$

From (*-1) for each i ($i \le i \le n$) all of $CONF_M(x_iy_{i1})$, . . . , $CONF_M(x_iy_{im})$ should be distinct. Therefore, for each i $(1 \le i \le n)$ there exists at least one element in A(i), say $x_i y_{ij_i}$, such that $|CONF_M(x_i y_{ij_i})| \ge g$, where g is the least integer satisfying $\#(Q)(1 + \#(\Gamma) + \dots + (\#(\Gamma))^{g-1}) \ge m$. Let these strings be $x_1y_{1j_1}$, ..., $x_ny_{nj_n}$. For each i (1 $\leq i \leq n$) let y_{ij_i} be an initial substring of y_{ij_i} such that $|CONF_M(x_i \hat{y}_{ij_i})| = min\{|CONF_M(x_i \hat{y}_{ij_i})|$ $|\overline{y_{ij_i}}|$ is an initial substring of y_{ij_i} . From (*-2) all of $CONF_M(x_1\hat{y}_{1j_1})$, ..., $CONF_{M}(x_{n}\overset{\circ}{y}_{nj_{n}})$ should be distinct. From this fact and $n>k_{1}$ there exists at least one element, say $x_p \mathring{y}_{pj_p}$, among $x_1 \mathring{y}_{1j_1}$, . . . , $x_n \mathring{y}_{nj_n}$ such that $|CONF_{M}(x_{p}^{0}y_{pj_{n}})| \ge \#(Q)\#(P) + 2$. That is, for any initial substring \overline{y}_{pj_p} of $y_{pj_p} |CONF_M(x_p\overline{y}_{pj_p})| \ge \#(Q)\#(\Gamma) + 2$. Hence, for the computation from c s to CONF (x p y pj p) there are at least $\#(Q)\#(\Gamma)$ + 1 stacking configurations in the first $|\mathbf{x}_p|^r$ steps. Since $|\mathsf{CONF}_M(\mathbf{x}_p\mathbf{y}_{pj_p})| \ge g$ and $|\mathbf{w}_{pj_p}| \le (\log_2 m)/k_2$ + k_3 , the height of the pushdown tape during the last $|w_{pj_p}|$ steps of $c_s =$ (q_0, Z_0) ... $\vdash CONF_M(x_p y_{pj_p} w_{pj_p})$ is at least $\#(Q)\#(\Gamma) + 2$. Hence, for the computation $c_s \vdash \dots \vdash CONF_M(x_p y_{pj_p} w_{pj_p})$ the first $\#(Q)\#(\Gamma) + 1$ stacking configurations locate in the first $\left|x\right|$ steps of the computation. Thus there are at least two stacking configurations in the first $|\mathbf{x}_{p}|$ steps of the computation $c_s \vdash \dots \vdash CONF_M(x_p y_{pj_p} w_{pj_p})$ such that their pairs of states and top pushdown tape symbols are identical. Let these configurations be

 $\begin{aligned} & \text{CONF}_{M}(\mathbf{x}_{p1}) \text{ and } & \text{CONF}_{M}(\mathbf{x}_{p1}\mathbf{x}_{p2}), \text{ where } |\mathbf{x}_{p2}| \geq 1. & \text{Removing or repeating the} \\ & \text{part of the computation corresponding to } & \mathbf{x}_{p2} \text{ does not affect the last state} \\ & \text{of the whole computation.} & \text{Since } & \mathbf{x}_{p}\mathbf{y}_{pj}\mathbf{w}_{pj}\mathbf{w}_{p} \text{ is in L, for all t} \geq 0 & \mathbf{x}_{p1}(\mathbf{x}_{p2})^{t}\mathbf{x}_{p3}\mathbf{y}_{pq}\mathbf{w}_{pq} \text{ is in L, where } \mathbf{q} = \mathbf{j}_{p} \text{ and } \mathbf{x}_{p} = \mathbf{x}_{p1}\mathbf{x}_{p2}\mathbf{x}_{p3}. \end{aligned} \end{aligned} \end{aligned} \tag{Q. E. D.}$

For a certain string in a real-time DCFL Lemma 2 specifies a range of the pumping position of the string, whereas Lemma 1 does not. This specification of the pumping position is indispensable to use the lemma as a tool to show that a given language is not a real-time DCFL.

3. Applications

Strong pumping lemma (Lemma 2) guarantees a scheme for proving that a given language is not a real-time DCFL. We show this proving scheme by examples.

Example 1.
$$L_1 = \{a^ib^ja^i, a^jb^ic^i \mid i, j \ge 1\}$$

Harrison and Havel proved that L_1 is not a Δ_2 -real-time language (Theorem 2.4 of [4]). The class of Δ_2 -real-time languages is properly included in the class of Δ_0 -real-time languages [4] (i.e., real-time DCFL's of this paper). By using Lemma 2 we can easily show that L_1 is not a real-time DCFL.

