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Characterization of semipolar sets
for Levy processes by Fourier transform

of measures
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In this note we study certain characterization of semipolar

sets for d-dimensional Levy processes with density. First we
explain the fact below:

A set is nonpolar and semipolar if and only if there is

a gap between the usual energy integral of measures supported

by the set and its Fourier transform virsion:.
This type of result was first explicitely stated by Rao[f] without
proof. Our result is a slight refinement of Rao’s result and
an application is given. Here we note that no concrete examples
of nonpolar semipolar sets of our processes are known except the
case that a point is nonpolar. Unfortunately, even now, we do not
know whexrther there exists another type of nonpolar semipolar sets
for our class of Lévy processes. So the value of some of‘our results

is not clear, for which we give only an outline of the proof.

1. Lévy processes

Let Xt be a Lévy process on Rd (i.e. a process with stationary
independent increments). The Lévy-Hincin formula states that the
characteristic function of Xt—xo is given by

Eexp[i(z,Xt—XO)] = expl{-t¥(z)1,
where VY¥(z) , the exponent, is given by

Y(z) = i(a,z) + Q(z) +j {1-expli(z,y)1+i(z,y) (1+]y]|® 1incay).
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Here a 1is a constant vector, Q 1is a non-negative definite quadratic

form, and n(dy) is the so-called Lévy measure and is such that

lelz (1+]y|?%) " tacay) < o . If A>0 , the potential kernel is

defined by
apo

UA(X,A) = \J exp(-At)P(t,x,A)dt, P(t,x,A) = P(Xé:A|XO=x),
Mo

then

jEXP[i(Z,y)]U)\(O,dY) = [)\‘l'q"(z)]-l.

In 82 we assume that for each x

A . . .
Al) A~ U (x,3) is absolutely continuous with

respect to Lebesgue measure.

Then

U}‘(x,A) = jA uk(y-x)dy

and we can choose -ux so that xw— ux(y-x) is A-excessive for

each fixed vy and lower semicontinuous. Further Uxf(x) =\fux(y—x)f(y)
dy (A>0) maps the class of bounded measurable functions into the

cléss of continuous functions. In §3 we pose the stronger condition:

A2) P(t,x,A) has a bounded continuous density with respect to

Lebesgue measure for each fixed t>0.

L . o A
Under the condition Al), there exists a unique measure UK with

suppert in K such that Ex(exp[—XcK]) =~y ux(y—x)ﬂ;(dy), where

OK = inf(t>O,Xt£K) for every Borel set K . (Blumenthal-Getoor[/]).

Setting
C)\(K) = U;(k‘) [}

. . A .
we call it the A-capacity of K . If C (K) = 0 , the set K is
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said to be polar. Set XK' = {x; P_(0,=0) = 1} and denote the class

»
»f semipolar sets by SP , that is, sP = { K; KC’&LKi, K§=¢ } .
(We omit the measurability condition in the above.)
For a function f or a measure U , we denote the Fourier
transform by
A

y ~ ) i )
£(z) ( u(z) ) = fexp[i(z,y)]f(y)dy (resp. jexp[i(z,y)]u(dy).

if well defined. The symbol ¥ is used for the convolution.

2. Bochner’ s theorem and Rao)s theorem on the energy integral

Throughout this section we pose the condition Al)' For each

signed measure U we set
A ) A
() = J p(dy)u’ (y-x)u(ax),
if defied, and call it the energy integral of u . Set

u, = u*ﬁ, ug(x) = 2‘1( uk(x) + uk(_x) ),

where ﬁ%A)=u(—A). Then
Y A
I (up) = US%MS(O).

The well-known Bochner’s theorem ensures

Theorem. (Bochner([2], Theorem2.1.5 and Theorem 2.2.1.)

i) 1f fe ! ana FTeirl, then f£(x) = (2w)“df exp[—i(x,z)]/f\(z)dz
for almost all x .

.. -1 >~ ~ 1
ii) If f€ L, f;bounded, and £>0, then f¢ L.

Let,ﬁE be a bounded signed measure such that ugkus is bounded.
. SN -
Since uskus(z) = Re([A+¥(=2)] l)]u(z)l2 >0, it follows from Bochner’ s

theorem'that

: - - N
ug%-us(x) = (2m) d expl[i(x,2z)lRe([A+¥Y(2)] l)lU(z)lzdz

for almost all x. Since the right term is continuous and the left
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term is lower semicontinuous if Y 1is a non-negative measure,

we have

a|
J

A

"y < 2m 7 Re (¥ (2) 1Y) [u(z) | Paz

for each non-negative measure such that uéku is bounded.
Rao states the following
Theorem (M.Rao[é]) Every semipolar set is polar if and only
if
A -a| -1A 2
1" () = (2m) J\Re([X+W(Z)] ) [u(z) | “dz
for every bounded signed measure | such that uéku is bounded.
Instead of giving the proof we show here that his theorem is

true even if we replace signed measures with non-negative measures.

