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§1 Introduction

Let X be a compact metric space with metric d and f a homeo-

morphism of X. A sequence of points {x.} is a §-pseudo orbit of

ilieg
(X,£) if d(fx;,x; ,)s6 (iez). (X,f) is said to have the pseudo
orbit ‘tracing property (abbrev. P.O.T.P.) if for ¢€>0 there is >0

such that for every §-pseudo orbit {xi} there is a point xeX

i€2
with d(fix,xi)$s (ie2). (X,f) is expansive if there is §>0 such
that d(fix,fiy)sé (ie2) implies x=y. The P.0.T.P. and the expansive-
ness play important roles in several place in dynamics. N.Aoki [ 2]
proved that if (X,f) has the P.O.T.P., then the restriction to its
nonwandering set, (Q,f), also has the P.0.T.P., and that if (Q,f)
has the P.O.T.P. and expansiveness then Q splits into the finite
disjoint union of closed invariant subsets on each of which f is
topologically transitive. A.Morimoto [10] proved that if f is an
isometry on a compact connected manifold M with dim (M) 2 1, then
f_cannot have the P.O.T.P..

In this paper we introduce a concept qf P.0.T.P. for l-parameter
flows, and investigate the'properties of l-parameter flow with the

P.O0.T.P.. For closed subsets Y, and Y, of X, put d(Yl’Yz) =

1
inf {d(yl,yz): yieYi,i=1,2}. Let #:XxR— X be a flow on X; i.e.
$ is continuous, #(+,0) is an identity map of X and #(x,t+s) =
#(#(x,t),s). Such a flow is often written by (X,%). If Y is
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a subset of X and J is a subset of R, we write Y:J = g (¥xJ).

If Y is closed and invariant (i.e. Y-t = Y (t€R)), (Y,s) denotes

the restriction of ¢ to YxR. By = Q(¢) we denote the non-

wandering set of #; {xeX: for every open neighborhood U of x and

every T>0, Un (U*[T,»)) # empty}, which is closed and invariant.
Given 6>0 and T>0, a (6§,T)-chain of (X,#) is a éollection

{xa?xa+1"";xb?ta'ta+1""'tb} (xiex, tizo, asisb) (a =—= and b = o

are permitted) such that tiZ T and d(xi.ti'xi+1)§6, (agisb-1).
A finite ($8,T)-chain {xi;ti}g (—o<asb<») is naturally extended to

an infinite (8,T)-chain {Xiﬂﬁ}iez' Let xg*t denote a point on a (§,T)-

chain t units time from X+ More precisely) if t20 then xo*t

: i-1 i-1 i , P
xi-(t_ 20 tn) where 20 t ostc ZO t; and if t<0 then xo*t

-1

. _r-1 _v-1 . *
x;o(t+ J.7 t ) where -J." t gt<-J.., t . Define x,*R to be

tLﬁ X,*t and say it a (§,T)-chain.

By analogy with the case of a homeomorphism, the first attempt
to define pseudo-orbit tracing properties for ¢ may be following;
for every €>0 there are §>0 and T>0 such that for every (§,T)-
chain xO*R thére is xeX with d(xo*t, x-t)se (t€R). However there
is an Axiom A flow (see [13]) the nonwandering set of which does
not have this property (For example, the flow having a hyperbolic
closed orbit as one of connected components of the nonwandering set).
For this reason, we need to allow somewhat time lags to occur.

To do this we define a notion of reparametrizaiion as follow. Let
Rep denote the set of increasing homeomorphisms of R fixing the
origin. The element of Rep is called a reparametrization. Define

a subset of Rep by

Rep(e) = {geRep: lgigl;géfl -1lse (¢ g s)} (e>0).
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Given (G,T)—chain xo*R, if there are y€X and g€Rep(e) such t@at
d(xo*t,y-g(t))Se (ter), then xO*R is said to be e-traced by (y,qg)
(or simply, by y). We remark that our definition of e-tracing is
different from onergiven by J.E.Franke and J.F.Selgrade [5,7]. We

propose the following definition as the P.0.T.P. for flows.

Definition 1.1. A flow (X,%) has the pseudo orbit tracing

property (abbrov. P.0.T.P.) if for every €>0 there are §>0 and T>0
such that every (§,T)-chain is e-traced by a pair (y,g) of some ye€X

and some g€Rep(e).

This definition is clearly independent of the choice of metrics.
Using Bowen's approximation theorem [3, Theorem 2.2], we have that
the.restriction of an Axiom A flow to (£,%) has the P.0.T.P.. To

. _ _ ti-1
(ti>0) define uiéR by u, = 0, u;, = 20 t.

see this, for {t,]} 3

i€z

(i>0) and uy =—2;1 t. (i<0), and set STEP(S,{ti}) = {s:R— R |

J
s is constant on (ui,ui+1), s(u;)=s(u;+0) or s(u,;-0), |s(u0)1§€ and
|s(ui+0)—s(ui—0)|sg}. Bowen's theorem implies that for e€>0 there -

are 8>0 and T2l such that for every (§,T)-chain {x;t,] there

iez
are xeX and SESTEP(E,{ti}) with d(x,*t,x-(t+s(t)))se (te€R). We
define g(uo) =0, gluy) = ui+s(ui40) (i#0) and extend g linearly
between these points, tﬁen geRep(3€). By uniform continuity of ¢,
we get the required conclusion. |

In §2 we give the equivalent definiﬁions of P.O.T.P.(Theorem 1).
- And in §§3 and 4, we prove that if (X,#) has the P.O.T.P. theh so
has (9, 9) (Theorem 2), and also that if (9,%) has the P.0.T.P. and
expansiveness then the spectral decomposition of § is obtained

(Theorem 3). Further examples of flows with the P.O.T.P. are

provided by suspensions of homeomorphisms with the P.0.T.P.. In fact,



&
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using the invariance of the P.0.T.P. under some equivalénce for
flows (Theorem 4), we prove that a suspension of a homeomorphism
has the P.0.T.P. if and only if the homeomorphism has the P.O.T.P.
(Theorem 5). When ¢ is an isometric flow on a compact connected
manifold, if ¢ has the P.O.T.P. then g must be minimal (Theorem 6).
From Thedreﬁs 5 and 6, we show that in general the direct product
of flows with the P.O.T.P. need’not to have the P.0.T.P.(Remark 4),

and that the time T-map of flow with the P.O.T.P. need not to have

the P.O.T.P.(Remark 5).

