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1. Introduction

There are several notions of "a probabilistic algorithm T
accepts a set L". Among them is the following:rif an input x
is in L then T accepts x with a nonzero probability, and
otherwise T never accepts x. This is a natural extension of
the acceptance by nondeterministic algorithms.

The famous prime test algorithms by Rabin [Ra] and Solovay
~Strassen [SS] are probabilistic algorithms of this sense if
they are regarded as acceptors of the set COMP of all composite
numbers.

Their algorithms are fast and moreover accept x with a
high probability if x is in COMP. However we expect
intuitively that in many problems every probabilistic algorithm
whose accepting probability is high requires more time than one
that has lower accepting prbbability. We have two examples of
this phenomenon for some computation models ([MT], [W1]).

In these examples we see the following type of relation
between time and accepting probability: In recognition of some
set by some computation model (1) we can construct a machine
which accepts it within 0(f(n)) time if we do not mind the

accepting probability, but (2) every machine which accepts it
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with the high accepting probability needs £2(g(n)) time (where
f(n) << g(n)). So these examples show rather rough relation
between time and aCcepting’probability. Although we expect
more close relation in some problem ([Ad], [Mo]), we have
obtained no such example before. In this paperVWe will gi&e
one example for a close relation.

We use probabilistic simple decision trees as the
computation model ([MT]). For such a tree, we use the height
of the tree as the measure of computation time. It cbrresponds
to the worst case run time.

On this computation model we will obtain the following
results: Let p be any number such that O < p < 1, then to test
element non-uniqueness of n elements with aécepting‘ﬁrbﬁabiiify
p, O( max(log n, pnlog pn, JEE??EE;EE?) ) time is sufficient
and O( max(log n,rpnlog on, JSETEBETE;?) ) time is necéSSafy;

2. Preliminaries
In this section we define probabilistic simple decision
trees and the element non-uniqueness problem.' After that we

describe the main theorem formally.

Definition 1

A probabilistic simple decision tree is a finite binary

tree whose nodes are either query nodes, coin;tossing nodes or
leaf nodes. A query node is labeled by "i:j" and has two
emanating edges labeled by "<" and ">" respectively. A coin-

tossing node is unlabeled and has two unlabeled emanating edges

A leaf node has no emanating edges and is either an "accepting

node" or a "rejectiong node".
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This paper deals only with probabilistic simple decision trees.
S0 we sometimes omit "probabilistic simple" in the following.
Since every decision tree is finite and acyclic, it is
natural to assume that each tree works only for particular size
of inputs. Let T be any decision tree whose input size is n.
Then every input to T is an n-tuple of real numbers. We use X
to denote n-tuple (x,, X5, ..., X,). Suppose that an input X
is given to a decision tree T. The execution of T on input X

is defined as follows.

Definition 2

The execution of T on input X starts from the root node
and continues to proceed to the next node until it reaches a
leaf node. On each node, in order to determine the next node,
one emanating edge is chosen from two possible ones according
to the following rules:
(1) on a query node labeled by "i:j", <-labeled (or >-labeled)

edge is chosen if x; < xg (or x¢ > Xg)’ and

(2) on a coin—tossihg node, one of two emanating edges is

chosen with the same probability.

We say that T accepts X if an accepting node is reached after
an execution. Since an execution is not deterministic but
probabilistic, the event "T accepts X" occurs with a certain
probability. By Pr{ T accepts X } or pT(i), we mean this
probability.

Because input size of T is n and every query in T is a
simple query (a straight comparison between a pair of input
elements), we can assume, without loss of generality, that each

element of an input is an integer between 1 and n. So we
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define D, by {(xy, ..., %,) | 1 £ x¢ < n, for all i} and regard
D, as an input domain of T. Then the language recognized by T

and accepting probability of T are defined as follows.

Definition 3

The language recognized by T is

L(T) = {X | X €D, and p_r(ff) > 0}.
The accepting probability of T is

= min p_(X).

D
LA

Let h- denote the height of T, that is, the maximum length
of paths from root to leaves in T. 8o h+ is the maximum number
of comparisons and coin-tossings, and it corresponds to the
worst case run time.

The element non-uniqueness problem is the recognition of

the seﬁ

I, = {(x4, «eo, x,) €D, | X; = x; for some i and il,
where n 2 2 so that L, may not be empty.

Now that we have defined the computation model and the
problem, we describe the main theorem formally. Our main
theorem shows the upper bound and the lower bound of the height

of simple decision trees which recognizes L, with P 2 p. 8o

it is convenient to define the optimal height H(n, p) of such

trees.

H(n, p) = min{ hy | T is a decision tree such that

L(T) = L, and P, 2D }.

