THE 9-SEMI-COMPLETE MAXIMUM PRINCIPLE

FOR REAL CONVOLUTION KERNELS

Masayuki ITÔ 伊藤 正之

1 - Let G be a locally compact, non-compact and σ -compact abelian group (1) and ε a fixed Haar measure on G. The potential-theoritic principles for positive convolution kernels play grand roles to the study of transient convolution semi-groups (see, for example, [3] and [8]). We know that the semi-transient convolution semi-groups are resonable (see [6]) and that the semi-complete maximum principle for real convolution kernels have a very closed connection with them (see [4], [5] and [6]).

Let \mathcal{P} be a given non-negative continuous function on G. Similarly as in the semi-transient convolution semi-groups, we can define the \mathcal{P} -semi-transient convolution semi-groups, and similarly as in the semi-complete maximum principle, we can define the \mathcal{P} -semi-complete maximum principle.

Let $(\alpha_t)_{t \geq 0}$ be a convolution semi-group on G. If $9 \neq 0$ and $(\alpha_t)_{t \geq 0}$ is 9-semi-transient and recurrent, then we shall obtain that 9 is exponential (2) and that $(\frac{1}{\varphi}\alpha_t)_{t \geq 0}$ is a semi-transient and recurrent convolution semi-group.

Let N be a real convolution kernel on G (i.e., N is a real Radon measure on G). If N satisfies the \mathfrak{P} -semi-complete maximum principle (denoted by N $\in \mathfrak{P}$ -SCM), then, for any open set $\omega \neq \emptyset$, the reduced measure $\gamma_{N,\omega}^{(\mathfrak{g})}$ of N sur ω with respect to (N,\mathfrak{P}) is defined in the natural manner. In the connection with the recurrence of convolution semi-groups, it is important to examine the case of $\gamma_{N,\mathfrak{F}}^{(\mathfrak{p})} = -\infty$, i.e., for any non-negative continuous function $f \neq 0$ on G with compact support,

⁽¹⁾ We consider that G is an additive group.

⁽²⁾ A continuous function φ on G is said to be exponential if for any x, $y \in G$, $\varphi(x + y) = \varphi(x)\varphi(y)$.

$$\lim_{\substack{v \uparrow G \\ v \in \mathcal{V}}} \operatorname{fd} \eta_{N,Gv}^{(\mathfrak{P})} = -\infty \quad (^{3}),$$

where v denotes the totality of compact neighborhoods of the origin 0.

THEOREM. Let $N \in \mathfrak{P}\text{-SCM}$, and assume $\mathfrak{P}(0) = 1$ and that N is not pseudo-périodic $\binom{4}{1}$. If $\eta_{N,\delta}^{(\varphi)} = -\infty$, then we have (1) or (2):

- (1) N is a Hunt convolution kernel and φ belongs to the closure of N-potentials N * f of non-negatives continuous functions f with compact support in the topology of compact convergence.
 - (2) 9 is > 0 and exponential, and $\frac{1}{9}$ N is of form

$$\frac{1}{\Phi}N = N_0 + \Psi \xi,$$

where N is a convolution kernel of logarithmic type and ψ is an additive continuous function on G.

In theorem, (2) implies $\eta_{N,\delta}^{(\mathfrak{P})} = -\infty$, but we do not know if (1) implies $\eta_{N,\delta}^{(\mathfrak{P})} = -\infty$. Since (1) is not essential in the case of $N \in \mathfrak{P}\text{-SCM}$ and $\eta_{N,\delta}^{(\mathfrak{P})} = -\infty$, the relation between $\mathfrak{P}\text{-semi-transient}$ convolution semi-groups and the $\mathfrak{P}\text{-semi-complete}$ maximum principle for real convolution kernels is essentially reduced to that between semi-transient convolution semi-groups and the semi-complete maximum principle for real convolution kernels. This result will be suggestive when we discuss the "semi-transient diffusion semi-groups".

