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Atoms and Molecules on Riemannian Symmetric Spaces

Takeshi Kawazoe

Keio University

In this announcement we shall describe a relation between atoms
and molecules on a non-compact Riemannian symmetric space G/K, and
consider a multiplier operator on the atomic Hardy space. This is
continuous a line of study in [7]. The details will appear else-
where.

§l. Introduction. Before to state the aim, we shall recall some

results on the theory of Hardy space Hp(R) (0<p<=) on one dimen-
sional Euclidean space R. The classical Hardy space is the space
of analytic functions f on the upper half plane {(x,t);xeR, t>0}
with finite HP-norm:
+oo
|| £]| .= sup(/ If(x,t)lpdx)l/p < oo, (1.1)
HP 50 -
Moreover, taking the limit as t»+0, this space is identified with
the subspace of S'(R) consisting of boundary distributions f(x,0).
In this definition the concept of "analytic functions" is neces-

sary. However, new characterizations of HP(R) are recently

obtained without using the concept of analytic functions. That is,
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D,L.Burkholder—R.F.Gundy—M.L.Silverstein and C.Fefferman-E.M.Stein

éhowed that HP(R) is chracterized by the tangential maximal func-

* v
f (x)= sup | £(y,t) |, (1.2)
(y,t) el (%)

where T (x)={(y,t); yeR, t>0, |x-y|<t}. They obtained the following

' *
Theorem A ([1],([5]). CP||f||Hp < Il £ lle

< Gl £l o

Moreover, R.Coifman showed that Hp(R) (0<p<l) can be characfer—
ized in terms of "atoms". Let (p,q,s) be a triplet such that 0<p
ﬁl' l<g<~ and seN, s>[1/p-1]1. Then a (p,q,s)-atom is a mesurable

function on R such that the support is contained in an interval I

and satisfies the following two conditions:

. 1/g-1
(1) £l < [z|/ae
! K (1.3)

(ii) fR f(t)t7dt=0 (0<k<s).

Then the atomic Hardy space Hg s(R) is the space consisting of
4

distributions of the form

f=_Z Aifi, (1.4)

i=1

where fi's are (p,q,s)-atoms and AizO, ZA?<®. He obtained

S D , P P P
Theorem B ([2]). HY (R) Hq,s(R) and cp||f||Hp < pq,s(f) §~Cp|IfIIHp,
g,s(f) is defined by the infimum of ZXE being taken over

all decompositions (1.4).

where p

Here let us define molecules correspdnding to atoms. For
a quartet (p,d,s,€) such that (p,g,s) is as above and e>max(s,

1/p~-1), we put a=1-1/p+e and b=1-1/g+e. Then a (p,q,s,€)-



molecule centerd at x

o is a function f on R such that f, flx[b A

belong to Lq(R) and satisfies the following two conditions:

a/b
q
f(x)xkdx=0 (Oikis)'

[EHEE N

@ £ [t

=M(f) < =,
(1.5)
(ii) fR

Then M.H.Taibleson-G.Weiss showed the following

Theorem C ([10]).

(i) If £ is a (p,gq,s)-atom, then f is a (p,q,s,c)-molecule for

all >0 and M(f)<C, where C is independent of the atom.

(ii) If £ is a (p,q,s,e)-molecule, then feH® (R) and pP (f)<
d,s d,s -

C'M(f), where C' is independent of the molecule.

By many people, these concepts: maximal functions, atoms and
molecules on R were extended to rR" and moreover, to the general

setting of spaces of homogeneous type (cf. ([3],[6]1,[8]). But,

our aim in this note is to extend these concepts to non-compact
symmetric spaces G/K, which are not of homogeneous type. 1In §2,
we shall give some notations about G, and in 8§83, define "radial
maximal functions" and "atoms" on G/K and obtain a relation be-
‘tween them. In §4, we shall introduce "molecules" on G/K and
obtain a theorem corresponding to Theorem C in R. Next we shall
constract an atomic Hardy space by using the K-biinvariant, (p,q,
s)-atoms on G centered at the unit element of G, and in §5, give
a slightly simple characterization of this spce. In last §6, we
shall consider convolution (or multiplier) operators on it.