Theorem 1. Every semipolar set is polar if and only if the
egquality in Rao’s theorem holds for each non—negétive bounded measure

M such that ué U is bounded,or equivalently

. -1 2
llmx+wije([X+W(z)] ) [u(zy|“az = o,

for such measure U .

& » . .
The only if part is contained in Rao’ s theorem. For the proof

of “if”part and for the later use we prepare a lemma.

Lemma 1. Let U be a bounded signed measure such that

A . -1.n 1
usku is bounded. If Re([A+¥Y(z)] YU(z)€ L, then

uéYU(O) + 1imx+wj‘Re([k+W(z)]_l)ﬁ(z)dz = J‘Re([K+W(z)]-lfﬂ(z)dz.

Especially, if u 1is a bounded non-negative measure such that
uxwu is bounded, then

s ) N -
™y o+ limx+wque([X+W(z)]_l)]u(z)|2dz =\f Re ([A+¥(z)1 7 Y) [N (2) | 2az

Proof. Since ugru and Re([K+W(z)]-l)ﬁ(z) klong to Ll,

it follows from i) of Bochner’s theorem that



- Ll/xli)

ug%u(x) = (2ﬂ)—i) Re([X+T(z)]—l)ﬁ(z)dz for almost all x .

By the resolvent equation we have, for R

/ ! l d “~ Pad
u& o~ u%eu = (X—X)ukauafu ’ %Aku - ﬁkxu = (Xlk)u%rux u .
Since ux and EA map the class of all bounded measurable
functions into the class of continuous functions, ugéu —ué*u

is continuous. Hence
A A -4 o =1 . N
us*u(x) - us-i'u(x) = (27) jRe([KH’(Z)] expl[-i(x,z)lu(z)dz
- (2m) JRe([M\P(z)] expl-i(x,z)1U(z)dz

everywhere. Letting At at  x=0 , we get the desired equality.
For the proof of the latter half we have only to consider ukﬁ

instead of U and use ii) of Bochner’s theoren.

3. Refinement of Theorem 1.

In this section we give a refinement of Theorem 1. We do not
use Rao’)s theorem, but we need the previous result [%] and so  we

assume the condition A2) throughout this section.

Lemma 2. If there exists a nonpolar semipolar set, we can

find a compact subset K such that O<lim)\+wc>\(K)<°° , and further

o]

. o . A
if we set uK(B)—llmX+wC (B) for each Borel subset of K, UK

defies a non-negative measure on K .

The first half is proved in [4]. We omit the latter half.
Instead, we note that above lemma can be refined as follows;

there exists a non-negative but non-0-finite measure T
on the Borel field 43 so that i) BeQ is semipolar if and only if
the restriction ﬂlB of M to B iso-finite, ii) Bcﬁ is polar
if and only if T(B)=o0, iii) for a bounded Borel set B , m(B)

<o 'if and only if 1imx+wCA(B)<w and in this case ﬂ(B)=limA+mCx(B).



Theorem 2. Let U be a non-negative bounded measure such

that usru is bounded. If H carries a semipolar set, we can

choose a compact subset K of the set such that uy(X)>0 and

S
A

/\ .
. . -1 2
Lim) 4, [Re(IA+¥(2)170) [ulgt2) ] %az = j (du!K/du;m)zdu;(zm

}

[e0]
where UIK is the restriction of 4 to K and UK is the measure
defined by Lemma 2. Especially

r -1 /\oo 2 [}
limy o, JRe([k+W(z)]» ) [P (2)] “az = u (K)

.

for the compact set K chosen in the above.

Proof. For simplicity we pove the latter half. By Lemma 2
we can choose a compact set K of a semipolar set carried by U

(e 0]
so that UK is a non-negative bounded measure on K . Further,

using the strong Markov property, we can rechoose K so that
. . A . ~A o
(*) llmx+m[(i§Pu<kuK)”l] = llmx+m[(s§pu-qu)—l] = 0.

Choose an open neighborhood Q@ of K . Then Hawkes’ s theorem [3]

ensures

c}‘(Q)'l = inf {(2n)'d} Re ([A+¥(2) 1Y) [V (2) | 2az, verr(Q)} ,

where Pr(Q) is the class of probability measures whose support

is in Q . Hence

1

A -1 _ 0 -
@ TS (M (K)) d

VA
2 (amy ™2
J

qu(z)|2Re([K+T(z)]—l)dz.