This note is a summary of our paper [7], and we shall omit all proofs in detail.

2 - We denote by

C = C(G) the usual Fréchet space of finite continuous functions on G, $C_K = C_K(G)$ the usual topological vector space of finite continuous functions

This means that for any sequence $(v_n)_{n=1}^{\infty} \subset \mathcal{V}$ with $v_{n+1} \supset v_n$ and $v_n = 0$, $v_n = 0$. (Remark that G is σ -compact).

⁽⁴⁾ This means that, for any $0 \neq x \in G$, $N * \varepsilon_x$ is not proportional to N.

on G with compact support,

M = M(G) the usual topological vector space of real Radon measures on G with the weak* topology,

 $M_{K} = M_{K}(G)$ the usual topological vector space of real Radon measures on G with compact support,

 C^+ , C_K^+ , M^+ , M_K^+ their subsets of non-negative elements.

Let $(\alpha_t)_{t \geq 0}$ be a family in M^+ . We say that $(\alpha_t)_{t \geq 0}$ is a convolution semi-group on G if $\alpha_0 = \epsilon$, $\alpha_t * \alpha_s = \alpha_{t+s}$ for any $t \geq 0$, $s \geq 0$ and if $t \to \alpha_t$ is continuous in M. Here ϵ denotes the unit measure at the origin O. It is said to be transient (resp. recurrent) if for any $f \in C_K^+$, $\int_0^\infty dt \int f d\alpha_t < \infty$ (resp. if there exists $f \in C_K^+$ such that $\int_0^\infty dt \int f d\alpha_t = \infty$). It is said to be markovian (resp. submarkovian) if $\int d\alpha_t = 1$ (resp. $\int d\alpha_t \leq 1$). Let $\mathfrak{P} \in C^+$. A convolution semi-group $(\alpha_t)_{t \geq 0}$ is said to be \mathfrak{P} -semi-transient if for any $\mu \in M_K$ with $\mathfrak{P} * \mu(0) = 0$, $(\int_0^t \alpha_s * \mu ds)_{t \geq 0}$ is bounded in M. In particulier, if $\mathfrak{P} \equiv 1$, $(\alpha_t)_{t \geq 0}$ is said to be semi-transient.

<u>PROPOSITION 1.</u> Let $\mathfrak{P} \in C^+$ with $\mathfrak{P} \neq 0$ and $(\alpha_t)_{t \geq 0}$ be a \mathfrak{P} -semitransient convolution semi-group on G. If $(\alpha_t)_{t \geq 0}$ is recurrent, then \mathfrak{P} is exponential, $\mathfrak{P} > 0$ on G, $(\frac{1}{\mathfrak{P}}\alpha_t)_{t \geq 0}$ is a markovian convolution semi-group on G and it is semi-transient.

Hence, a convolution semi-group $(\alpha_t)_{t \ge 0}$ is markovian if it is semi-transient and recurrent.

A real convolution kernel N on G is, by definition, of logarithmic type (resp. a Hunt convolution kernel) if for any $\mu\in M_K$ with $\int\! d\mu=0$ (resp. for any $\mu\in M_K^+)$, N * μ is of form

$$N * \mu = \int_{0}^{\infty} dt \, \alpha_{t} * \mu \, dt$$

(i.e., for any finite continuous function f with compact support, $\int f dN * \mu = \lim_{a \to \infty} \int_{0}^{a} dt \int f dx_{t} * \mu), \text{ where } (\alpha_{t})_{t \ge 0} \text{ is a semi-transient and recurrent convolution semi-group (resp. a transient convolution semi-group).}$

