Some Applications of Fourier Analysis to Uniform Distribution Mod 1.

Takeshi Kano (Okayama Univ.)

We say that a sequence $(\lambda_n)_1^{\alpha}$ of real numbers is uniformly distributed mod 1 (u.d. mod 1) if we have for any $0 \le \alpha < \beta \le 1$

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^{n}1=\beta-\alpha,$$

 $\alpha \leq \{\lambda_k\} \leq \beta$

where $\{\lambda_k\}$ denotes the fractional part of $\lambda_k.$ Then Weyl proved that $(\lambda_n)_1$ is u.d. mod l iff

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^{n}e^{2\pi ih\lambda}k=0,$$

for all fixed natural numbers h. Among other important results, he gave the following "metric result".

Theorem A. If $(a_n)_1^{\infty}$ is a sequence of distinct natural numbers, then $(xa_n)_1$ is u.d. mod 1 for almost all fixed x.

In fact, behind his proof of this theorem, a much more general principle was laid. For instance, the following generalization is possible [3].

Theorem B. If $(\lambda_n)_1^{\infty}$ is a sequence of real numbers such that

$$\inf_{n\neq m} | \lambda_n - \lambda_m |_{\Sigma} > 0,$$

then the sequence $(x\lambda_n)_1$ is u.d. mod 1 for almost all real numbers x.

The main object of this article is to indicate another approach so that we can improve these results to some extent.

Let

(1)
$$\sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

be the Fourier series of f \in L.

In 1920 arround, Russian mathematician Lusin made the conjecture that for all $f \in L^2$, (1) converges for almost all x. About ten years later, Kolmogorov constructed an $f \in L^1$ such that (1) diverges for all x. However, in 1966 L. Carleson [1] has proved the Lusin conjecture affirmatively. A version of his theorem is

Theorem C. If $\sum_{n=1}^{\infty} (a_n^2 + b_n^2) < \infty$, then (1) converges for almost all x.

It will be worth stating here an open problem due to Orlicz [4]: Give an example of (1) divergent for all x and such taht

$$\sum_{n=1}^{\infty} (a_n^{2+\varepsilon} + b_n^{2+\varepsilon}) < \infty$$

for every $\varepsilon > 0$.

We may now apply Theorem C to the Fourier integral

$$\int_{0}^{+\infty} f(t) e^{ixt} dt$$

and obtain the following

Theorem 1. If $\lambda_{k+1} - \lambda_k \ge \kappa > 0$ (k=1,2,...) and

$$\sum_{k=1}^{\infty} |a_k|^2 < \infty ,$$

then

(2)
$$\sum_{k=1}^{\infty} a_k e^{i\lambda_k x}$$

converges for almost all x.

Corollary 1. Under the assumption of Theorem 1,

converges for almost all x.

Corollary 2. If $\lambda_{k+1} - \lambda_k \ge \kappa > 0$ (k=1,2,...), then

$$\sum_{k=1}^{N} e^{i\lambda_k xh} = 0 \left(\sqrt{N \log N} \left(\log \log N\right)^{\delta}\right)$$

for almost all x, where $h \in \mathbb{N}$ is fixed and $\delta > 1/2$ an arbitrary constant.

More generally, we can in fact prove

Theorem 2. If

(3)
$$\lambda_{k+1} - \lambda_{k} \geq \mu_{k} > 0, \quad (k=1,2,...)$$

$$\lambda_{k} \rightarrow \infty \quad (k \rightarrow \infty),$$

and for almost all x

(4)
$$k^{\frac{\infty}{2}} \frac{\mu_{k}}{\sin^{2}(\mu_{k}x/2)} |a_{k}|^{2} < \infty ,$$

then (2) converges for almost all x.

Corollary 3. The Dirichlet series

$$\sum_{n=1}^{\infty} \frac{C_n}{n^s} \qquad (s = \sigma + it)$$

converges on $\sigma = 1/2$ for almost all t if

$$\sum_{n=1}^{\infty} |C_n|^2 < \infty.$$

From Theorem 2 we obtain the following

Theorem 3. If (3) holds and for almost all x

(5)
$$k^{\frac{\infty}{2}} \frac{\mu_{\mathbf{k}}}{k^2 \sin^2(\mu_{\mathbf{k}} x/2)} < \infty ,$$

then the sequence $(x\lambda_k)_1$ is u.d. mod 1 for almost all x.

If we denote by p_n the n th prime $(p_1=2)$, then for sufficiently large n we have

$$(\log p_{n+1})^{\delta} - (\log p_n)^{\delta} >> \frac{(\log n)^{\delta-2}}{n}, (\delta > 0)$$

by the prime number theorem and Hoheisel's theorem. Thus the following interesting result is immediately deduced from Theorem 3.

Corollary 4. The sequence $(x(\log p_n)^{\delta})_1^{\infty}$ is u.d. mod 1 for almost all x, provided $\delta > 3$.

Our method cannot afford anything if $0 < \delta \le 3$, and we are tempted to conjecture that Corollary 4 is still true if $\delta > 1$. We can prove, however, that $(x(\log p_n)^\delta)_1^\infty$ is $(M, (\log n)^{\delta-1}/n) - u.d.$ mod 1 for almost all x if $\delta > 1$ (cf. Corollary 5 below). A sequence $(\lambda_n)_1^\infty$ of real numbers is said to be $(M, \alpha_n) - u.d.$ mod 1 if there exists a sequence of positive numbers such that

$$\alpha_1 > \alpha_2 > \cdots > \alpha_n > \cdots$$

$$\sum_{n=1}^{\infty} \alpha_n = \infty$$

and

$$\sum_{n=1}^{N} \alpha_n e^{2\pi i h \lambda_n} = 0 \left(\sum_{n=1}^{N} \alpha_n\right)$$

for any fixed $h \in \mathbb{N}$.

It is easy to see that any u.d. sequence is (M, $\alpha_n)$ - u.d. for any α_n

By a similar argument due to Cossar [2], we obtain

Theorem 4. If (3) holds and for almost all x

$$\sum_{k=1}^{\infty} \left| \frac{c_k}{\lambda_k} \right|^p \cdot \frac{\mu_k}{\left| \sin \left(\mu_k x/2 \right) \right|^p} < \infty ,$$

for some 1 \leq 2 , then

$$\sum_{k=1}^{n} c_{k} e^{i\lambda_{k}x} = 0 (\lambda_{n+1})$$

for almost all x.

Corollary 5. If $\lambda_n << \sum_{k=1}^n c_k$ and $\lambda_{k+1} - \lambda_k >> 1/k(\log k)^{\alpha}$

for some $0 \le \alpha < 1$, then $(x\lambda_k)_1^\infty$ is (M, c_n) - u.d. mod 1 for almost all x.

We remark that our argument breaks down if α = 1. So it does not follow that $(x \log p_n)_1^{\infty}$ is (M, 1/n)- u.d. mod 1 for almost all x.

References

- [1] Carleson, L.: On convergence and growth of partial sums of Fourier series, Acta Math. 116 (1966), 135-157.
- [2] Cossar, J: The Bohr spectrum of a function. Proc. AMS. 10 (1959), 294-295.
- [3] Kuipers, L. & Niederreiter, H.: Uniform distribution of sequences, Wiley, 1974.
- [4] Mauldin, R. D. (Ed.): The Scottish Book, Birkhäuser, 1981.