Also define g(n, p) = max( log n, pnlog pn, Jfpn*log pn* ) (in

this paper the base of logarithms is 2).
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The Main Theorem

There exist positive integers c, c¢' and n,2 2 such that,
for all n 2 n,, and all p, 0 < p £ 1,

C'g(ny p) < H(n, P) < C"g(n, p)-

2. The Upper Bound
In this section we will prove that H(n, p) = 0(g(n, p)).
We state the main theorem with the function g. But here

we introduce a function £ and use it instead.

Definition 4
The function t(y) is defined on y 2 0O, and
t(y) = x such that x*log x = y.
The function f(n, p) is defined on n, p > O, and

f(n, p) = max( pnlog pn, t(pn? )log t(pn*) ).

We show some important properties of f and t, which are

deduced from more general ones ([W2]).

Proposition 1

Let ' n and p be any number such that n > 2 and O < p £ 1
respectively.
(a) The values of t(pn?) and f(n, p) are well defined.

(b) pn 2 t(pn ) = f(n, p) = pnlog pn 2 n,

pn < t(pn ) @ f(n, p) = t(pr® )log t(pn®) < n.
(c) There exist n',, c¢'; and c¢', > O such that if n 2 nj then

c'y-gln, p)‘< max(log n, f(n, p)) < cY-gln, p).

Prop. 1 (c) ensures us using max(log n, f(n, p)) in place

of g. So we need to prove the following theorem.
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Theorem 2
There exis®t cy > 0 and ny 2 2 such that for all n 2 ng and
all p, 0 < p £ 1, there exists a probabilistic simple decision

tree T which recognizes L, with o 2 p and hy < clmax(log n,

f(n, p)).

Proof. First we note that we can construct a deterministic
decision tree for L, with height’O(nlog n) (such a tree first
sorts all input elememnts and then checks equality between
every pair of elements neighboring in this ordering).

If p > 1/16, we use this deterministic decision tree. So
Py = 1 2 p, and there exists 4, éuch that for a sufficiently
large n, ‘

hy < c-nlog n £ 4 pnlog pn £ 4 max(log n, £(n, p)).
So assume that p < 1/16. | | o

-Let any n and p be fixed. Then the description of T which
recognizes L, with p_ 2 p and hy = 0( max(log n, f(n, p)) )Vis
as follows:

Let

p' = px 16 < 1,

m = max(2, P'n’ t(p'n ))’

n' = r;nlog o , and
k= m/ n", then
begin

choose k, randomly from {0, ..., k = 1};

choose k, randomly from {0, ..., k - 1};

Sl (' {Xnvkl_"l ’ ® o 0y Xh'(k:"‘i) }
{Xh'kz*i y ey Xn'(k,_-l':l) };

(if k; = k - 1 then {Xy, 445 Xyke2 s +-+» Xn} 1S used)
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n, « 'S1|;
(I81| means the number of elements in §;)
choose i, randomly from {1, ..., n,};
i, # max(1, i, = (m - 1));
i, « nin(n,, i, + (m - 1));
Yy ¢ iy th best in Sy
(by the fast selection algorithm [B1l])
Yo ¢ 15 th best in S,;
S, « fxe Sy 1y, £x<y, }s
m, « |S,1;
if my > i, - iy + 1 then accept (and halt);
test element non-uniqueness of S,
by the deterministic decision tree;
end.
It is not so difficult to prove that this T satisfies the
theorem (see [W2] for the detail).

5. The Lower Bound
In this section we will prove that H(n, p) =Q(g(n, p)).

From Prop. 1 (c), we need to prove the following theorem.

Theorem 3
There exist c, > O and n, 2 2 such that for all n 2 n, and
all p, 0 < p < 1, if a probabilistic simple decision tree T

recognizes L, with p_ 2 p, then hy 2 c,max(log n, f(n, p))-

It is easy to show that every nondeterministic simple

decision tree which recognizes L, requires a(log n) height
([MT]). It is also true in probabilistic model since we can

regard a nondeterministic decision tree as a probabilistic one.

-7 -
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Lemma 4

For any n > 2, if a probabilistic simple decision tree T

recognizes L, then hy 2 log n.

We will show that hy =Q(£f(n, p)) if T recognizes L, with
Pt 2 p. We first introduce some notations which are useful in
the following.

- Define X, by Dy - L,. 8o X, is the set of all
permutations of (1, 2, ..., n). For any X € X,, %xdenotes a
function which maps x;'s value to i (i.e. Xp_(xy = X' for 1
x' { n). We sometimes use T if it does not make any confusion.
Let X € X,. Consider the’input y=(y,, -++» ¥,) such that
y'rl’.({,,+i) = XIt(fo) and Yn)y = ¥ for all i, i # i,+1.
Then ¥ € L, only because Vi, +1) = I (do) . We use Yg to
denote the set of all such inputs. And define Y, by <}J Yg.

Mandor and Tompa proved that h = (nlog n) if T e Ko
recognizes L, with py > 1/2 (Th. 8 in [MT]). We extend it to
the following lemma which also plays basic role to‘get our

lower bound.