§ 2 Equivalent definitions.

In this section we state the properties of Rep(eg) and the
equivarent definitions of the P.O.T.P.. |
Lemma:2.1. (1) For g€Rep(e) and a constant ceR, define
h(t) = g(cft)—g(c) (teR), then heRep(e).
| ‘(2) For a sequence {9n}nzo of Rep(e) there is geRep(e) such
that for every N>0 there is a sequence {n(i)]}C{n}. so that

Sn(i)|[-N,N] — 9|[-N,N] (uniformly as i—*? ).

Proof. It is clear that h is an increasing homeomorphism of

R with h(0)=0. since [RLEIR(s) ) _jglettlzglets) ) o
(t#s), we have h€Rep(e). (1) is proved.

For every N>0, {gnl[—N,N]}nzO is uniformly bounded apd equi-
continuous. Hence, using the Ascoli-Arzela's theorem and
o-compactness of R, we get an increasing homeomorphism g:R —R
such that for every N>0 there is a subsequence {n(i)} with

. . . . e
gn(l)ll—N,N]__+ gl[—N,N] (uniformly as i-—») Let t,s€R (t#s) be

given and take N>0 with t,s € [-N,N]. Since | étz—s(s) -1 =



[dhg]

g iy (t)=g ., (s)
lim, | n(l)t — n(i) -1 s e and g(0) = limi+«9n(i

)(0)= 0,

we have ge€Rep(e). (2) is proved.

Theorem 1. The following are equivlent for a flow # on X.

(a) (X,#) has the P.O.T.P..

(b) for every €>0 and every T>0 there is §>0 such that (§,T)-
chain is e-traced by a pair (y,g) of some y€X and g€Rep(€).

(c) for every €>0 there are §>0 and T>0 such that for every
integer k>0 and every finite (6 ,T)~chain {xi;ti}g there are x€X
and g€Rep(e) with d(xO*t,X'g(t))ﬁe (te IO,ZE ti])‘

Proof. Clearly (b) implies (a). We show that (a) implies (b).
Let €>0 and T>0 be given. By assumption there are 60>0 and T0>0
such that every (GO,TO)—chain is ¢/2-traced. If T2 TO' the statement
is clear because a'(GO,T)—chain is a (60,T0)—chain. There 'is an
integer M>0 with TM2 T, when T7<T0. By continuity of ¢ there is
6>0 such that if xo*{O,TO] is (§,T)-chain having at most M+l jumps
then d(xo*t,xowﬂ<60 (t.e[O,TO]).' Let xo*R_be a (6§,T)-chain.

Since {xo*(iTo);ti=T is a (8,,T,)-chain, there are y<¢X and

O}iez
geRep(e/2) with d((xo*(iTo))°t, y'g(iT0+t))<e/2 (te [O,TO), i€z).

Hence we have d(xo*(iTo+t),y°g(iT0+t)) < d(xo*(iT0+t),(xo*(iTo))'t)

+ d((xo*(iTO))'t, y-g(iT0+t)) < e for t¢€ [O,Tol and i€2Z; i.e.
xO*R is e-traced by (y,g).

We have shown that (a) and (b) are equivalent, thus it remains
to show (a) and (c) are equivalent. It is clear that (a)«implieé
(c). To show (c) implies (a), let €>0 be given and take 6= §(e) >0
and T = T(e)>0 as in (c). Let {xi;ti}iez be a (§,T)-chain. Then
for every n>0 there are Y X and g,€ Rep(€) such that d((xot(—n))*t,
yn°gn(t))$e; (t€[0,2n]). Since X is compact, yn'gn(n)“—+ y (n>®)

taking subsequence if necessary. For hn(t)=gn(n+t)—gn(n) we have



hné Rep(e) by Lemma 2.1(1). By Lemma 2.1(2) there is h€ Rep(ec)

such that for every N>0 there is a sequence {m} with hml[-N N
14

hl[-N,N] (uniformly as m ~« ). Let t€R be given. Since there is

a sequence {m} with hm(t)——+h(t) (m+w), it follows that

d(xg*t,y-h(t)) = lim  _ A(xy*t,(y_*g_(m))+h_(t))

= lim ,, dl(xy*(-m))*(m+t),y g (m+t)) Se,

-

i.e. xO*R is e-traced by (y,h). The proof is completed.

§ 3 The chain recurrent sets of flows with the P.O.T.P..

Let ¢ be a flow on X. Given §>0 and T>0. For X,y€X, x is
(6,T)-related to y (written x+§ﬁg+y) if there are (§,T)-chains

X .3 m . n i =X .= =y = s,T
{xi’ti}o and {yi,si}O with x=x,=y_and y=y,=x . If x>y for

every 6>0 and every T>0, then x is related to y (written x ~ y).
The chain recurrent set of ¢ , R, is {x€X: x ~ x}. Clearly

GIT "

" ST, ang v . v are equivarence relations of R. 1In Lemma 3.1(4)
it will be proved that R is a closed invariant set containing Q.

In this section we prove following

Theorem 2. Let g be a flow on X. If (X,#) has the P.O.T.P.,

then R = @ , and (Q,¢) has the P.0O.T.P..

Lemma 3.1. (1) If x,yeR with d(x,y)<6, then x*—a-‘l-*y for

every T>0.

(2) For every 6>0 and every T>0, there is a Y>0 such that
if yeX holds d(x,y)<y for some x€R then y+§42+y.
(3) For every x€R and every T€R, x is related to x°T.

(4) R is a closed invariant set containing Q.