Assume for the sake of contradiction that L_1 is a real-time DCFL. Let k_1 , k_2 and k_3 be constants described in Lemma 2. Let $n > k_1$ and let m be an integer such that $n \leq (\log_2 m)/k_2 + k_3$. We choose $x_i = a^i$, $y_{ij} = b^j$ and $w_{ij} = a^i$ for each i ($1 \leq i \leq n$) and each j ($1 \leq j \leq m$). Then (*-1), (*-2) and (*-3) are satisfied. Then from (*-4) and (*-5) for some pair of i and j we may write $a^i = a^i a^j a^j a^j$, where $a^i = a^i a^i a^j a^j a^j$ is in $a^i = a^i a^i a^j a^j a^j$. We, therefore, conclude that $a^i = a^i a^j a^j a^j a^j$ are al-time DCFL.

Lemma 2 is powerful enough for our purpose. In fact, we do not know at present any DCFL that is not real-time but that cannot be proved by Lemma 2 not to be real-time. However, it may be valuable to prepare a version of Lemma 2 that seems to be easier for the reader to use it. In the rest of this section we describe such a version although it is essentially the same as Lemma 2.

Definition 1. Let f(n) be a function from nonnegative integers to nonnegative integers. A language L is f(n)-characteristic if and only if the following property (*) is satisfied:

- (*) For arbitrary positive integers n and m there exist n strings x_1 , . . . , x_n and n X m strings y_{ij} (1 \leq i \leq n, 1 \leq j \leq m) such that
 - (*-1) for each i $(1 \le i \le n)$ and for any pair of j_1 and j_2 $(1 \le j_1 < j_2 \le m)$ $x_i y_j \ne x_i y_{ij_2}$,
 - (*-2) for any pair of i_1 and i_2 ($1 \le i_1 < i_2 \le n$), any j_1 and j_2 ($1 \le j_1 \le m$, $1 \le j_2 \le m$), the concatenation of x_{i_1} and any initial substring of $y_{i_1j_1}$ and the concatenation of x_{i_2} and any initial substring of $y_{i_2j_2}$ are not equivalent under L, and
 - (*-3) for any pair of i and j there exists a string w ij such that $(*-3-1) \ \big|w_{i\,\,i}\,\big| \, \le \, f(n) \,,$
 - (*-3-2) $x_i y_{ij} w_{ij}$ is in L, and
 - (*-3-3) for any non-null substring x_i'' of x_i , there exists a non-negative integer t such that $x_i'(x_i'')^t \bar{x_i} y_{ij} w_{ij}$ is not in L, where $x_i = x_i' x_i'' \bar{x_i}$.

Lemma 3. If there is a function f(n) such that L is f(n)-characteristic, then L is not a real-time DCFL.

<u>Proof.</u> Let L be f(n)-characteristic. Assume for the sake of contradiction that L is accepted by a real-time DPDA $M = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$.

Let n and m be integers such that n > k_1 and f(n) $\leq (\log_2 m)/k_2 + k_3$, where k_1 , k_2 and k_3 are constants given in the proof of Lemma 2. Let x_i (1 \leq i \leq n), y_{ij} (1 \leq i \leq n, 1 \leq j \leq m) and w_{ij} (1 \leq i \leq n, 1 \leq j \leq m) be strings satisfying conditions (*-1), (*-2) and (*-3) of Definition 1. These strings satisfy conditions (*-1), (*-2) and (*-3) of Lemma 2. Therefore, (*-4) and (*-5) of Lemma 2 should hold since L is assumed to be a real-time DCFL. However, (*-4) and (*-5) of Lemma 2 are contrary to (*-3-3) of Definition 1. We, therefore, conclude that our assumption is wrong. That is, L is not a real-time DCFL.

Example 2. $L_2 = \{a^ib^ja^i, a^ib^jcb^ja^i \mid i, j \ge 1\}$. This language has been given by Gisburg and Greibach (2) as an example of a DCFL that is not real-time. By using Lemma 3 we prove that L_2 is not a real-time DCFL. Let f(n) = n. For n > 1 and $m \ge 1$ we choose $x_i = a^i$ $(1 \le i \le n)$, $y_{ij} = b^j$ and $w_{ij} = a^i$ $(1 \le i \le n, 1 \le j \le m)$. Then (*-1), (*-2) and (*-3) in Definition 1 hold. That is, L_2 is n-characteristic. From Lemma 3 L_3 is not a real-time DCFL.