3- Let $g\in C^+$ and N_1, N_2 two real convolution kernels on G. We denote by $(N_1, N_2)\in g$ -SCM if, for any $f, g\in C_K^+$ with g*f(0)=g*g(0) and any $a\in R$,

$$N_1 * f \leq N_1 * g + a g$$
 on $supp(f) \rightarrow N_2 * f \leq N_2 * g + a g$ on G,

where R denotes the set of real numbers and supp(f) denotes the support of f. If $N = N_1 = N_2$ and $(N, N) \in \mathcal{P}\text{-SCM}$, then we write simly $N \in \mathcal{P}\text{-SCM}$ and we say that N satisfies the $\mathcal{P}\text{-semi-complete}$ maximum principle. In particular, if $\mathcal{P} \equiv 1$, we write $N \in SCM$ and we say that N satisfies the semi-complete maximum principle.

We denote by $(N_1, N_2) \in \mathcal{G}\text{-SB}$ (resp. $\in \mathcal{G}\text{-SB}_g$) if for any $\mu \in M_K^+$ and any relatively compact open set $\omega \neq \emptyset$ (resp. any open set $\omega \neq \emptyset$), there exist $\mu'_\omega \in M^+$ and $a_{\mu,\omega} \in R$ such that $\sup(\mu'_\omega) \subset \overline{\omega}$, $\mathcal{G}^* \neq \mu'_\omega(0) = \mathcal{G}^* \neq \mu(0)$, $N_1 * \mu'_\omega - a_{\mu,\omega} \mathcal{G}^* \leq N_2 * \mu$ and $N_1 * \mu'_\omega - a_{\mu,\omega} \mathcal{G}^* \leq N_2 * \mu$ in ω . If $N = N_1 = N_2$ and $(N, N) \in \mathcal{G}\text{-SB}$ (resp. $\in \mathcal{G}\text{-SB}_g$), then we write simply $N \in \mathcal{G}\text{-SB}$ (resp. $\in \mathcal{G}\text{-SB}_g$) and we say that N satisfies the \mathcal{G} -semi-balayage principle (resp. N is \mathcal{G} -semi-balayable). In particular, if $\mathcal{G} \equiv 1$, we write $N \in SB$ (resp. $\in SB_g$) and we say that N satisfies the semi-balayage principle (resp. N is semi-balayable).

By using the usual dual methode (see, for example, [1]), we have the following $\frac{\text{PROPOSITION 2.}}{\text{End N}} \text{ Let N be a real convolution kernel on G and } \phi \in C^+.$ Then the following five statements are equivalent:

- (1) $N \in \mathfrak{P}\text{-SCM}$.
- (2) For any positive number c, $(N + c\xi, N) \in \mathcal{G}\text{-SCM}$.
- (3) $\check{N} \in \check{\P}$ -SCM.
- (4) $N \in \Psi$ -SB.
- (5) For any positive number c, $(N + c \in N) \in \P$ -SB.

For any function g on G, we put $\check{g}(x)=g(-x)$ and denote by \check{N} the real convolution kernel defined by $\int f d\check{N} = \int \check{f} dN$ for all $f \in C_{\check{K}}$.

From Proposition 2 follows the following

PROPOSITION 3. Let $N \in \mathcal{P}\text{-SCM}$. For a relatively compact open set $\omega \neq \emptyset$ in G, there exist a family $(V_{\omega,p})_{p > 0}$ of universally measurable non-negative linear operators from M_K to $M_b(\omega) = \{ \mu \in M(G); \mu(C\omega) = 0 \}$ and a family $(g_{\omega,p})_{p > 0}$ of universally measurable non-negative linear functionals on M_K such that:

(a) For any p > 0 and any $\mu \in M_K$, $(pV_{\omega,p}\mu) * \mathfrak{P}(0) = \mu * \mathfrak{P}(0)$ and $(pN + \epsilon) * V_{\omega,p}\mu - g_{\omega,p}(\mu)\mathfrak{P}\xi = N * \mu \text{ in } \omega.$

(b) For any p > 0, q > 0 and any $\mu \in M_{\kappa}$,

$$V_{\omega,p}\mu - V_{\omega,q}\mu = (q - p)V_{\omega,p}(V_{\omega,q}\mu)$$

and

$$g_{w,p}(\mu) - g_{w,q}(\mu) = (q - p)g_{w,p}(v_{w,q}\mu) = (q - p)g_{w,q}(v_{w,p}\mu).$$

In this case, $(V_{\omega,p}, g_{\omega,p})$ is uniquely determined for all p > 0.