We are grateful to Prof. H.Miyazaki for the many helpful dis-

cutions.
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§2. Notations. Let G be a connected, real rank one semisimple

Lie group with finite center, G=KAN an Iwasawa decomposition of

G and g=k+a+n the corresponding decomposition of the Lie algebra

*
g of G. For any real vector space V let Vc and V denote the com-

=3

plexification and the dual space of V respectively. Let o be a
reduced simple root of (g9.r2.) and Hj the element of a such that

*
a(H0)=l. In the following we identify A (resp. gc) with R by a,=

exp(tHo)++a(log(at))=t (resp. ) ++A(H0)) and moreover, by using the
Cartan decomposition G=KCL(A+)K of G, we identify each K-biinvar-
iant function f on G with the even function on R defined by, which

t(X))=f(x) for x=klat(x)

2gKCL(A+)K. Let ml and m, denote the multiplicities of the root

o and 2q respectively and put p=(ml+2m2)/2. Then for any K-biin-

we denote by the same letter, f(t(x))=f(a

k

variant functions f on G with compact support its integral on G
m m
2

is given by the integral on R’ with weight A(t)=(sht) l(sh2t) :

o]

fo(x)dx= S fE(B)a(v)dt. (2.1)
0 :

Let B(r,x) denote the open ball with radius r and centerd at
X and |B(r,x)| the volume of it, i.e. B(r,x)={yeG; o(x—ly)<r},
where o(x) is the Riemannian distance between x and the unit

element e of G, and |B(r,x)|= [ ldg= ng(t)dt. For simplic-

B(r,x)
ity we put B(r)=B(r,e). Then the order of |B(r)| with respect to

r is given by

0 (e2°7) (£-se)
B(r) = ml+m2+l (2.2)
O(r ) (xr->0).

This property means that G is not of homogeneous type in the

sence of [3].
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§3. Maximal functions and atoms on G/K. First we shall define

maximal functions on G/K (see [7,§3]). Let ¢ be a K-biinvariant
function on G with finite L -norm. Then for a positive numbere>0,
we put

(x) =% A(t(x) /e)

¢(t(x)/e). (3.1)
€ € A(t(x)

¢

Now for any locally integrable functions f on G/K, we define the

radial maximal function M. f 9£ f as follows.

¢

M, f(x)= sup|f*¢_(x)|, (3.2)
¢ e>0 &

where * is the convolution on G. Then the following theorem is

valid (see [7, Theroem 3.3]).

Theorem 3.1. If there exist a constant C and a positive number
-2p0(x) /6§

§>0 such that |¢(x)|iCe (xeG), the operator M, is of

¢

‘type (Lp,Lp) (l<p<w) and of weak type (Ll,Ll).

Next we shall define atoms on G/K (see [7,84]). Let (p,q,s) be a
triplet such that 0<pil, 2(a+1)/3<qiw and seN, s>[2(o+l)/(1/p-1)1,
where ¢ and g are defined by‘ml=2(a—6) and m2=28. Then we say that

a function f on G/K is a (p,q,s)-atom centered at x if the support

is contained in an open ball B(r,x) and satisfies the following

conditions:
. 1/g-
(1) £l < [Blx) |V,
9
(ii) if r<rp=(a+l)p/p(l—p), then (3.3)
fOf. L (£)t%A(t)dt=0 (0<k<s),
0 x,K — -
where fX K is the K-biinvariant function on G defined by fx K(g)=
’ ’ .

L5



fo(xkg)dk. of course,\if we put o=f=-1/2, i.e., A=1 and p=0,
this definition of atoms on G/K coincides with one on R. If £
satisfies the condition (ii) of (3.3), we say that £ Has vanishing
monents. Here we define the modified radial maximal function

1 M&f for feLq(G/K) (1<g<=) as follows.

! .

M'f(x)= sup |[£fx¢_(x)], (3.4)
¢ O<€<€p €

where sp=(l—l/6)/(l—l/p) if |¢(t)|iCe-2p|tl/6. Then the following

theorem was obtained in [7,Theroem 4.11].