Therefore

“

§ -1, 2 % w A
JRe (D217 Tz ez 2 ue (KU (x) /e (0).

(2m)~¢

Since we can choose QYK so that CA(Q)+CX(K) and uz(K)g’CA(K),

we have
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B 1S -
(2m) dbee([x+W(z)1 Y lugee) [Paz 3 uix.

In the next choose the mollifier pe and denote by ug

[e o]
the measure whose density 1is qupe . Then

d ) -1 A@ 27N\ 2 A
(2m) "~ J Re ([A+¥(2)177) Ju  (2) [“lp_(2)[“dz = 1% (u)).

r
Since the -left terms tend to  (2m) dj Re([A+¥(2)] d|u;(z)|2dz

as € tends to zero and Ix(u) < iipu&d;.UE(K)' it follows

from (*) that
d 1 & 2
. - = © L
l;mx+m(2w) JfRe([X+W(z)] )IuK(z)[ dz < uK(K).

We have finished the proof of the latter half of the theorem.

As a simple consequence of Theorem 2 we can get a kind of

localization of Theorem 1 as follows.

Remark 1. Let | be a non-negative bounded measure such that

u;ku is bounded. The measure | does not carry a semipolar set

if and only if
- - A
() = (2m) fJ\Re([A+W(z)] YYlh(z) | 2az,

or equivalently

. -1.7 2
limy g Re ([A+¥(2)1 ) |u(z)|[“az = o.

The non-negative measure T introduced just after Lemma 2

would be basic, since

Remark 2. Let U Dbe a non-negative bounded measure such

that géfu is bounded. Then Y is absolutely continuous with

respect to T .
From the proof of Theorem 2 we also have

Remark 3. If the energy integral Ix(u) is vaguely continuous,

every semipolar set is polar.



4. One-dimensional case.

For one-dimensional Lévy processes we can modify our
previous results to those which seem easy for applications.
In this section we always assume that

Every point is polar.

First we give another virsion of Theorem 1.

Theorem 3. Assume A_). Then every semipolar set is polar

1

if and only if

S

. !5 -1 N 2
Limgyo | Re (DY (201" hxvg (2 [Uce) [Paz = 0

for every non-negative measure U of compact support such that

u%ru is bounded and a fixed A>0 , where

vu(z) 2K2u(z) - Koi(z)'

(déﬂXsidgd%A&dﬁ)z; the Fejer kernel.

KOL(Z)

Using this theorem we can show that every semipolar set
is polar for the processes treated in [5]. The proof is omitted

but not so trivial, since we use some technical results in [5].

nggllgzzﬁg. Let us assume Al) and suppose that, for a

fixed A>0 there exist o (1>0>0), and a continuous function F
on (0,®) such that MlF(z)SRe([K+W(z)]-1)5M2F(z) for every

large =z , where O<Mi M2<°° , and zaF(z) is decreasing on
1

on (0,®), and Re([>\+‘P(22)]—1)/Re([?\+‘P(z)]_ ) > M>0 for every

z>0 . Then every semipolar set is polar.

We can also show the following by Theorem 3.
Corollary 2. Suppose that given two Lévy processes Xl

and X2 satisfy Al). Let Wl and Wz be the exponents

respectively. If

MlRe([k+‘¥'(z)]—l) < Re([xwz(z)]'l)g MzRe([xwl_(z)]’l)

holds for every z and some fixed A>0, where 0<M1<M2<w ’
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then the classes of semipolar sets for X and X coincide.

Wien

if a

for

A
us*u
we g
have

and

such

set.

they
aban
for

poin

[1]

[2]

1 2

The above result also follows from more general result.

The next result is proved using Theorem 3 together with

er’s result (Theorem 21, [7]).

Theorem 4. Assume Al). Then every semipolar set is polar

nd only if

~T
-1 - A
lim, T 1J [ ] Re ([A+¥(z-x)1"1) |u(z) Izdz]dx =0
¢
every non-negative measure Y of compact support such that

is bounded.

The following result seems to be trivial. However the proof
et at present needs both Theorem 2 and Theorem 4,and so we
to put the condition A2). It would be proved more easily

in more general form by probabilistic method.

Theorem 5. Assume Az). Let U be a non-negative measure

A ~
that us%u is bounded. Then U¥Uu does not carry a semipolar

We did not give proofs for all the results above, aithough
are not so trivial. This is because the author does not
don an optimistic conjecture: every semipolar set is polar

one-dimensional Lévy processes with Al) for which every

t is polar.
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