goooboooogn
0 494 0 1983 0 126-136

126
Transformations of Communicating Sequential Processes

Hiroyuki Musha and Takehiro Tokuda
AR
- = / P N
A TIF AR, | 7435
Department of Computer Science

Yamanashi University

1. Introduction

' Distributed computing models are natural and powerful
systems for describing both concurrent and sequential computing
phenomena and they gain growing interests in connection with VLSI
technology. The system of Communicating Sequential Processes
(CSP) is one of those models proposed by Hoare in [1], where
input and output commands of vprocesses are considered basic
primitives. Transformation of CSP into sequentially executable
programs is discussed in this paper.

The authors are working on a project which we call CSP
Programming Support Environment Project [2], where CSP is
consideredv one of the tools for describing algorithms. The goal
of the project is to. construct a number o¢f automatic (or
semi-automatic) transformation systems among different types of
computatoion models including, for example, attribute grammar
systems, Prolog-type computing models and distributed computing
models. As for CSP model, a transformer which transforms
algorithms expressed 1in CSP (CSP programs for short) into
sequentially executable programs is being designed. Fof the first
stage, coroutines are considered the initial target of the
transformation.

The rest of this paper is organized as follows. In the next

127

section definitions of CSP and coroutines are given. Section 3
states three kinds of algorithms for transformatibn, and the last

section presents conclusion.

2. Preliminaries
2.1 Definitions of CSP

In this sect}on,vsysntax{and seﬁantics of CSP are iﬁformally
deséribed. A CSP .program is a collectiqn P of procésses, which
sharé/no common variébles at all ana are supposed to be executed
concurrently. Communication between = two processes p,q P is
expressed by the input and output commands "g?v" and “p!ei, where
e is an expression and v is a variable in which the réceived
value of the expression of e is assigned. Execution of,tﬁeSe
commands are syncronous, i.e. P waits“at "q?v" until q is ready
to output the message at "ple" and vice veisa. '

Constituents of each process are commandg*’based on
Dijkstra's guarded commands, which can be cléssified into - two
types: simple ¢ommands and st:ucturea ccmmahds. The members of
. the simple commands are the assignment command, the input
command, the output command and the null command which does
nothing and ' is denoted by "skip". :Sfructu;ed cqmmaﬁds,f
alternative and repetitive commands, are organiied by a sét.of'
guarded commands and express sélective and repetitive -2xecution.

A guarded command is executed when its guard. does not fail.
An alternative command fails if all guards fail. A repetitive
command specifies as many iterations as possible of its
constituent alternative command, and it terminates when all

guards fail. The following examples are adopted from [1].

128

Examples
1) [x> y —> m := x £] y >= X —=>m := y]

Here the valﬁe of m bocomes MAX(x,y).
(2) i ;% B; *[i<size; content(i)<>m —> i := i+l]

This program fﬁnds an element which is equal to n of the array

"content”,

An input com@and can appear in the end of a guérd and is executed
only when a corresponding output command is executed. The input
command fails if the procegs specified 1is terminated; the
execution suspends if the corresponding process is not ready to
output, which can result in deadlock.

| The followihg example is a CSP program which soleves the

famous 8-Queens Problem [3}].

[TRY(iz1..8)::]
A:{(1..8) boolean; B:(2..16) boolean;
C:{~7..7) boolean; X:(1..8) integer;
*{TRY{i-1)2(A,B,C,X) —>
j:integer; j:==1;
*{i<=8; A(3j); B(i+3j); Cli-j) —>

X(i) :=3;
a(3) == false;
B(i+3j) := false;

C(i-j) :== false;
TRY (i+1)!(A,B,.C,X);

A(3) := true;
B(i+j) := true;
C(i-j) := true;
j o= j+1 1

iR!(B)::
A:(1..8) boolean; B:(2..16) boolean;
C:(-7..7) boolean; X:(1..8) integer;
i:integer; -

iz=1; *{i<=8 -—=> A(i):=true; i:=i+l}];
1:=2; *{i<=16 —> B(i):=true; i:=i+l];
iz==7;*{i<=7 —> C(i):=true; i:=i+1];
i:=1; *(i<=8 —=> X(i):=9; iz=1i+1];

TRY(1)!(a,B,C,X) -

LLY(S)::
A:(1..8) boolean; B:(2..16) boolean;
C:(-7..7) boolean; X:(1..8) integer;
*{TRY(8)?(a,.8,C.X) —>
PRINT !X]

Program 1. 8-Queens Problem in CSP.