Here $V_{\omega,p}$ (resp. $g_{\omega,p}$) is said to be universally measurable if for any $f \in C_K$, the function $\int f dV_{\omega,p} \xi_X$ of x is universally measurable (resp. the function $g_{\omega,p}(\xi_X)$ of x is universally measurable), where ξ_X denotes the unit measure at x.

For an open set $\omega \neq \emptyset$ and $\mu \in M_K^+$, we put

$$P(N * \mu, \omega) = \overline{\{N * \nu; \nu \in M_K^+, \text{ supp}(\nu) \subset \omega, \ 9 * \nu(0) = 9 * \mu(0)\}},$$

where the closure is in the sense of the weak* topology, and

$$R(N * \mu, \omega) = \{ \gamma - a \} \xi ; a \in R, \gamma - a \} \xi \leq N * \mu \}$$

4

PROPOSITION 4. Let $N \in \mathcal{P}\text{-SCM}$. Then there exists the maximum element $\eta_{N+\mu,\omega}^{(\mathfrak{P})} = \tilde{\eta}_{N+\mu,\omega}^{(\mathfrak{P})} - a_{\mu,\omega} \mathfrak{P}^{\mathbb{F}}$ in $R(N+\mu,\omega)$, where $\tilde{\eta}_{N+\mu,\omega}^{(\mathfrak{P})} \in P(N+\mu,\omega)$ and $a_{\mu,\omega} \in R$, and $\eta_{N+\mu,\omega}^{(\mathfrak{P})}$ and $\tilde{\eta}_{N+\mu,\omega}^{(\mathfrak{P})}$ are uniquely determined. We say that $\eta_{N+\mu,\omega}^{(\mathfrak{P})}$ is the reduced measure of $N+\mu$ on ω with respect

We say that $\ell_{N*\mu,\omega}^{(\phi)}$ is the reduced measure of $N*\mu$ on ω with respect to (N,ϕ) and that $\tilde{\ell}_{N*\mu,\omega}^{(\phi)}$ is the pseudo-reduced measure of $N*\mu$ on ω with respect to (N,ϕ) .

Let $N \in \mathcal{G}$ -SCM and $(\mathbf{v}_n)_{n=1}^{\infty} \subset \mathcal{V}$ is an exhaustion of G, i.e., $\mathring{\mathbf{v}}_{n+1} \supset \mathbf{v}_n$ and $\bigcup_{n=1}^{\infty} \mathbf{v}_n = G$, where $\mathring{\mathbf{v}}_{n+1}$ denotes the interior of \mathbf{v}_{n+1} . Then $(\gamma_N^{(\phi)})_{n=1}^{\infty}$ is decreasing for all $\mu \in M_K^+$ and $\lim_{n \to \infty} (\mathcal{G})_{n+1}^{(\phi)}$ is a real Radon measure or for any $0 \neq f \in C_K^+$, $\lim_{n \to \infty} \int f d\gamma_N^{(\phi)} \frac{n \to \infty}{\mu, C \mathbf{v}_n} = -\infty$. Put

$$\gamma_{N \ * \ \mu \ , \delta}^{(\mathfrak{P})} = \begin{cases} \lim_{n \to \infty} \gamma_{N \ * \ \mu \ , Cv_n}^{(\mathfrak{P})} & \text{if for } f \in C_K^+, \lim_{n \to \infty} \int f d \gamma_{N \ * \mu \ , Cv_n}^{(\mathfrak{P})} > -\infty \\ \\ -\infty & \text{if for } 0 \neq f \in C_K^+, \lim_{n \to \infty} \int f d \gamma_{N \ * \mu \ , Cv_n}^{(\mathfrak{P})} = -\infty \end{cases} ;$$

then $\eta_{N * \mu, \delta}^{(9)}$ is independent from the choice of $(v_n)_{n=1}^{\infty}$.