Proof. The proof of (1). Put a=5-d(x,y). Since Xx,y€R, for

every T>0 there are (q,T)-chains {xi;ti}g and {yi;si}g with x0=x=xm

and y0=y=yn. Then {XO,...,Xm_l,y;tO,...,tm} (resp' {yol"'lyn_l'x;
so,...,sn}) is a (§,T)-chain from x to y (resp. from y to x), and

§,T

SO X+——y.
The proof of (2). For every 6>0 and every T>0, there is §/2>
v>0 such that d(x,y)<y implies d(x°T,y°*T)<§ . Since x€R, there is

1 k 'vr == ° .
a (8/2,2T)-chain {xi,ti}0 with X =X=X) . Then {y,x T'Xl""’xk'

T,t,~T,t ,...,tk} is a (6,T)-chain from y to itself. Thus (2) is

0 1
obtained.

The proof of (3). Let xeR and T€R be given. For every 6>0
there is 6>Y>0 such that d(x,y)<y implies d{(x°T,y°*T)<8. Put S=T+|T|.

. : : k . .
Since xe€R, there is a (Y,S)-chain {xi,ti}0 with X(=X=X, . Then
{x~1,x1,...,xk;to-rrt1,...,tk} is a (§,T)-chain from x*1 to X.
Also {xo,...,xk_l,x-r;to,...,tk_z,tk_1+t,tk} is a (§,T)-chain from

X to x*T , and so x+§‘2+x . Since § and T are arbitrary, we get
X ~ X .

The proof of (4). For x€R and T€R, by (3) we have X°T ~ x°T
and hence R is invariant. If yeR then by (2) we have y+é*z+y for
'every 6>0 and every T>0. Hence y€R and so R is closed. To see
C R, let x€Q be given. For every 6>0 and every T>0, there is §>y>0
such that d(x,y)<y implies d(x*T,y°*T)<8. Since x€Q, there is yeX
with d(x,y)(y and d(x,y°*S)<y for some S 2 2T. Then {x,y‘T,x;T,S-T,O}
is a (8,T)-chain from x to itself. Since ¢ and T are arbitrary,

we have x € R.

Lemma 3.2. Given 6>0 and T>0, R is splited into equivalence

classes AA under the (§,T)-relation; i.e. R =LJAAA‘ Then each Ay

- -



is an invariant, open and closed subset in R.

Proof. For x<5A) and 1€R, by Lemma 3.1(3) we have x+§L2+x-1
and so x*T€A,. Hence A, ts invariant. By Lemma 3.1(1),_{y€R: d(x,y)

<8, XGAA)C:AA’ that is, A, is open in R. Since A= R'lJA¢uAu'

AA is closed in R.

From Lemma 3.2, {A,} is finite because R is compact. Hence

J
R =LJ? Ag for some m = m(G,T)}O.

Proof of Theorem. Let us assume that (X,g) has the P.0.T.P..

First we show that R = Q. Since QCR by Lemma 3.1(4), we must show
RC Q. To do this, let x€R and e>0 be given. Put U = {yeX: d(x,y)
<e}. By assumption,ythere are 6>0 and T>0 such that for every

in X there are yeX and g€ Rep(eg) with

(8,T)-chain {x it },c,

d(xy*t,y-g(t))se (t€R). Since xeR, there is a (§,T)-chain {xi;ti}g

= x. and t

with x =x=xk. Put xkn+i i kn+i

0 = ti for n€ 2, then

{xi}ti}iez is a (§,T)-chain. Then there are y¢X and ge€Rep(g) with
d(xo*t,y~g(t))ge (te R). Since g(0)=0, we get ye U. For nj=
jfg_l ti, it follows that g(nj) 2 (1~e)nj+m and d(x,y'g(nj)) =
d(xo*nj,y-g(nj))g ¢. Therfore x€q.

To see that (2,%) has the P.O.T.P., let €>0 be given. 1In
order to our conclusion, by Theorem 1l(c) it is enough to show that
there are §>0 and T>0 such that for every finite (¢§,T)-chain

{ii;ti}g in R there are yeR and geRep(e) with d(xo*t,y'g(t))$s

(t:GIO,Xg t;]). By assumption, there are y>0 and T>0 such that
(Y,T)-chain in X is e-traced by some point in X. Let R =LJT Ai
be the splitting of R into equivarence classes under (Y,T)-relation.

Since each Ai is closed in X (by Lemmas 3.1(4) and 3.2), we have



. y : k
8 = mln{d(Ai,Aj): i#j} >0. Take 0<é< mln{Y,Sl} and let {xi;ti}o

be a finite (§,T)-chain in R. Without loss of generality, we may

assume xoe-Al. ‘Since Al°R = A (by Lemma 3.2) and d(xi°ti,xi+1)<6
<§;, we have {xi}gC:Al. Since x0+142+xk, there is a (y,T)-chain

v Vot : : - -
{xo,...,xa,t ,...,té} in X with x} = x) and x] = x,. For ne 2, put

J Xi _n(k+a) n(k+a) § i < n(k+a)+k
z, =
i :
‘ Xi_n(k+a)-k n(k+a)+k € i < (n+l)(k+a),
( 7 ‘ .
ti—n(k+a) n(k+a) < i < n(k+a)+k
sS. = 1
i . .
\ ti-n(k+a)-k n(k+a)+k £ 1 < (n+l)(k+a).

Then.{z.;s is a (y,T)-chain in X, so there are z<¢X and he€Rep(e)

i i}iez

with d(zy*t,z*h(t))se (ter). Put p = [5'2 ' s. and suppose

i
a sequence {z-h(np)}nzo. When {z'h(np)}n>o is finite, z is
periodic point, so z€Q= R. Hence (y,g) = (z,h) is the required

tracing pair. If {z+h(np)} is infinite, a subsequence converges

n20
to some point ye€X. It is clear that ye R. Define 9,¢ Rep(e)

by gn(t) = h(np+t)-h(np) (t€R). By Lemma 2.1(2) there are geRep(¢)
and a sequence {n'} such that z-h(n'p)— y (n'—), and such that

i ]
gn'|[0,p] uniformly converges to gI[O,p] (n'—x). Then for

tefo, 218'1 ti]C[O,p]. we get

d(xo*t,y-g(t)) limn,+m d(xo*(n'p+t),(z-h(n'p))'gn.(t))

]

limn,*m d(xo*(n'p+t),z-h(n'p+t)) Se.