Lemma 5
There exists hy, Cq, > 0 such that for any k 2 2 and q, O <
q £ 1, if a probabilistic simple decision tree T satisfies
(2) he 2 hy (i.e., hy is sufficiently large) and hr 2k,
(b)) L(T) = Ly, and
(c) exp p_(¥) 2 q,

Y ey T
then h > cyqklog gk.

Proof. The proof is rather long and we omit it here (please

see [W2]).
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Proof. Let h, > h, for h; defined in Lemma 5. Let any p,

From this lemma it is easy to show that hy = (pnlog pn)
for any T which recognizes L, with o 2 p and hy 2 n. We can
not apply it, however, to a tree T such that h, < n. To use

this lemma in that case, we need the following lemma.

Lemma 6
For any n, k > 2, if there is a decision tree T such that
T recognizes L,with P 2 p and for every path the number of

different input elements refered on it is at most k, then we

can construct a decision tree T' such that
(a) ho = hy,

(b) L(T') = T,

() exp 1, (y) 2 B

veY,
Proof. The %roof is rather long and we omit it here (please

see [W2]).

- From Lemma 5 and Lemma 6 we get another lower bound for h.

that is, hy = 0( t(pn?)log t(pn®) ).

Lemma 7

There exist h,, cg > O such that for any p, O < p £ 1, if
a probabilistic simple decision tree T satisfies
(2) hp > hy (i.e., hy is sufficiently large),

(b) L(T) = L and

n?
() oo 2P
then hy > cgt(pn®)log t(pn®).

4

v O
3 A

p <1, and any decision tree T which recognizes L, with p,
and ht 2 h, be fixed. And let k denote the maximum number of

different input elements refered on each path for any path in T
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Then from Lemma 6, we can construct T' such that (a) hy = ho

(2 hy), (p) L(T') = Ly, and (c) exp p_.(¥) 2 pn® / 2k*. By

YeY,
Lemma 5 we have ;
_ pn? o Ptk pn? pri
he = hp 2 c, zk"k log( e ) = ¢, " log T (1)

Assume that h < [c./8 t(pn?)log t(pn?). Note that k ¢
2hy. So we have k < ja;7§ t(pn*)log t(pn®). Thus from (1) we
have hy > 04/8 t(pn? )log t(pn%), which contradicts the above
assumption. Therefore hy 2 cst(pn2)log t(pr® ) for some cg > O.

Now we summarize the previous lemmas and prove Th. 3.

Proof of Th. 3.

Lemma 4 says that for any n 2 2, if a decision tree T
recognizes L, with Pr > p, then

hy 2 log n. ~ (1)
This is one lower bound for hy. And it ensures the existence
of ny such that h4 > hy for any n 2 n, and any T. Let any n 2
n, and any p, O < p £ 1 be fixed in the following. Also let
any tree T which recognizes L, with o 2 p be fixed.

First consider the case that hy 2 n. From the definition

S

of Py, We have

P { py=min p () < exp p_(§F).
yeLn T YeTn T
S0 using Lemma 5 we have
hT 2 Q*pnlog pn.
By Lemma 7 we also have
hy 2 cgt(pn? )log t(pn*).
Thus, for some d; > O,
hy 2 dlmax(pnlog pn, t(pn?)log t(pn?)) = d4;f(n, p).

Next consider the case ’chat4hT < n. Lemma 7 works here

and we have

- 10 -
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hy 2 cst(pn?)log t(pn?).
This implies n > cst(pn* )log t(pn*), and it is not so difficult
to show t(pn®)log t(pn*) > d,pnlog pn (Prop. 1 (c) in [W2]).
Thus, for some dz > O,

hy > dymax(pnlog pn, t(pn®)log t(pn?)) = d; f(n, p).

Hence, for d, = min(d, , d3), we have another lower bound
for hyy

hy > d4f(n, p). (2)

From (1) and (2) we can conclude that for some c, > O

hy > cymax(log n, f(n, p)).
Remark

In order to describe the lower bound simply, we put three
functions, log n, pnlog pn and t(pn®)log t(pn®) together. But
for the case hy 2 n, only the lower bound o (pnlog pn) has the
essential meaning and 0 ( max(log n, t(pn®)log t(pn*) ) does for

the case h4 < n.

4. Conclusion

In this paper we showed some relation between time and
accepting probability in solving the element non-unigqueness
problem by probabilistic simple decision trees.

Here we considered the probabilistic computation model
where a tree does not make a mistake for any input to be
rejected. It is also possibe, however, to have the same type
of result for the Gill's type computation model where a tree T
may accept an input to be rejected aﬁd the language recognized
by T is

L(T) = {X Pr{ T accepts X } >-%}.

In this model we have the tradeoff relation between time and

error probability as follows: To recognize L by probabilistic
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simple decision trees with the error probability less than

1/2 - &, order of max(log n, §nlog §n, Iéﬁ%log sn* ) time is

necessary and sufficient.
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