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1. As is well known, an affine Lie algebra gﬂA) has two
kinds of natural realizations in terms of an underlying
finite-dimensional simple Lie algebra. I would like to
start my talk with a short sketch of them following [7].

Let A = (a,.)

ij
(k)
N

. be & lized Cart i
1,920, ...,4 e a generalize rtan matrix

of type X , and ﬁ the compléx finite-dimensional simple

Lie algebra of type XN, where X is A, B, C,..., or G.

'Let\/k be the automorphism of }, , which permutes the

Chevalley generators of ﬁf according to an automorphism of

order k of its Dynkin diagram. Set & = exp(2xi/k) and

denote by Ej(/k) the eligenspace o?/k,with eigenvalue 8;'

Then Z td ® Pi(p) + e + ed is an affine Lie algebra
jez

associated to A, where c is a generator of the center and

The another realization is constructed in thevfollowing

way. Let 07be a Coxeter transformation on ﬁ which commutes



withjb(,, and h be the order of 6. Then each eigenvalue

of op4 has the form w? , where w= exp(27Ci/kh) . Set

{;J.(/u,ov) = {Xef/ 3 oMmX = wIx }
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for j€ Z. Then one has a so-called "principal realization"

<7 . ;
- J
g(h) = 2_3t ®19J.(/A,GV) + Cc + €4,
‘ jEe2Z
Note that under these two realizations d does not

» because <d,o(i>= 5\0 i

co‘rrespond to d
>

0

= 1 for every simple root o<i .

2. Associated to either of these two realizations, an

affine Lie algebra g(A) admits an extension

gj-,(A) = Zt‘j@ﬁj(//‘») + Cc + Z ca)

JEZ n € k%

or %(A) = Z't‘j@) 'Bj(/b(,@’) + Cc + Z cd

JEZ né€zZ
where d4' = tn+l—@—- and d_ = tnkh+l—(—i~— . Functions J'
n dt n dt
and J define the Lie brackets
' 1 - _ 1 '
[4', a7 = (n-m) 4!, + J'(m) cfm’_n c

[, d,] %ﬁ—m) Aoy ¥ I e

It is known that if J (resp. J') is not trivial the sub-

/
algebra 9/ = Z ¢a  + Cc (resp. )/ = E G)d]['1 + Cc) 1is
- nelZ n € kZ

isomorphic to the Virasoro algebra.

and <dgy, o>
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In this talk, we shall call %},(A) (resp. %&(A))
the extension of the 1 st (resp. 2 nd) type.

Note that there is a remarkable difference between
these two extensions. Denote by é.the finite-dimensional
; i=1,..., 47 .

7
Then in the 1st extension é commutes with %/, while in the

subalgebra of g(A) generated by {ei, fi

2nd extension the centralizer Zg'(A)(Z/) of % in §3<A)
3 S

EE

[+
coincides with Cc + h , where = %ryh‘is a Cartan subalgebra

ofié.

The 1st type extension may be said to be the picture
of G. Segal [10] and I. B. Frenkel [2][3]. If k = 1 and
J'(m) = Jé(m) = (mg—m)/12, then %"Es just the standard

form of the Virasoro algebra. We set g'(A) = é?Jé(A).

The basic representation of an extended affine Lie algebra
g'(A) was first discovered by G. Segal [10] in case of

EY

, and the theory has been developed by I. B. Frenkel
in case of k = 1 and J' = Jé.

It seems to me that there exists no isomorphism
between %?J,(A) and é}(A).

Now I want to consider representations of the 2nd
type extensions. My conjecture i1s that "for any dominant
integral fornLAJ%P+, there will exist a unique central
extension J, such that the action of gﬁA) on L(A) can be
extended to that of g3<A>."

At present, I c;n verify this conjecturé only for a
A&l), Aél) éZ).

few special cases: 1\==¢ﬂ0 and A = or A
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(1)

3. In case of the basic representation of Al , the
whole story i1s most simple and most beautiful. So, from
now on, let me restrict my talk on A = Aﬁl) and A = 1&0.
It is well known that the basic representation L(j\o) of
Aél) is constructed on the space C[xl,x3,x5,..{] of
polynomial functions in xi’s with Qdd indices. We can

prove that %&(Ail))'acts on L(j\o) if and only if J(m)

= m(2m2+l)/6, and that the action is given by

o -4 ——> L =2 P a.a :
/L Gy 2n ZZ:'j2n—j' >
JEZ
J=odd
where a, = and a . = jx, for a positive odd integer
Js and : : denotes the normal product. These operators

{ L2n} ne g @re called the Virasoro operators.

Now look at the welights diagram of L(j\o). It is known

that the set P(A..) of all weights of L(A..) is given by
0 0

p, a€Z

P(.AO)={AO+qJ‘+po<1; q<- p° ] >

and the set of all maximal weights is given by
‘ " , p, g€ Z
Max(Ag) = WA, =4 Ag + ad +poly ; >

where W is the Weyl group and J~= o<0 + o(l is the funda-
mental imaginary root.
The multiplicity of each weight can be calculated by

the Weyl-Kac character formula, and one has



MultAO(/\— nd) = p(n) ,

where A is a maximal weight and p(n) is the partition

number, i.e.,
o0

g o™ =]