Example 3. $L_3 = \{a^ib^jc^ra^i \mid i \ge 1, j \ge r \ge 1\}$. Let f(n) = n + 1. For $n \ge 1$ and $m \ge 1$ we choose $x_i = a^i$ $(1 \le i \le n)$, $y_{ij} = b^j$ $(1 \le i \le n, 1 \le j \le m)$ and $w_{ij} = ca^i$ $(1 \le i \le n, 1 \le j \le m)$. Then (*-1), (*-2) and (*-3) in Definition 1 hold. Therefore, L_3 is (n + 1)-characteristic, and from Lemma 3 it is not a real-time DCFL.

Example 4. $L_4 = \{a^ib^jc^pd^q \mid i, j, p, q \ge 1, i \ne q \text{ and } j \ne p\}$. Let f(n) = n! + n + 1. For $n \ge 1$ and $m \ge 1$ we choose $x_i = a^i$ $(1 \le i \le n), y_{ij} = b^{j+1}$ $(1 \le i \le n, 1 \le j \le m)$ and $w_{ij} = cd^{i!+i}$ $(1 \le i \le n, 1 \le j \le m)$. Then it is obvious that (*-1), (*-2), (*-3-1) and (*-3-2) in Definition 1 hold. For any non-null substring a^r of a^i $r = |a^r|$ is a divisor of i!. Thus we can write $a^{i-r}(a^r)^{(i!/r)+1} = a^{i!+i}$. Therefore, for any r $(1 \le r \le i)$ and

t = i!/r, $a^{i-r}(a^r)^{t+l}b^{j+l}cd^{i!+i} = a^{i!+i}b^{j+l}cd^{i!+i}$ is not in L_4 . Thus (*-3-3) in Definition 1 hold, too. Therefore, L_4 is (n!+n+1)-characteristic, and from Lemma 3 it is not a real-time DCFL.

Note that $L_5 = \{a^ib^jc^ra^i \mid 1 \le j \le r, \ i \ge 1\}$ is a real-time DCFL. Therefore, for any function f(n) L_5 is not f(n)-characteristic. For example, suppose that for $n \ge 1$ and $m \ge 1$ we choose $x_i = a^i$ $(1 \le i \le n)$, and $y_{ij} = b^j$ $(1 \le i \le n, \ 1 \le j \le m)$. In this case, when m is sufficiently large compared with f(n), say m = 2 f(n), we cannot choose any w_{ij} $(1 \le i \le n, \ 1 \le j \le m)$ that satisfies (*-3-1) and (*-3-2) in Definition 1 simultaneously. Therefore, these choices of x_i $(1 \le i \le n)$ and y_{ij} $(1 \le j \le m)$ are not successful to show that L_5 would be f(n)-characteristic.

We do not know at present whether Lemma 2 is a sufficient condition for real-time DCFL's. We invite the reader to consider the following problems worthy of further investigation:

- (1) Is Lemma 2 a necessary and sufficient condition for real-time DCFL's ?
- (2) Find an elegant characterization of real-time DCFL's that is a necessary and sufficient condition for real-time DCFL's.
- (3) Find an elegant characterization of each subclass of DCFL's.

References

- [1] C. Bader and A. Moura, A generalization of Ogden's lemma, J. ACM 29 (1982) 404-407.
- [2] S. Ginsburg and S. Greibach, Deterministic context-free languages, Information and Control 9 (1966) 620-648.
- [3] M. A. Harrison, Introduction to Formal Language Theory (Addison-Wesley, Reading, MA, 1978).

- [4] M. A. Harrison and I. M. Havel, Real-time strict deterministic languages, SIAM J. Comput. 1 (1972) 333-349.
- [5] M. A. Harrison and I. M. Havel, Strict deterministic grammars, J. Comput System Sci. 7 (1973) 237-277.
- [6] M. A. Harrison and I. M. Havel, On a family of deterministic grammars, in: M. Nivat, ED., Automata, Languages and Programming (North-Holland, Amsterdam, 1973) 413-442.
- [7] M. A. Harrison and I. M. Havel, On the parsing of deterministic languages, J. ACM 21 (1974) 525-548.
- [8] J. E. Hopcroft and J. D. Ullma, Formal Languages and Their Relation to Automata (Addison-Wesley, Reading, MA. 1969).
- [9] J. Jaffe, A necessary and sufficient pumping lemma for regular language SIGACT NEWS 10(2) (1978) 48-49.
- [10] A. J. Korenjak and J. E. Hopcroft, Simple deterministic languages, Proc 7th IEEE Symposium on Switching and Automata Theory (1966) 36-46.
- [11] W. Ogden, A helpful result for proving inherent ambiguity, Mathematical Systems Theory 2 (1968) 191-194.
- [12] D. F. Stanat, A pumping lemma for regular languages, SIGACT NEWS 14(1) (1982) 36-37.
- [13] O. S. Wise, A strong pumping lemma for context-free languages, Theoretical Computer Sci. 3 (1976) 359-369.