The proof is completed.
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§ 4 Spectral decomposition of Q.

Let (X,#) be a flow on compact metric space. (X,8) is said
to be expansive([4]) if for any €>0 there is n=n(e)>0 such that
for some x,y€X and for a continuous map g:R—+R with g(0)=0, if
d(x-t,y*g(t))sn (teR) then xey*[-e,e]. n=n(e) is called an

expansive constant corresponding with e.

Lemma 4.1 (Lemma 1 in [4]) If (X,4) is expansive, then each

fixed point of ¥ is an isolated point of X.

Lemma>4.2 Assume that (X,#) is expansive without fixed point.
For €>0, let n=n(e)>0 be an expansive constant corresponding with €.
If for x,ye€X and g€ Rep(n), d(X°t,y;g(t))$n for t20 (resp. t<0),
then for every y>0 there is N>0 such that d(x-t,(y*[-e,e])-g(t))sy

for t2N. (resp. ts-N).

Proof. If the assertion is false, there is y>0 so that for
every n>0 there are xn,ynex, gné Rep(n) and tnzn such that
d(x -t,y -g (t))sn (t20) and d(xn-tn,(yn-[-s,e])'gn(tn))‘>Y .
Without loss of generality, we may assume that xn-tn——+ x and
yn°gn(tn)——+ y. Put hn(t) = gn(tn+t)—gn(tn), then hne Rep(n) by

Lemma 2.1(1). By Lemma 2.1(2) there is h€ Rep(n) such that for
every N>0 there is a sequence {m} so that hm][—N,N]__+ hl[-N,N]
(uniformly). Let t€R be given. There are N>0 with t€[-N,N] and

a sequence {m} such that hm(t)——+ h(t) (m—=) and -t_$t. Then

we get d(x-t,y*g(t)) = lim__  d((x <t )-t,(y g (t ))-h (t))

i

limm»ﬁ d(xm°sm,ym-gm(sm)) < n where Sp = t+tm2 0. Since te R

is arbitrary, by expansiveness xé‘y'[-e,e]. But for every se¢[-¢g,e],

d(x,y-s) = limn*m d(xn-tn,(yn'gn(tn))‘S)ZY ;i.e. x¢ yo[-¢,¢].

This is a contradiction as‘well.

- /0 -
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- Teorem 3 (Spectral decomposition theorem). Let § be the non-

wandering set of a flow (X,%). Assume that (f,#) is expansive and
has the P.0.T.P.. Then{ is uniquely expressed as a finite disjoint

. _ a U b a . .
union @ —\Ji=1{wi} L&=1 Q; where {wi}i=1vls the set of fixed

points of ¢ and Qi (1sisb) is a closed invariant set such that

(Qi,¢) is topologically transitive.

The proof of Theorem is done along the following steps (S.1l)~

(S.4).' After this we assume (§,4) is expansive and has the P.O.T.P..

(S.1) Denote by Per(g) the set of periodic points; i.e.
[xeX: x*t=x for some t# 0}. Then Per(#) is dence in Q.

Proof. -This is easily obtained by the P.0.T.P. and expansivness.

(s.2) Let {B be the equivalence classes of  under the

N
relation "~ ". Then each BX is invariant, open and closed in f.

Proof. Since Q is invariant, so is B, by Lemma 3.1(3). By

A

Lemma 3.1(2), B, is closed in . We show that B, is open in Q.

A
Let F be the set of fixed points of ¢. By Lemma 4.1 each element
of F is isolated in 2, so that F is finite. If BA is contained in
F, clearly BA is a single point and so BA is open in Q. Suppose
that BA is not contained in F. Since F is open and closed in @,
(Q-F,9) has the P.0.T.P. and expansiveness. So we can suppose

that (Q,4) has no fixed point and B, C Q.

A
Let €>0 be given. By expansiveness there is an expansive

constant n=n(e)>0. By the P.O.T.P. there are §>0 and T>0 such that

every (§,T)-chain in Q is n-traced by some point in Q. Put UG(BA)

= {yeq: d(y,BA)<6} and take pe€ Uc(B,)Nn Per(¢). There is 1>T such that

p*t = p. Take y€B, with d(y,p)<§ .

A ,
Since a collection {...,p,p,y,y-T,y-(ZT),...;...,T,T,T,T,T,-- }

is a (§,T)-chain, there are x€Q and ge Rep(n) such that

- -
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d(p*t,x*g(t))sn (t<0) and d(y-t,x°g(t))sn (t20). For every y>0 and
S$>0, by Lemma 4.2 there is N>S so that d(p-°t,(x°[-€,e]l)-g(t))sy
(ts-N) and —d(y't.(x'[-e,e:])'g(t))sn (t2N). Take K2N with p°K=P.
There are s,s'€ [-€,€] such that d(p,x*(s+g(-K)) = d(p°*(-K),
(x*s)*g(-K))Sy and d(y*N,x°(s'+g(N)) )Sy . By Lemma 3.1(1),
p+1*§+x'(s+g(—K)) and x‘(s'+g(N))+lL§+y'N. Since x°*(s+g(-K)) ~
x°(s'+g(N)) and y*N ~ y (by Lemma 3.1(3)), we have p+lL§+y. Since

Y and S are arbitrary, we obtain p€ BA‘ Therefore by (S.1) we

get B,D Ué(Bx)r\Per(¢)I)US(BA)K\Per(¢) = UG(BA).'

Since £ is compact, by (S.2), £ is uniquly expressed
. _ m _ a y b _

as a disjoint union & =U._; B, —lJi=1 w; [Ji=1 2, (a+b=m) where
w, (¥sica) is a fixed point and Qi (1£isb) is an equivalence class
under *~"without fixed point.

(s.3) (Bi,¢) has the P.O.T.P. (1%ism).