Theroem 3.2. Let G#SL(2,R) and (p,d,s) be as above. If there

exist a constant C, 0<6<1l and A>1/p (0<p<l) such that.

(G P ) (1+]£]) ¥ <ce 2P 11/ 8 (14] ] )™ for all 0<t<s+l, then

there exists a constant c=c(C,p,q,s,8,A) such that IIM$fx Kllp<
_ Such that , =<

¢ for all (p,q,s)—atoms'f on G/K.

§4. Molecules on G/K.  In the following we shall restrict our

attension to K-biinvariant functions on G. Then the natural ex-
tension to G/K of the definition of molecules centered at 0 in R
is given as follows. Let (p,d,s,c) be a quartet such that (p,q,s)
is as above , ¢>1/p-1 and put a=1-1/p+e, b=1-1/g+c. Let B(x)
denote the K-biindvariant function on G defined by B(x)=|B(c(x))|.
Then we say that a function f is a K-biinvariant, (p,q,s,e)-mole-

cule centered at e if it satisfies the following two conditions:

: @) £ P P T P < e,
(ii) S £(£)tFA(t)dt=0 (0<k<s) (4.1)
. <k<
a-b

or |]f||q < !B(rp)l
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Of course, if we put 0=B=-1/2, this definition coincides with
one of (p,q,s,c)-molecules centered at 0 in R. Then we can

obtain the following

Theorem 4.1.

(i) If f is a K-biinvariant, (p,q,s)-atom centered at e, then f

is a K-biinvariant, molecule centered at e for all £>0 and M(f)<

C, where C is independent of the atom.

(ii) If £ is a K-biinvariant, (p,q,s,e)-molecule centered at e

with vanishing moments, then f has an atomic decomposition f=

ZAifi such that fi's are K-biinvariant, (p,q,s)-atoms centered

at e with vanishing moments and A >0, (ZAE)l/p§C'M(f)(l+N(f))S,

where C' is independent of the molecule and N(f) is defined by
a-b

| £]] =M(E) [BON(E) |

Sketch of the proof: As in R, (i) is obvious from the definition.

To prove (ii), without loss of generality, we may assume that

M(f)=1. We define the number N=N(f) by [|f|[q=|B(N)|a-b and k,
k
by the smallest integer such that 2 ONil. Then we put
B(0,N) (k=0)
(4.2) G=\UB,, B = B(zk'lN,sz) (0<k<k,)
oo X k %0
B(N0+k—k0-l,NO+k—kO) (k0<k),
k0
where B(r,r')=B(r)C(\B(r') and N0=2 N. Let fk denote the re-
striction of f to Bk‘ Obviously, f=ka and fk's are K-biinvari-

ant functions on G. To obtain the desired decomposition, we
modify this to the desired one as in R (see [10,Theorem 2.91]).

In this step we use the following lemma.
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Lemma 4.2. For each k, there exist K-biinvariant functions hk

(0<i<s) satisfying the following conditions:

(1) sugp(h]i{) ¢ B, (0<ics),

y iy _
(i1) /B (£)t7A(t)de=§,

(0<i,j<s),
0 j

(1ii) .
F - (i+20+42) (k=0 N<1)
Ly e [TREIT o, )
h <c .
)l o = (k1) = (i+20+2) (0<k<ky)
. » 1
L NG (k-k ) 5T B (N +k-k+1) | T (K <k)

Remark 1. If we use the decomposition of G such that G=£¥0BL,
Y O T <

B£=B( N,2"N) instead of (4.2) (this corresponds to the case
of R), we have an atomic decomposition f=ZAifi such that (Z)\Ii’)l/p
<crm(g) 2PN (E)

Remark 2. When f is a K-biinvariant (p,q,s,c)-molecule (0<p<l)
which satisfies the latter condition of (ii) in (4.1), the simi-
lar result is valid. 1In this case f has an atomic decomposition
consisting of atoms which satisfy (i) in (3.3) only.