Let $B_K^-(\xi)$ be the space of bounded ξ -measurable functions on G with compact support and $B_K^+(\xi)$ its subset of non-negative functions.

PROPOSITION 5. Let $\mathfrak{P} \in C^+$ with $\mathfrak{P}(0) > 0$. Then $\mathfrak{P}_{N, \delta}^{(\mathfrak{P})} = -\infty$ if and only if, for any $g \in B_K^+(\xi)$, $\mathfrak{P}_{N, \delta}^{(\mathfrak{P})} = -\infty$.

PROPOSITION 6. Let $\varphi \in C^+$ and $N \in \varphi$ -SCM. If for any $f \in B_K^+(\xi)$, $\eta_N^{(\varphi)} *_{(f\xi),\delta} \neq -\infty$, then $\eta_N^{(\varphi)} *_{(f\xi),\delta}$ is absolutely continuous with respect to ξ . Denote by $R_{\delta}f$ its density. Then

$$V_N : B_K(\xi) \ni f \rightarrow N * f - R_{\xi}f^{+} + R_{\xi}f^{-}$$

satisfies the domination principle, i.e., for any $f, g \in B_K^+(\xi)$, $V_N f \leq V_N g$ ξ -a.e. on supp $(f\xi) \to V_N f \leq V_N g$ ξ -a.e. on G. Here N * f denotes the density of N * $(f\xi)$.

In the case of $\gamma_{N * (f\xi), \delta}^{(\phi)} \neq -\infty$ for all $f \in B_K^+(\xi)$, the ϕ -semi-complete maximum principle for N results principally from the domination principle for

 $V_{N^{\bullet}}$ But we omit the precise discussion of this case.

PROPOSITION 7. Let $N \in \mathfrak{P}\text{-SCM}$ and assume that $\gamma_{N}^{(\mathfrak{P})} * (f\xi), s = -\infty$ for all $0 \neq f \in B_K^+(\xi)$. Then for an open exhaustion $(\omega_n)_{n=1}^\infty$ of G (5) and any $f \in B_K^-(\xi)$, $\lim_{n \to \infty} V_{\omega_n} p^{(f\xi)}$ and $\lim_{n \to \infty} g_{\omega_n} p^{(f\xi)}$ exist for all p > 0. Put

$$V_{p}(f\xi) = \lim_{n \to \infty} V_{\omega_{n},p}(f\xi)$$
 and $g_{p}(f\xi) = \lim_{n \to \infty} g_{\omega_{n},p}(f\xi);$

then, for any p > 0, q > 0 and any $f \in B_{K}(\xi)$,

$$(pN + \epsilon) * V_p(f\xi) - g_p(f\xi) \mathcal{P}\xi = N * (f\xi), V_p(f\xi) - V_q(f\xi) = (q - p)V_p(V_q(f\xi))$$

and

$$g_{p}(f\xi) - g_{q}(f\xi) = (q - p)g_{p}(V_{q}(f\xi)) = (q - p)g_{q}(V_{p}(f\xi)).$$

PROPOSITION 8. Let $\varphi \in C^+$ with $\varphi(0) = 1$ and $N \in \varphi$ -SCM. If there exist $g \in B_K^+(\xi)$ and an exhaustion $(v_n)_{n=1}^\infty$ of G contained in $\mathcal V$ such that $\lim_{n \to \infty} \tilde{\gamma}_N^{(\varphi)} * (g\xi), Cv_n = -\infty$ (i.e., for any $0 \neq f \in C_K^+$, $\lim_{n \to \infty} \int f d\tilde{\gamma}_N^{(\varphi)} = -\infty$), then φ is exponential and for any p > 0, V_p is a convolution kernel on G, i.e., there exists a positive Radon measure N_p on G such that for any $p \in M_K^+$, $V_p \mu = N_p * \mu$.