Proof. Put o= min {d(Bi,Bj):i # j} and let a>e>0 be given.
Since (£,%) has the P.O.T.P;, there are 6>0 and T>0 such that
every (§,T)-chain in £ is e-traced by some point in Q. If a (§,T)-

chain in B is e-traced by ye¢{l, then we have Y€B; by the choice

of €. Hence (Bi,¢) has the P.O.T.P..
It is clear that (wi,¢) (1fisa) is topologically transitive.

(s.4) (Qi,¢) is topologically transitive (1£isb).

Proof. Le£ U and V be open set in Qi. There is €>0 such that
U (x)CU and U_(y) €V for some x€U and yeV (where U_(z) ={w69i:
d(z,w)se} ). By (S.3) there are 6>0 and T>0 so that every (§,T)-
chain in Qi is e-traced by some point in Qi. Since x ~ y, there
is a (G,T)-chain‘{yi;ti}g with Yo T ¥ and Y =X Then there are
2z€U_(y) and K>0 with d(x,z°K)Se. So zéUe(x)'(—K)nUe(y)CU'(-K)nV

# empty. The proof is completed.

-~ /3 -~



§ 5 Topologically Lipschitz equivalence and suspensions.

Let X, (i=1,2) be a compact metric space with a metric di (i=
1,2) and let ¢i be a flow on X, (i=1,2). Suppose that (xl,?l) is
topologically equivalent to (x2,¢2); that is, there is a homeo-
morphism u:Xl-—-*'X2 such that Ut maps orbits of (Xl,¢1) onto orbits
of (X2,¢2). In general 1 dose not preserve the notion of (6,T)-

chain on (X1,¢1). For example, put Xl = X2 = {ZEC:lZ|$1}r

2Tit e2TTit/|Z|

¢1(z,t)= ze and ¢2(z,t) =z (z#0), =0 (2=0) where

i=/-1. Since U= id.:X,—X, is a homeomorphism mapping orbits of

1 2

(X1,¢l) onto orbits of (X2,¢2), (X1,¢1) is topologically equivalent

to (X,,%,). A collection {271,272,....1,1,...} is a (271,1)-chain

-1 -2

12 g eees

of (X1,¢1), and the image of this chain under u is {2

2—1,2~2,...}, which can not be a (2—1,T)—chain of (X,,%,) for
every T>0. Therefore we suppose the equivalent relation stronger

than the topologically equivalence.

Definition 5.1. Let (Xi,¢i) be a flow (i=1,2). (X1,¢1) and

(X2,¢2) are topologically Lipshitz equivalent if there are
a homeomorphism H:iX)— X, and a continuous map 0:X; R R with
o(x,0)=0 (xexl) such that for some M 2 m > 0,

olx,t)-ol(x,s)
t - s

m

IA

<M (xéxl,t#s) and
HP (x,t) = 2, (ux,0(x,t)) (x€X;, tE€R).
Clearly this is a equivalence relation. If 0 is a continuous

map as above, OX'= o(x,*):R—™ R (xexl) is an increasing homeomorphism

of R such that O and Gx-1 are Lipschitz continuous.
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Lemma 5.2. Let g<¢Reple). If g;:R— R (i=1,2) is an

increasing homeomorphism of R such that 0;(0) = 0 and
Ci(t)-ci(s)
m g re— $M (t#s) for some M2 m> 0,

then h = 01"109002:R__+ R belongs to Rep(%e ).
Proof. Since o; (i=1,2) and g are all increasing homeo-
morphisms of R fixing the origin, so is h; i.e. he€ Rep. As

90, (t)=go,(s)

h(t)-h(s) _1‘ _ |h(t)-h(s)-t+s l' N
t = S Olh(t)_olh(s)_cz(t)+02(sy Oz(t)_oz(s)
“0,(E) 40, (8)y 1oy (t)-0y(S) ) pivy his)-t+s M
o,(E)-0,(5) T = s S m(h(t)=h(s)=t¥s) € ‘M =qe (t#fs),

we qetluéRep(%e,%

Theorem 4. Let (Xi,¢i) {(i=1,2) be a flow. Assume that

(x1,¢1) and (X ) are topologically Lipschitz equivalent. 1If

2%

(X ) has the P.0.T.P., then so does (Xy/87)-

2'%2
‘Proof. By assumption there are a homeomorphism p:X,—X., and
Troot. By L | 2

a continuous map 0:X XR—R such that o(x,0)=0, ms o(t,f);o(x,s)é

M

(xexl, t#s) for some M2m>0 and ¢1(X,t)=u—1¢2(uX,0(x,t)) (xexlyteR).
Let ¢>0 be given. By the uniform continuity of M there is

€'>0 so that dz(y,y')<e' (y,y'exz) implies dl(u_ly,ufly')<e .

Take £'>y>0 with %*{< €. Then there are 6'>0 and T'>0 such that
(6',T')-chain of (X2,¢2) is y-traced. We take 6>0 with dl(x,x')<6
(x,x'éxl) implies dz(ux,ux')<6', and put T=T'/m. In order to get
conclusion, by Theorem 1l(c) it is énough to show that every finite

(8,T)-chain {x,;t,}¥

iitily of (X1,¢1) is e-traced.

Since d2(¢2(uxi,c(xi,ti)),uxi+1) = d2(u¢1(xi,ti),uxi+1) < &8

- j4 -
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. k .
and o(xi,ti)ZmT=T', a collectlon{uxi;o(xi,ti)}0 is a (§',T')-
chain of (X2,¢2). Then there are'yéx2 and g € Rep(y) with

d2((uxo)*t:Y‘g(t))SY (t e [olz}é U(Xilti)] ). Put x = u-ly.

