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Some Applications of Fourier Analysis

to Uniform Distribution Mod 1.

Takeshi Kano (Okayama Univ.)

[oo]

We say that a sequence (Xn)1 of real numbers is uniformly distributed

mod 1 (u.d. mod 1 ) if we have for any 0 < a < B 1

WA

n

o1 _
lim o kél 1l = B-a,

n+o
a < {A ) <8

} denotes the fractional part of A

where {xk K Then Wejl proved that
(Ah)l is u.d. mod 1 iff
n 2wihA
. 1 . k _
lim = kgl e - =0,

n-+o
for all fixed natural numbers h. Among other important results,
he gave the following "metric result".

[+ o]

Theorem A. Iif (an)l is a sequence of distinct natural numbers,

[oe]

then (Xan)1 is u.d. mod 1 for almost all fixed x.

In fact, behind his proof of this theorem, a much more general
principle was laid. For instance, the following generalization is

possible [3].
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Theorem B. If~(An)l is a sequence of real numbers such that
inf | Ay = A | > o,
n#m

o]

then the sequence (xkn)1 is u.d. mod 1 for almost all real numbers x.

The main object of this article is to indicate another approach so
that we can improve these results to some extent.

Let

[e.e]

(1) n&y (2, cos nx + b sin nx)
i
be the Fourier series of f €L.

In 1920 arround, Russian mathematician Lusin made the conjecture
that for all f‘ELz, (1) converges for almost all x. About ten years
later, Kolmogorov constructed an fEI}'such that (1) diverges for
all x. However, in 1966 L. Carleson [1] has proved the Lusin

conjecture affirmatively. A version of his theorem is

a0

Theorem C. If nél (an2 + bnz) < o then (1) converges for almost

all x.

It will be worth stating here an open problem due to Orlicz [uy:

Give an example of (1) divergent for all x and such taht

5 (a 2+€ + b 2+¢€ ) < o
n n

for every e>0.

We may now apply Theorem C to the Fourier integral
oo
fO

and obtain the following

£(t) et¥tat
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Theorem 1. Ir Ak+l - Xk >k >0 (k=1,2,...) and
® 2
k§1 ‘lakl < @,
then
iA, x
(2). kE1 % ©

converges for almost all x.

Corollary 1. Under the assumption of Theorem 1,
- ikkxf
I (1 + a, e )
k=1

converges for almost all x.

Corollary 2. If AK%l - Ak >k >0 (k=1,2,...), then

N 1A, xh

k=1
for almost all x, where h&N is fixed and § >1/2 an arbitrary

constant.
More generally, we can in fact prove

Theorem 27 If

(3) A - A, >

and for almost all x

(4)

8

k=1

sinz(ukx/2)

then (2) converges for almost all x.
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corollary 3. The Dirichlet series
n;l e (s = og+it)

converges on ¢ = 1/2 for almost all t if

nél |Cni <

From Theorem 2 we obtain the following

. Theorem 3. If (3) holds and for almost. all x
L%

k281n2(ukx/2)

o]

then the sequence (X)xk)l is u.d. mod 1 for almost all x.

fi~8

(5) .

1 <2

- If we denote by P, the n th prime (p1=2), then for sufficiently

large n we have

(1og n)872

n 3

8 § .
(log p, 1) - (log p )" >> (6 > 0)

by the prime number theorem and Hoheisel's theorem. Thus the

following interesting result is immediately deduced from Theorem 3.

o4

Corollary 4. The sequence ( x(log pn)a)i'is u.d. mbd 1 for

almost all x, provided 6'> 3.

VOuf method cannot afford anything if 0 < § < 3, and we are tempted
to conjecture that Corollary 4 is still true if § > 1. We can
prove, however, that ( x(log pn)a); is (M, (log n)s_l/n) - u.d.

mod 1 for almost all x if § > 1 (ef. Corollary 5 below). A sequence

(A of real numbers is said to be (M, an) - u.d. mod 1 if there

n)l

exists a sequence of positive numbers such that



o > o > eee > (g > ese.
. n

1 2
ng1 %n ~
and
N 2ﬂihkn N
nzl OLn € =0 (ngl an)

for any fixed hée N.
It is easy to see that any u.d. sequence is (M, un) - u.d. for

any o_.
J n

By a similar argument due to Cossar [2], we obtain

Theorem 4. If (3) holds and for almost all x
w lCpP u
k1 XE ) « <2
k |sin (ukx/2)[p

for some 1 < p < 2 , then

n- K
kB & =0 ()
for almost all x.
n
Corollary 5. 1f Xn << kgl Cy and
' a
Meg1 = A >> 1/k(log k)

for some 0 < o < 1, then (xkk); is (M, cn) - u.d. mod 1 for almost

all x.

We remark that our argument breaks down if o = 1. So it does not

follow that (x log pn)i is (M, 1/n)- u.d. mod 1 for almost all x.
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