For the proof of this proposition, we use the well-known Choquet-Deny theorem (see [2]) and the following lemma.

LEMMA 9. Under the same conditions in Proposition 8, we have, for any p > 0 and ξ -almost all $x \in G$ with $\Psi(x) > 0$,

$$\mathring{\Phi}(\mathbf{x}) = \mathbf{p} \ \mathbf{g} * \mathbf{V}_{\mathbf{p}} \mathbf{\varepsilon}_{\mathbf{x}}(0).$$

 $[\]overline{\omega}_{0}$ (5) This means that ω_{n} is a relatively compact open set, $\overline{\omega}_{n} \in \omega_{n+1}$ and $\bigcup_{n=1}^{\infty} \omega_{n} = G$.

 $\begin{array}{lll} & & & & & & & & & & & & \\ PROPOSITION 10. & Let & & & \varphi \in \text{C}^+ & \text{with } & & & & & \\ & & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$

4 - Our main theorem is followed from Proposition 8 and Proposition 10. Assume that $(\tilde{\gamma}_{N,Cv}^{(9)})_{v\in\mathcal{V}}$ is unbounded. Then $N\in\mathfrak{P}\text{-SCM}$ shows that the hypothese in Proposition 9 is verified. Applying théorème 2 in [5] to $\frac{1}{9}N$, we have (2) in Theorem. In this case, $\eta_{N,Cv}^{(9)} = \tilde{\gamma}_{N,Cv}^{(9)}$ (see [4] or [5]). If $(\tilde{\gamma}_{N,Cv}^{(9)})_{v\in\mathcal{V}}$ is bounded, Proposition 10 gives (1) in Theorem. Our Theorem, Proposition 8 and Proposition 9 give the following

COROLLARY 11. Let $\mathcal{G} \in \mathbb{C}^+$ with $\mathcal{G}(0) = 1$ and N be a real convolution kernel on G. Then, N is of form in Theorem, (2), if and only if $N \in \mathcal{G}$ -SCM, N is not pseudo-periodic and $\lim_{N \to \infty} \tilde{\eta}_{N,Cv}^{(\mathcal{G})} = -\infty$.

REFERENCES

- [1] C. BERG, Principe duaux en théorie du potentiel, Bull. Soc. Math. France, 106, 1978.
- [2] G. CHOQUET and J. DENY, Sur l'équation de convolution $\mu = \mu * \sigma$, C. R. Acad. Sc. Paris, 250, 1960.
- [3] J. DENY, Noyaux de convolution de Hunt et noyaux associés à une famille fondamentale, Ann. Inst. Fourier, 12, 1962.
- [4] M. ITÔ, Une caractérisation des noyaux de convolution réels de type logarithmique, Nagoya Math. J., (to appear).
- [5] ---- , Sur le principe semi-complet du maximum pour les noyaux de convolution réels, Nagoya Math. J., (to appear).
- [6] , Les noyaux de convolution de type logarithmique, (to appear in Lecture note in Math.).
- [7] , The 9-semi-complete maximum principle for real convolution kernels, (to appear).
- [8] G. A. HUNT, Markoff process and potentials, Illinois J. Math., 1 (1957), 2 (1958).
- [9] N. SUZUKI, Les résolvantes des noyaux continus réels vérifiant le principe semi-complet du maximum, Kôkyuroku Res. Inst. Sc. Math., Kyoto Univ., this volume.

Masayuki ITÔ

Department of Mathematics Faculty of Sciences Nagoya University Furo-cho, chikusa-ku Nagoya, 464, Japan