To find a reparametrization we define an increasing'homeomorphism
0:R— R by
t : (t £ 0)

~ i-1 i-1 .
o(t)= o(xi,r)+ig o(xj,tj) (T=t—28 tje (O'ti]' 0<icgk )

t+zg{o(xj,tj)-tj} ( Xg tj <t ),

where Zal t. =0. 0 satisfies that ¢(0)=0 and mg°i£l§9L§l§b4

J t s
(t # s), and so by Lemma 5.2, h = U(x,')—log68 belongs in Rep(%y)c
Rep(e). For t=1+28-1 tj (T‘G(O,ti]), since

dy (2, (ux;,0(x;,7)), 8, (ux,0(x,h(£))) ) =

i-1 1
d2(¢2(uxilc(xllT))I¢2(uxlg(20 O\letj)'*' G(inT))) ) s Y <e!',

we have that

d, (xy*t,x-h(t)) = d, (4, (x;,1),8,(x,h(t))) =
a; (™t (ux ,o(x, 1)) 0"t (ux,0(x,h(E))) ) 5 €
IU zuir i’ rH 21—'1 ' i = E.
Therefore {xi;ti}g is e-traced by (x,h) and the proof is completed.

Now we give the definition of suspension flow..

Definition 5.3 ([4]). Let Y be a compact metric space with

a metric p and f:Y—Y a homeomorphism. Let a:Y—(0,=) be

continuous. The suspension of f£f under o is the flow ¢ on the space

Ya = U (y:t)
0stsal(y) (y.a(y)) ~ (fy,0)

_/5_.
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defined for small nonnegative time by ¢((y,s),t)=(y.t+s),'05t+s<a(y).
Each suspension space of f is homeomorphic to the Suspension
space of f under 1 (the constant function with value 1). A homeo-
morphism u:Yl——+Ya is given by u(y,t)=(y,ta(y)). If a metric d of
Y, is defined, a metric d, of Y is induced by da((yl'tl)'(YZ'tz))
= d(unl(yl,tl),u—l(yz,tz)). For this reasoh we now define
a metric on Y. Supposé therdiameter of Y under p is less than 1.
Consider the subset Yx{t} of ¥Yx[0,1] and let p, denote the
metric on Yx{t} defined by pt((y,t),(z,t))=(1—t)p(y.2)+tp(fy,f2)
for y,z€Y. Note that po((y,O),(Z,O))=p(y,Z) and pl((y,l)((z,l))=
p(fy,fz). Let xl,xzéYl. Consider all finite chains X =Wo Wy peens
W =X, between Xy and X, where for each i either Wi and Wil belong
to Yx{t} for some t (in which case we call [wi,wi+1] a horizontal
segment) or LA and Wi,y are on the same orbit (and then we call
[wi,wi+1] a vertical segment). Define the length of a chain to be
the sum of the lengths of its segments where the length of
a horizontal segment [wi,wi+1]‘is measured in the metric Py if

w. and w, ., belong to Yx{t}, and the length of a vertical segment

i i+l

[wi,w ] is the shortest distance between Wy and W, along the

i+l
orbit (ignoring the direction on the orbit) using the usual metric
on R. If wi# Wil and W;/W;,y are on the same orblt and on the
same set Yx{t} then the length of the segment [w,,w;, ;] is taken
to be pt(wi,wi+l), since this is always less than 1. Define
d(xl,xz) to be the infimum of the lengths of all chains between X,
and X5 Since pt((y,t),(z,t)) 2 min{p(y,z),p(fy,fz)}, it follows that .
d(xl,x2)=0 iff X =X, . Clearly d is symmetric and satisfies

the triangle inequality and hence is a metric on Y. Also d gives

the topology on Y-



[N
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Lemma 5.4. Let f be a homeomorphism of a compact metric
space Y and a:Y—(0,2) be a continuous map. Let (Ya'¢a) and
(Y1,¢1) be suspensions of f under ¢ and 1 respectively. Then
(Ya'¢a) and (Y1,¢1) are topologically Lipschitz equivalent.
Proof. We define a homeomorphism M:Y,~—>Y, by W(y,T)=(y,T®(y))
for (y,T)GYl and define a continuous map 0:Y,XR—"R by, for

(y,T)GY1 and teRr,

Zj=510(ij)+a(fny)(T+t—n)—a(y)r (T+t€[n,n+1),n20 )
ol(y,t),t)= - ‘
‘zj;rll a(£ly)+a(£y) (T+t-n)-a(y)T (T+t€[n,n+l),n<0 ).

Putting m= inf a(y) and M= SUP, ey a{y), we have

yey

O(Xrt)-U(XIS)<
t - s =

every (y,T)EY1 and every teéR, if T+t€[n,n+l) for some n€z, then

0<m £ - M (xeYl, s#t) and 0(x,0)=0 (xeyl). For

U¢1((Y,T),t)=u¢l((fny,O),T+t-n)=¢d((fny,O),a(fny)(T+t—n))
=8, (y,0((y, 1), t)+aly))=F ((y,a(y)T),0((y,T),t))

=¢a(u(YIT)IO((YIT)It))~

Therefore (Ya;¢a) and (Y1,¢1) are topologically Lipschitz equivalent.
We recall that (Y,f) (a pair of compact metric space Y and
homeomorphism f -of Y) has the P.0.T.P. if for every €>0 there is

}iez
has a point y€Y with p(fly,yi)$€ (1€2).

>0 such that every 6-pseudo orbit {y (i.e.'p(fyi,yi+1)§ §)

i

Theorem 5. Let f be a homeomorphism of a compact metric
space Y and (Ya'¢a) a suspension of f under a continuous map

a:Y—+(0,®). (¥, ) has the P.O.T.P. if and only if (Y,f) has the P.O.T.P..

Proof. By Theorem 4 and Lemma 5.4, we need only show the

resulte when d=1. Let # denote the suspension of f under 1 and

—_— 17 —
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X =Y. which has the suspension metric d induced by a metric p of
Y. We suppose Y = yx{0}CX. For W = Y*[-1/4,1/4], we define
a continuous map Z:W—Y by f(y°*t) =y (y°te€ W). Put Uo(e) =
{xex: d(x,Y)SE} and Ul(e) = {xex: d(x,YX{l/Z})Se} for eSO.