§5. Atomic Hardy space on G/K. Let (p,qg,s) be as above. Now

let LE=LE(G//K) denote the space of all K-~biinvariant functions

f on G having a non-increasing, K-biinvariant function f+€Lp(G)
such that {f|§f+. We call such a f' the LP non-increasing domi-
nator (LP n.i.d.). In this section we shall consider the follow-

ing three spaces:

°LE={feLp; f has a IF n.i.d. f+ such that

|B(r) |7t s £(x)dx < £ (1) ). (5.1)

B(r)c
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uP= {fEL o (G//K) ; M&feLE for all ¢ satisfying the

condition in Theorem 3.2}.
q —{f—ZA f. ;i all £,'s are K-biinvariant, (p,q,s)-atoms
I
centered at e, Xizo and Zxﬁ<m}.

Then we put pE(f)= inf |E+i|g for fe°LE, where the infimum being
f

taken over all 1P nmi.d. £ of £ satisfying (5.1), pp(f)= sup inf
¢

||(M‘f)+||g for feHY, where the supremum (resp. the infimum)

being taken over all ¢ satisfying the condition in Theorem 3.2.
with C=1 (resp. all IP n.i.d. of M'f) and pg < (£)= inf zx? for f
14

EHg , where the infimum being taken over all K-biinvariant (p,q,s)
, .

-atomic decompositions of f£. Obviously, Hg SC Hg, s (g>g'). The
i ’ 7 -
following proposition was obtained in [7,Proposition 5.1].

Proposition 5.1. Hg SC uP.

4

Moreover we can prove

P _o¢P P p
Theorem 5.2. Hm,o Ly and pm,o'bp+.
Sketch of the proof: Let £ be in HE 0" Then f has an atomic
7

decomposition f=ZAifi such that all fi's are K-biinvariant, (p,=,0)
-atoms centered at e. That is, supp(f,) CB(r;) and llfi||m<

]B(ri)|_l/p.' Therefore, [f|<zi;[f;[< T 2;[B(r;) I_l/p. Here

+ To(x)<rj
we define f by the right hand side. Then we can show that £t is
atf n.i.da. of £ satisfying the condition (5.1). To prove the

converse, we use Theorem 4.1 (ii) and the similar argument in the

proof of the theorem.

Corollary 5.3. Hg 0 is complete.
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Conjecture. uP =°LE=HP.

CX),S
Remark. As in R, if the integral: lB(lr)|_l 5 (r)

f(x)dx can be
- . c Lo .
expressed suitably in terms of the convolutions on G and be bound-

ed by the maximal functions of £, this conjecture is valid.

§6. Multiplier operators on Hg s In this section we shall con-
14

sider convolution (or'multiplier) operators on Hg s° First, as
’

in R, we see that

Proposition 6.1. If a linear operator T maps each K-biinvariant,

(p,g9,s)—-atoms centered at e into aK-biinvariant, (p,g,s)-molecule

T(f) éentered at e and M(T(f))<C, where C is independent of the

P
q,s’

atom £, then T is a bounded operator on H

By using this proposition we can obtain the following results.

For a ZK-biinvariant function £ on G (resp. an even function pon

* . .
a ) with a suitable condition, the Spherical Fourier transform £
of £ (resp. the inverse Fourier transform ﬁ of p). is defined as

follows (cf. [11,Chap.9.2]).

%(v)= J f(x)¢v(x)dx
G

(resp. f(x)= / ,u(v)é, (x)|c(v) Pav).
a

. ; . .
Now we put F(£)={vegc; |Im(g) |[<€p}. Then we have the following

. *
Theorem 6.1. Suppose that p is an even function on a such that
1-[p]

u is bounded and holomorphic on F(§) (éﬁ/p—l) and p(v)(l+|vi)

C(-v)_lsLl(R+¢—l£p). Then if the multiplier operator TU' i.e.,

Tu(f)=(“f)/' is of type (Lm'ﬁo), Tu is also of type (Hg O,Hg 0)
4 4

for 2a+2/2a+3<p<1.

10




;Y
J
K.

Moreover, using this theorem and Corollary 5.3, we can obtain

Corollary 6.3. Suppose that m is a K-biinvariant function on G

with finite Ll-norm and ﬁ(v) C(-v)-lsLl(R+V-lp). Then'
_— N ;

the convolution operator Tm’ i.e., Tm(f)=m*f, is of type (H 0"
©
1
H .
w,O)
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