129

2.2 Definitions of coroutines

 A set of coroutines is the targetvof our transfofmation.-A
coroutine is defined as a routine (subprogram) which has ~the
following two features: |
(1) the valﬁes of variables local to the routine are retained
between successive activations of the routine, and
(2) when the controlvreenters the routine, the execution. resumes

at the point where it left off last time.

3. Transformation

Algorithms of transformations are described informally in
this section. A detailed discription of the algorithms is in [4].
In 3.1, we present a general methéd of transformation which can
be applied to any kindvof CSP programs. 3.2 describes a -somewhat
optimized algorithm which is effective when a - CSP .program
contains no input guard. In 3.3, more efficient algorithm which
can be applied to a set of CSP programs wﬁich‘ satisfies some
conditions concerning about the forms of communication émong
processes.

Generally, a process of a CSP progtam; will be transformed
into a coroutine which strictly corresponds» to the”origiqai
process, each command of the process, except "for commands
‘containing inéut and output, will be changed into the same
éommand of the target; and a schduler of those coroutines is
~introduced té manage the selection and excution of those
‘coroutines. Communication .among processes are ‘realized = by
introducing global variables 1in which values of the messages,
:types of the messages and statuses of the routines will be

stored.

130

3.1 Algorithm for Transformation (1)
An algorithm forA_transformation which can be applied to
general CSP programs is preéented in this subsection.
As stated at the top of this section, every process of a CSp
program is transformed into a coroutine and each command of each
"process is transformed into Ehe same command except for input and
output commands. A special routine called scheduler is added to
those coroﬁtines and' it always keeps the statuses of every
process and control the execution.
The scheduler repeats the following until no process is
executable:
(1) The scheduler chooses and activates a process which is
executable;
(2) The <chosen process executes its commands as far as it can
proceed (The process can not proceed when it can not send or
receive a message at an input or an‘output command, or when it is
terminated.); |
(3) The suspended process returns the control to the scheduler.
The mechanism of the message passing 1is as follows. In
principle the process which reaches the place of rendezvous first

writes the type of the message (and the value of the message if

.

the process is the sender of thé message) in globally accessible
space, then the other process which reached the.input or outpuf
command checks the correspondence of the message, and at last the
value of the message is assigned to the target variable of the
input process.

A somewhat special treatment is necessary for input guards.
When the control reached an alternative or a repetitive command

with input guards, the guards of the command whose results can be

131

determined at that momént are evaluated. If'there is aﬁy _guard
which does not fail, the guard is selectea_for execution. If such
a guard does not exist, the execution of tﬁe ppocessbis suspended
and it returns the control to the schedqler. Then, the controi
flows on other processes in the way stated above, until success
of one of the -input guards is informed by:the sender of the
message Or failuig of all the guards'are $gtt1éd by terminatipn

of all the processes related.

3.2 Algorithm for Transformation (2)

I1f the CSP program to be transformed has no input guara, a
stratégy called demand driven reduce the duty of the scheduler,
since in those cases the participants of a paticular communicatin
is always’determined uniquely;

If a process p reaches an iqput ér an output éommand, the
process transfer the control to (or call) the paitner of the
rendezvous. The activated (called) process proceeds execution,
until it reaches the place of the rendezvous and answer the
request of the activator. It is possible that the called process
also activates other procesSes, howéver, those called ‘processes
can not call‘any-process which is already waiting for the ‘partner
to respona the request, since this indicates the presence df
deadlock. Thﬁs, if there doeé not arise any deadlock, thé control
must return to the first process p. In this way the execution
proceeds .ﬁntil the process p chosen by the scheduler terminates
and return the control to the scheduler. Thus, the number of the

scheduler's choice of the process to activate decreases comparing

with the first algorithm.

132

3.3 Algorithm for Transformation (3)

I1f a CSP progfam-satisfies certain conditions stated in this
subsection, the role of the scheduler is to only activate a
special process called source process which leads the
computation. In this subsection we first states the conditions to
be satisfied and, then, describe the way of the transformation.

Any program in CSP that satisfies three conditions stated
below in terms of communication graph [5] and vactivation graph
can be executed without arbitrary choice of the process by the
scheduler(At first the communication graph Gc is defined as

follows:

Definition 1 (communication graph Gc).
For a given CSP program, the COMMUNICATION GRAPH Gc is defined
as follows:
(1) each process is a point of Gc, and
(2) if there is a communication (i.e. transfer of messages) from

a process p to a prcess g, pq is contained in Gc as an arc.