Suppose (X,%) has the P.0.T.P.. Let €>0 be given. There is
€>€,>0 such that U,(€,)C W and U,(e;)nU; (€,) = empty, and such
that if d(x,x')ée0 for x,x'€ W then p(C(x),z(x'))$e. By Theorem l(b)

there is 6>0 so that every (§,1)-chain is Eo—traced. Let {yi}g be

a finite 8-pseudo orbit of £. By Lemma 8 in [13], it is enough

to show that there is yeY with d(fly,yi)$€ (0<isk). For t, =1

(0sisk), {yi;ti}g is a (6,1)-chain, hence there are x€ X and

g € Rep(€) such that d(yi't,X'g(i+t))§e0 (te[0,1], 02isk).

Since d(yi,x-g(i))éeo, we have x-+g(i)e UO(EO) (0sigk). Put y
z(x), then dlyy,y) = d(zlyy),2(x)) < €. We claim that if
Z(x+g(i)) = fly then r(x-g(i+l)) = £i*ly (0Sisk-1). To see this,
put z = fly. Assume [(x°g(i+l)) # £z, then there is n22 so that
g(x-g(i+l)) = f%z. Hence there is sle (0,1) such that-x'g(i+sl) =
fz. Since d(yi'sl,fz) = d(yi'sl,x‘g(i+sl)) s €pr We get yi°51§
Uo(eo), and so 51 € (0,1/4] or 51€ [3/4,1). When slé'(0,1/4],

3 L] L] < L]
since d(yi S’ 2 (1/2)) = € for some 0 < So < 8y, we have Y; soe

U,(ey). But, since y,°s,€ yi‘[O,sllC Ug(€y) s this contradicts

the choice of so. When sle [3/4,1), we get similarly the

contradiction. Thus C(x°g(i)) fly (0€isk). Therefore we have

IA

"(Yi'fiY’ = p(C(y;),C(x"g(i))) < € (05isk).

_/3....
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Conversely, suppose (Y,f) has the P.O0.T.P.. Let €>0 be given.
There is e>y>0 such that d(x,x')sy implies d(x-t,x'-t)se/3 (|t]|s2),
and that d(x*t,x)se/3 (|t|sy). We take y>8>0 and Y/9>x>0 such that
§-pseudo orbit of f is y-traced, and if he€éRep(6n) then gOhéRep(2€)
(geRep(e)). There is §;>0 with 6,/(1-6,)<y such that ally,s), (y',s"):
(s,s'€[0,1-x]) implies p(y,y')s8. Put Wj=Y°[—jn,jn} (1£3j$3) and take
50>0 so that B(Wj,GO)CWj+1 (j=1,2) and C(B(X,GO)AW)CB(C(X),Gl) (xeW) .
Put T=1+6u. Let a (GO,T)—chain P0={zi;si}g'be givenf We put x,=z,,
and define recursively xieYU(X-WZ) (1§i§k) by xi=c(zi) if ziewz, or
if zi€W3~W2 ewz} and by X;=2, otherwise. Then there is
t;21 such that x -t €YU(X-W,), Isi—ti|§6u, and that r={xi;ti}§ is

and zi—l.si—l

a (61,1)—chain. Suppose T is e-traced by (x,g). To get h€Rep(6n),
we define h(0)=0, h(Zésj)=Zétj (0<i<k), and extend h linearly betweer
these points. By choice of » and vy, it follows that PO is 2e-traced
by (x,g°h). Hence it remains to see that PO is e-traced. There

are y. €Y, Ti,TiE{O}U[n,l“n] and an integer n 20 such that x,=(y;,1-T.

n.
— - 1 + — ° -— 1 —_ . - )
and ti—Ti+ni 1+'ri (0£igk). Then Y;=%; (Ti 1) and £ Y; =%5 (ti ).

n

By choice of 61, we have p(f lyi,yi+1)§6, so that G= {yo,fyo,...,
n,-1 n

f 0 yO’Yl"'°'f kyk} is a 6-pseudo orbit. Hence there is ye€Y which

-~ - vi-l <3< — = Ji <ig
yYy-traces G. Put Ni ,20 nj (1£igk+1), N.=0, Si— zo,tj (0s1isk)

0

and x = y'(l—TO). We define a reparametrization g Rep by
f ‘ o —_
t (t<t0T0)-
' -1 - ' - !
(Ti+Ti4p) T(ES T+ (Tg= 104N, ) (8- T St<S;475,4)
gl(t) = 9 i _ :
: _ . _ . < o
t 20 (Tj+'rj+1 1) (Si+ii+1=t<si+l Tidl
_vk-1,_, _ _
|t ZQ (Ti+14,-1) (Sp=Ty $ t )

: n.
C _ . . -1« i . _
where i=0,1,...,k-1. Since ]Ti+Ti+l 1lsa((f Yir T (Y017 T )

— 19 —
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= d(xi-ti,xi+1) < 61, we get for t,s€R (t#s),
g(t)-g(s) _ 1 _ _
14 =="5 1| s maxg ;e g lTi+Ti+1 1 s 8;/(1-67)5 y-

Hence g € Rep(y)C Rep(e).
Let t;e[0,sk] be given. We shOW'd(xo*t,xog(t)) S €.
Case (1): Oststo—ré. t is expressed as t+1-1'0 = m+1 for some

integer m 2 0 and Tt € [0,1). Then we have d(xo*t,X'g(t))v=

d(xge (Ty=14m+t ), x* (1o=14mtt)) = d((£My) T, (£1y) T)<e/3

because p(fmyo,fmy)é Y.