. o — n
(1-x1) ™ = 37 p(m)x
1 n=0

Now we are interested in the problem to write down
functions in each weight space explicitly. It is easily

seen that a function in a weight space L(j\o)A +q & +pol
<%0 1

has the degree -(2g + p) , where the degree of a function
is counted with the rule that the degree of Xj is equal to
J. Consider the action of the Virasoro algebral/q. From
[do, dn] = 2ndn, one sees that the operator L2n maps a

weight space L(A,), to LAy 4 05

O) )L+no(\

Ly, ° ;(JKO)A_ — L(A

So 2 L(/\O);k+né‘ is stable under the action of 2/, and
ne¢Z
<7
by counting the multiplicity, we see that Z L(/\O),l+n5\
nezZ
is an irreducible % - module. So each maximal weight vector
f is described as a solution of the system of linear differ-

ential equations

L2n f =0 for nz1 ,

which are equivalent to



It is known from the Sato's theory that maximal weight
vectors cover the homogeneous polynomial solutions of the

KdV-hierarchies. So we obtain the following theorem:

Theorem. A homogeneous polynomial f in @[xl,x3,x5,...]
is a solution of the KdV-hierarchies if and only if

L, = 0 and L”f = 0, where

2 = ,
L2 =~%—(5%I)-+ ;Z: ij a;gf__

j=1 j+2
j=o0dd
2 oo
L, = 0 ??7 Jx J
boooxg 9 X3 P I %54y
j=odd

<7
Owing to the 2/—irreducibility of 2' L(A
n &z

O));+né\ ?

all vectors in other weight spaces are obtained by

iterated operations of L n’s (n< 0) to those maximal

2

welght vectors.

4., I want to point out here that in the Segal's picture

. , .
or in the Frenkel's picture, 2 L(/\O);L+nd‘ can never
nez

/

be expected to be irreducible under the action of 2/,
e ‘

because 2/ commutes with»é: Let me explain about this

more precisely. For a maximal weight A_, we set
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A s

(6_9)
Sald
VA_ - ZZAL(/\O),K—H(C

n=0

= _S__];<23 c),

|0Q o

Next decompose L(;ﬁo) under the action of
and for a positive odd integer n let Wn denote the sum of
all n-dimensional irréducible éfsubmodules of L(j\o).
Then it 1s easily seen from the weights diagram that for
every_léﬁMaX(/\O) there exists a positive integer n;

satisfying Vi‘f\wn X -{O} for any odd integer n larger

than n, . As to the decomposition Vy = E Vo N Wn)
nz1

/
of Y& , each V, A Wn is stable under the action of A ,-
because of [Qf/, g1 = 0 . Thus we have proved that in the
, /
extension of the 1lst type, each Yl is not )/ -irreducible
and so maximal weight vectors cannot be characterized as

the highest weight vectors with respect to Zf/.

5. The representation theory of extended affine Lie
algebras suggests or induces some problems. Consider the
group orbit through the highest weight vector 1 in the
completion of L(j\o). It is well known that G(A)-1 coincides
with the set of @ -functions of the KdV-equation. What is
the differential equation which characterizes G(A)-orbit
through 1 ? Or, take a subgroup G'CG(A). What is the
differential equation characterizing G'-orbit through 1 ?
Now I want to point out an interesting fact;‘take a sub-
algebra gf =8 + 2, where s 1s the principal Subalgebra,

then we have



f&ag'-1 j f®f & g'-highest component in

LA ®LIA )

<:> <u, f®f>= 0  for every u in

<—=> D(fef)

lower g'-components

14

0 for D = Hirota's
bilinear differential ope-
rator in (non-reduced) BKP-

hierarchies. .

Thus the G'-orbit is related to the non-reduced BKP—

hierarchies.

According to the theory of Sato, Kashiwara, Miwa,

Jimbo and Date, solutions of the BKP-equations are described

by the orbit of 0(c0). I cannot tell why BKP-hierarchies

appear within the framework of A

il). I want to conclude

this section by noticing a fact which may be related to

the above phenomenon. Consider the natural inclusions

Ail)C:.Dﬁg) and Dég)C:.Déi) for n&€N. Then the basic

(2)

representation of Dq is irreducible when restricted to

the subalgebra Aﬁl)

representation of A

1 .
5 ); i.e.,

LAy a8y = L(A;

In a similar way, one has

L(A s Dé2)) = L(Ags

, and 1t is nothing but the basic

(2)
Dy )

(2)
Dyr’)

So, under the sequence of inclusions



e %

Ail)C_ Dﬁ2)C_ Dég) C e D(i) c e cp'?)

2 2
one has
o)y 2 . n(2)y _ . (2)
- - . n(2)
= e = L(Ag; D' 2)
2
6. In this section, we take V = @[xl,x2,x3,...] and set
a, = i a , = kx (for KEN)
k ’axk ? -k k : 2
ag = 0
-1 57 . |
and Ln =3 Pagan o (for neN).
ke Z
We denote by 2§/the Lie algebra spanned by -{1, ay Lk;

kEZ}, and consider the representation of ‘é on V. Then

we can prove that
fe€H-1 —> f®f & the highest component of V@V

<:> <u, f®&@f >= 0 for every u in lower

components

<;:§> D(fef) = 0 for Vb = Hirota's bilinear
differential operator in KP-

hierarchies.

These facts suggest that the Virasoro algebra 1is
deeply related to hierarchies. Further discussions as to

the relation between the Virasoro algebra and modified KP-



e
[« 3]

hierarchies will be shown in the joint work [15] with

H. Yamada.
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