PROBLEMS RELATED TO BASES

MICHEL MENDES FRANCE

UNIVERSITE DE BORDEAUX I

I. Let θ and τ be two integers ≥ 2 . Define

 $B(\theta)$ = set of real numbers normal to base θ

 $B(\tau)$ = set of real numbers normal to base τ .

It is wellknown that

 $\label{eq:bound} \mathtt{B}(\,\theta\,) \; = \; \{ \; x \; \epsilon R \; / \; (x \theta^{\, n}) \; \text{is equidistributed (mod 1)} \; \}$ and that

$$B(\theta) = B(\tau) \iff \frac{\log \theta}{\log \tau} \in \mathbb{Q} .$$

Suppose now $\,\theta\,\,$ and $\,\tau\,\,$ are real numbers $\,>\,1$, not necessarily integers.

PROBLEM 1: Is it true that

$$B(\theta) = B(\tau) \iff \frac{\log \theta}{\log \tau} \in \mathbb{Q} ?$$

The answer is surely NO! Indeed, it seems very plausible that $\sqrt{2}$ is normal to base 2: $\sqrt{2}$ $\varepsilon B(2)$. On the other hand obviously $\sqrt{2}$ $\varepsilon B(\sqrt{2})$ because one term out of two in the sequence $\sqrt{2}(\sqrt{2})^n$ is 0 (mod 1). So

$$B(2) \neq B(\sqrt{2})$$
 inspite of the fact $\frac{\log 2}{\log \sqrt{2}} \in \mathbb{Q}$.

I conjecture:

If θ and τ are Pisot numbers, then

$$B(\theta) = B(\tau) \qquad \frac{\log \theta}{\log \tau} \in \mathbb{Q} .$$

(See A.Bertrand (2)).

II. Let $\theta > 2$ and consider the Cantor set $C(\theta)$

Then $C(\theta)$ is the set of real numbers

$$x = (\theta - 1) \sum_{n=1}^{\infty} \frac{\varepsilon_n}{\theta^n}, \quad \varepsilon_n = 0 \text{ or } 1.$$

Obviously, for all integer $\theta \geq 3$, $B(\theta) C(\theta) = \phi$.

PROBLEM 2: Let μ_{θ} be the "canonical measure" on $C(\theta)$ (I do not suppose that $\theta \in N$). μ_{θ} is the measure defined on the set of infinite 0,1-sequences. I can prove that for μ_{θ} -almost all $x \in C(\theta)$, x is not in $B(\theta)$. In other words

$$\mu_{\theta} (B(\theta) \cap C(\theta)) = 0$$
.

Is it true that $B(\theta) C(\theta) = \phi$?

I can also prove that for all x $_{\epsilon}C(_{\theta})$ there exists a nonzero algebraic integer $_{\alpha}$ $_{\epsilon}\mathbb{Q}(_{\theta})$ such that

$$\alpha x \notin B(\theta)$$
.

If this integer $_{\alpha}$ was known to be rational then the conjecture $_{-}$ 2 $_{-}$

 $B(\theta) \cap C(\theta) = \phi$ would be true.

On the other hand, if $_{\,\theta}\,$ is not assumed to be a Pisot number, results seem different. I can prove that for almost all real $_{\,\theta}\,>\,1$,

$$\mu_{\theta}(B(\theta) \cap C(\theta)) = 1$$
.

(See my thesis (8), chapter 2).

III. Let $s_2(n)$ be the sum of the binary digits of n and $s_3(n)$ the sum of the digits of n in base 3. Straus and Senge proved (12):

$$\forall$$
 A \geq 1 \forall B \geq 1 { n / s₂(n) < A and s₃(n) < B }

is finite.

Gelfond (6) asked the 3 following questions:

QUESTION 1: Suppose (b-1,2)=(b'-1,3)=1. Let a and a' be given. Show that the set

$$\{ n_{\epsilon} N / s_2(n) \equiv a \pmod{b} \}$$
 and $s_3(n) \equiv a \pmod{b'}$

has density equal to 1/bb'.

QUESTION 2: Show that (p prime)

$$\{ p \le x / s_2(p) \equiv a \pmod{b} \} \sim \frac{1}{b} \pi(x) .$$

QUESTION 3: Show that

$$\{n_{\epsilon}N / s_2(n^2) \equiv a \pmod{b}\}$$

has density 1/b.

Question 1 was answered affirmatively by J.Besineau a student of mine (published in Acta Arith. (3)). Question 2 and 3 are still open. Question 2 should not be too difficult. As for Question 3, I believe it to be very deep for the following reason:

The sequence $s_2(n) \pmod{2}$ is the famous Morse sequence generated by automaton

 ${\rm A}_{\rm O}$ is the initial state. The automaton works as follows. Feed in the integer n written as a string of 1's and 0's . And as an output read the index i of ${\rm A}_{\rm i}$.

Because $s_2(n)$ (mod 2) is autonomous-generated, density type properties are easily established. For example

density {
$$n / s_2(n) \equiv 0 \pmod{2}$$
 } = $1/2$.