N << -1 ! <1<k - 1
Case (2): si+1i+l=t-si+1 Tiel (0sifk-1). t is expressed as
t-Si—Ti+1 = m+T for some m20 and 1¢[0,1). Then we have

d(xo*t,X'g(t))

- E S
= d(x. O(Tj+t

it1” TERCIRERES

(14 i+1-z j

+m+T s (m+T+S. +T
i+1™m Jex: (m Sl

d(yi+1°(1+m+1),y'(1+Ni+1+m+1) )

m+1+Ni+1

m+1
yi+_1)'T,(f y)*T) < €/3

a((f

m+N

m i+l
because o(f Yie1? £

y) £ Y.
Case (3): Si—Ti§t§Si+Ti+1 (0€isk-1). Then t = T+Si—Ti for
1 <71 < <
some T with O§T=Ti+Ti+1 -1+6182. We get

d(xy*t,x"g(t))

g d(Xi+1*(T-Ti),x‘(g(Si—Ti)+T)) + d(x'(g(si—Ti)+T),x'g(Si-ri+r))‘

— 20 —
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P

fa((f “y;)°T,(f
n, N
Sd((f yi)'T,yi+1“t)+d(yi+fT , (£

i+l S et atea(S .
y)*T) +€/3 (since |g(s,;-T{)+T-g(S;-T{+1)[SY )

oyt ) +en3

Se/3 + €/3 + €/3 = ¢

n N

i i+l
because p(f yl,YlH_)éYr p(Yi+1'f

y)sy and |1] £ 2.
. S -1t € 3 = -
Case (4): SkrTi- t. t is expressed as t Sk+T Ti for some

0$TST£. Then we have

A

. ' . T - k-1 ' V_
dx, " (£, +T-TL) % (T=Tp48, = 1" F(Ti+1. ;1 -1)))

n, +1 n, +1+N

atE* Tyt e X Ky 5 63

n, +1

k nk+1+1\;k

because p(f yk,f , y) £ Y.

Therefore the finite (61,1)—chain {xi7ti}§ is e€-traced and by
Theorem 1l(c) we have that (X,%) has the P.0.T.P.. The proof is

completed.

§6 Isometric flows.

Let X be a compact metric space. A flow (X,%) is isometry
if there is a metric d on X with d(x't,y’t)=d(x,y) (x,yeX, teR).

(X,#) is minimal if for every x€X the orbit of x is dense in X.

Theorem 6. Let M be a compact connected manifold and ¥
an isometric flow on M with respect to a Riemannian metric d.

If (M,?) has the P.0.T.P., then (M,%) is minimal.

Proof. Assume that (M,?) is not minimal. We will show that
(M,?) does not have the P.0.T.P.. Since # is isometry, # preserves
the measure y on M induced by a Riemannian metric 4 and so the set

Q={y€M: for every €>0 there is a sequence tn+m with d(y,y'tn)<€ }

A

N -



is dense; this follows from Birkoff's return theorem [9].

By assumption there is x€M such that the orbit of x, 0(x), is not
dense in M. Since Q is dense in M, there are 2eQ and e€>0 so that
Vn B= empty for v={yeM: d(0(x),y)se} and B={yeM: d(z,y)se}.

Assume that (M,¢@) has'the P.O0.T.P.. Then there are 6>0 and T>0 such
that (§,T)-chain is e-traced. Since M is connectéd, we can find

a sequence {xi}g such that xo=z, X, =X and X,€Q (0<isk-1), and such
that d(x;,x;, ,)<8/2 (0sisk-1) and {xi:osiSk} is §/2-dense (i.e.
{yeM: d(y,x;)<8/2 for some x,, 0sigk} = M). As x:;€Q, there is
t,2T with d(x;-t;,x;)<8/2 (0sisk-1). Put £,=0. Then {x;t,}5 is
a (6,T)-chain, hence there are ye<M and g€Rep(e) with d(xo*t,y'g(t))
se for teto,zlg"lti]. For K=g(]f 't,), since a(x,y*K)=d(x,,y"K)se,
we have d(0(x),y) € d(x°*(~-K),y) = d(x,y°K)$e ; i.e. y€ V. On the
other hand, since d(z,y)se, we get yeB, hence VN B is not empty.

This is a contradiction as well. .

Remaik 1. Let f be akhomeomorphism of a compact connected
manifold M. Usiné minimality of f; A.Morimoto showed‘that if f is
isometry and the dimension of M 2 1 then f has not P.O.T.P. [10].
This:result was generalized in the case of distal homeomorphisms.
on compact'connected metric spaces by N.Aokifl].

Remark 2. 1In Theorem 6, the converse is not true. There is
an isometric minimal flow'which does not have the P.O.T.P.. For
‘example, let £ be an irrational rotation (ofientation presefving)
hoheomorphism of the circle Sl. ‘Then the suspension space of
(Sl,f) under 1 is just 2-torus Tz and the induced flow 8 is
isometric and minimal. But (T2,¢) does not have the P.O.T.P.,

because (Sl,f)'does not have the P.O.T.P. (see Remark 5) and

Theorem 5 holds.

—- 2% —
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Remark 3. There is an isometric minimal flow on S1 which
1

has the P.O.T.P.. 1Indeed, let ¢ be a constant rotation flow on S°~.
Sincei(Sl,¢) is a suspension of the identity homeomorphism of
a single point space; ({p},id.), (Sl,¢) has the P.0.T.P. by
Theorem 5 (it is clear that ({p},id.) has the P.0.T.P.).

Remark 4. In general, the direct product of flows with the
P.O.T.P. need not to have the P.0.T.P.. For example, let (Sl,¢)
be a constant rotation flow. This has the P.O.T.P. as in Remark 3,
but the direct product flow (Slxsl,¢x¢) (i.e. (¢x¢)((X1.X2),t) =

1

(¢(X1,t),¢(x2,t)), (xl,x2)€slxs , t€R) dose not have the P.O.T.P.

by Theorem 6, because ¢gxg is isometry and is not minimal.
Remark 5. Let g:XxR—X be a flow on a compact metric
space X. A time T-map of ¢ is a homeomorphism of X defined by

fT=¢(~,T):X—f+X. In general, a time T-map of flow with the

P.0.T.P. need not to have the P.0.T.P.. For example, let S1 =

{zeC: |z|=1}, d(zl,zz)=|zl-zz| (zy,2,¢ sl) and ;zﬁ(z,t)=ze2ﬂ-:Lt

1, teR) where i=/-1. Then (sl,¢-) has the P.0.T.P. as in

ezan.

(zeS
Remark 3. The time T-map f, of ¢ is given by fo(z) = z
fT dose not have the P.0.T.P.. Indeed, for every 1/2>§>0,

{62n1n(T+(6/2))}n>0 is. a 6¥pseudo orbit of f,. But there is

no point which can 1/2-trace this §-pseudo orbit.
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