Let P be the set of processes of the CSP program, or, in otherx
words, the set of points of Gc, and let Ac be the set of arcs -in

Gc. We write as Gec=(P,Ac). The first condition to be satisfied is

as follows:
Condition 1.
Gc is acyclic.

By this condition a partial order < can be naturally induced

into the set of points P of Gc. We shall define the order of

p,gq&P as

133
PIEC AC = p2gq.

Suppose that an expression in CSP satisfies the above condition.

The next condition we take into consideration is:

Condition 2.
There exists a process s&P such that for any p&p, p<s or

s<p holds.

The process which satisfies the above condition may not be
unique. If there exists more than one process, we select an

arbitrary one and fix it from now on.

Definition 2 (source process s).
We select a process which satisfies Conditin 2 and fix it. We
call the process the SOURCE (PROCESS) of P, which will be denoted

. by s.

Another kind of graph called activation graph is now

defined.

Definition 3 (activation graph Ga):

If Condition 1 and 2 are satisfied, the ACTIVATION GRAPH
Ga= (Pa,Aa) of a CSP program can be defined as follows:
7(1) Pa=P (the set of points is the same as that of Gc; thus wé
use P instead of Pa), and
(2) pg€ra <==> gpEAc (if g<s)

pg €aAc (if s<p).

Note that indegree of the graph Ga of the source process s is 4@.

The following proposition is proved easily.

134

Proposition 1

Ga is acyclic.

By this proposition, a new partial order (P,gé) which is
different from (P,<) is induced; it represents the order of the

activation.

The last condition to be satisfied is stated in terms of the

activation graph Ga as follows:

Condition 3.

Ga is an out-tree [6].

Remark

The above condition is equivalent to the following one:

Condition 3°'.
With respect to Ga, the indegree of the source s is § and the

indegrees of all other processes are 1.
For convenience, we will define several terms.

Definition 4 (producer and consumer).
A process p is said to be a PRODUCER (PROCESS) if p{s, and is

said to be a CONSUMER (PROCESS) if s:ép.

Definition 5 (parent, son, ancestry and descendant).
For each p&P, we define the following:
(1) if gp&da, g is said to be the parent of p (which is uniquely
defined),
(2) if pg&€nra, g is said to be a son of p,
(3) {q<EP|q:$p} is said to be ancestry of p, and

(4) {qéEP]pjéq} is said to be descendant of p.

135

Those programs which satisfies above three conditions can be
executed in thé following manner.
(1) The shcedule; activates the source process s.
(2) The source proceés makes all the producer processes be ready
to send messages in the following'way:
(2-1) ' it activates each of its son that is. a consumer, and
then
(2-2) eacﬁ of those sons also makes fheir 'sons be réady to
send messages by activating them.
(2-2) proceeds until all the producers are activated and becomes
feady to send messages to their parent processes.
(3) The computation proceeds by the leading of the source process
preserving the condition that all the producer processes are
always be ready to send messages unless they‘aré terminated.
' (Note that the result of the inpht guards can " be always
determined since all the producers are ready to send méssages.)
(4) When the source process is reachéd its end, it broadcasts its
termination to all the consumers in the same manner as (2-2).
(5) All the consumers change their statuses to "terminated" and
return the control to their parents.
(6) The source process gets .the control again and returns it to
the scheduler. |

(7) The execution terminates.

4. Conclusion

Three algorithms for transformatin of CSP programs into
seqdentally.executable forms are presented. Those algorithms must
contribute to the problem of scheduling of érocesses of CsSP

programs.

136

References

(1]
[2]
[3]

(4]

[5]

[6]

C.A.R. Hoare: Communicating Sequential Processes, Comm. ACM,
Vol. 21, No. 8 (Aug. 1978), pp. 666-677.

T. Tokuda: CSP Programming Support Environment Project, Proc.
of the 26th Conference of IPSJ, to appear.

M. Sassa et al.: Programming with Streams, Proc. of the 25th
Conference of I1IPSJ, pp. 257-258, 1982.

H. Musha: Oon Effective fTransformatins of Communicating
Sequential Processes, Master Thesis, Yamanashi University,
1983.

N. Francez: Distributed Termination, ACM Trans. on Prog.
Lang. and Sys., Vol. 2, No. 1 (Jan. 1984¢), pp. 42-55.

F. Harary: Graph Theory, Addison-Wesley, 1969.