Now, J.P.Allouche (1), another student of mine proved that

$$n \mapsto s_2(n^2) \pmod{2}$$

is $\underline{\text{not}}$ generated by automaton. The sequence must then be quite complex.

IV. The following is a wellknown open problem. Define

$$T(n) = \begin{cases} \frac{1}{2}n & \text{if } n \text{ is even} \\ 3n + 1 & \text{if } n \text{ is odd .} \end{cases}$$

To prove that $\forall n$, 3k such that $T^{(k)}(n)=1$. It seems quite clear (??) that this problem is related to the representation of integers in both bases 2 and 3, or what seems to amount to the same thing, to the distribution (mod 1) of $(\frac{3}{2})^n$.

So we are led to the other famous problem:

Is it true that $(\frac{3}{2})^n$ is dense (mod 1)?

If so, then the following is obviously true. Define $\psi(x)$ as the "depth" of the rational number $\,x\,:$

$$x = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_{\psi(x)}}}} + \frac{1}{a_{\psi(x)}}$$

If $(\frac{3}{2})^n$ is dense (mod 1) , then

$$\lim_{n\to\infty} \sup \psi(\left(\frac{3}{2}\right)^n) = + \infty.$$

G.Choquet (4) proved this in a series of Comptes Rendus a l'Acad.

Sc. 1981-82. His method was dynamical systems. Pourchet (11)

had already proved that actually

$$\lim_{n\to\infty} \psi(\left(\frac{3}{2}\right)^n) = +_{\infty}.$$

(Details are given in (14)).

Heilbronn (7), Tonkov (13), Porter (10) have proved:

$$\frac{1}{\phi(q)} \sum_{\substack{a \le q \\ (a,q)=1}} \psi(\frac{a}{q}) \sim \frac{12}{\pi^2} \log 2 \cdot \log q \qquad (q \rightarrow \infty)$$

and J.D.Dixon (5): for all a < q < x

$$\left| \psi\left(\frac{a}{q}\right) - \frac{12}{\pi^2} \log 2 \cdot \log q \right| < \sqrt{\log q}$$

with the exception of at most $o(x^2)$ a/q.

This leads to the following conjecture:

$$\lim_{n \to \infty} \frac{1}{n} \psi(\left(\frac{a}{q}\right)^n) = \frac{12}{\pi^2} \log 2 \cdot \log b$$

where $b = min \{a,q\}$.

V. Back to Pisot numbers:

Let $\theta > 1$ be a <u>real algebraic number</u>. Define

$$E(x) = \{ x, x\theta, x\theta^2, x\theta^3, \dots \}$$

and let E'(x) denote the set of limit points of E(x), E''(x) the set of limit points of E'(x),... Pisot (9) shows that if $E''(x) = \phi$ then θ is a Pisot number and $x \in Q(\theta)$.

CONJECTURE: If there exists a $\nu \ge 2$ such that $E^{(\nu)}(x) = \phi$, then θ is a Pisot number and $x \in Q(\theta)$.

If I knew how to prove this, I would then have another proof of Choquet's result.

REFERENCES

- (1) J.P.ALLOUCHE: Somme des chiffres et transcendence, Bull.Soc. Math.France, 110, 1982.
- (2) A.BERTRAND: Développements en base de Pisot et répartition modulo 1 de la suite (x_{θ}^n) , Thèse presentée à Université Bordeaux I,1981.
- (3) J.BESINEAU: Independance statistique d'ensembles liés à la fonction "somme des chiffres", Acta Arith., 20, 1972, 401-416.
- (4) G.CHOQUET: Les fermés (3/2)-stables de T; structures des fermés dénombrables; applications arithmétiques, Copmtes Rendus Acad.Sc.Paris, 291, 1980, 239-244.
- (5) J.D.DIXON: The number of steps in the Euclidean algorithm, Jour.Numb.Th.,2,1970,414-422. (See also Amer.Math.Monthly, 78,1971,374-376).
- (6) A.O.GELFOND: Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arith.,13,1968, 259-265.
- (7) H.HEILBRONN: On the average length of a class of finite continued fractions, Abhandlungen aus Zahlentheorie und Analysis, Berlin, 1968, 87-96, edited by P.Turán.
- (8) M.MENDES FRANCE: Nombres normaux. Applications aux fonctions pseudo-aléatoires, Jour. Analyse Math., 20, 1967, 1-56.
- (9) CH.PISOT:
- (10) J.W.PORTER: On a theorem of Heilbronn, Mathematika, 22, 1975, 20-28.
- (11) Y.POURCHET: Private communication c.1970.

- (12) H.G.SENGE, E.G.STRAUS: PV numbers and sets of multiplicity, Periodica Math. Hungar., 3, 1973, 93-100.
- (13) T.TONKOV: On the average length of finite continued fractions, Acta Arith., 26, 1974, 47-57.
- (14) A.van der POORTEN: Some problems of recurrent interest, Colloquia Math.Soc.Janos Bolyai,34,Topics in classical number theory (Budapest 1981),North Holland (to appear).