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§1 Introduction.

| Vandermeer suggested that some chaotic dynamical systems have
a kind of predictable behaviors in their orbits, and he called
such systems "resolved chaos". We will give some quantitative
discussion for this idea taking account of the fluctuation from
deterministic dynamical systems., Vandermeer's "resolved chaos" ha
had a background in population biology which describes (n+1)th
year's population from n-th year's, and we will consider iteration
of 1-dimensional unimodal maps. ( See Vandermeer{1}. )

A unimodal map‘is a map with only one local maximum. See §2
for a precise definition. We denote the critical point of a uni-
modal map £ by k. Then, let x;k,‘considering how many times
the orbit of x by iterations of f ( i.e. f(x),f2(x), **=<+ )
stays in [0,k), we denote this by n(f,x) and call it sojourning
time of x in L[O,k). ( See Fig.1. For example the sojourning
time of xo in Fig.1 is 2. )

In population biology under constént supply of resource the
population flush at a year leads a serious struggle for existence,
and in consequence next year's population is very rare. Here the
Sojoufning time says how mamy years it will take for the populatio:
to recover from rarity and return to the level of k.

By the way, if we think the dynamical system given by itera-
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tions of a map f as a model of some biological or physical systep
it seems natural that the real systems are described by adding

’

some fluctuation to the model, for the procedure of modelling

always include a kind of approximation and idealization. Hence we
define some kind of neighborhood of f called "S-neighborhood" ang
denote it by U(f,8) 1in §2. Here & represents strength of
fluctuation. We will consider random iteration from U(f,8), which
means that (n+1)th state is given by X 41 = gn(xn) where x_ is
n-th state and g, 1is randomly chosen from U(f,8). We can also
define sojourning time for such random iteration system and denote
it by n({gi};:O,x). In general, sojourning time of the modelling
systems n(f,x) is easily computed but that of the fluctuating
systems has wide range. Therefore we are interested in the follow-
ing protlen.

Problem.

How accurate can we predict sojourning time of fluctuating
systems by sojourning time of the modelling systems? And so, is
there some relationship between error of the prediction and
strength of fluctuation?

Here the error of prediction in the problem is

An(f,8) = sup In({gi},x)—n({gi},x)l
{g;},{gl}cU(f,8) and x e (k,f(k)+8]

In our framework Vandermeer's result is that there exist
chaotic unimocdal maps which are predictable on sojourning time.

We show that it is reasonable to think entropy as degree of
chaos in §3 and a relation between entropy and sojourning time is

also given there. For anexplicit discussion we give a definition



141

of 1-parameter family "with resolved chaos™ in §4. Roughly saying

we say that a family is "with resolved chaos" if the system is the
more chaotic the more predictable on sojourning time as the para-

meter of the family tends to infinity. We will study some suffici

ent condition for the family with resolved chaos in §4. Theorenms

given there indicate that resolvability of a family depends on the

order of increase of entropy of the family. We can apply the S

results given in §4 to a well known population model by R. May[3].
( See §5 for the detail. ) |
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§2 Notations and Definitions.
Some frequently used notations are collected in this section.
(1) R =1[0,+=)
(2) ent(f) = topological entropy of a map f.
(3) enty(f) = metric entropy of a map f.
(4) 1£47a,b]' ( resp. 'f+¥la,bl' ) means that £ is strictly
monotone increasing ( resp. debreasing ) on (a,bl.
We always consider continuous maps from R, to itself except

for §3.



Definition 1. '"unimodal map"

Let f be a continuous map, f£(0)=0 and satisfy one of two

following conditions.

(A) There exists a positive constant k such that £+[0,k]
and f¥lk,+=).

(B) There exist positive constants k and k' such that
£470,k3, f+lk, k'] andA £20. on [k',+»).
Then f is called-a unimodal map, and k 1s called a turning
point of f.

To construct a fluctuating system for a given map £, we needi
to define a set of maps near f <called "6-neighborhood”,

Definition 2. '"6-neighborhood”

Let f ©be cecntinuous and bounded, and ¢ 1s an arbitrary

positive constant, then U(f,8) = {g: g:R >R, such that

(1-8/sup(£))-f(x) < g(x) £ (1+&/sup(£f))-f(x)
for all x € [O,sup(f)] ,

0 < g(x) < sup(£)+8 for 2all x e [sup(f)+3,+w). }
is called 6—neighborhood of £,

Letting {gi};:dCU(f,é) and  x_, = gn(xn) be taken for a
fluctuating system to a deterministic system X 417 f(xn), the
problem is how we will be able to predict a behavior of the fluctu-
ating system by the non-fluctuating system. Let us begin with our
definition of "sojourning time".

Definition 3. '"sojourning time"

Let f be a unimodal map and (g, }] (FU(£,8). We denote

{gi};fo by G. We define sojourning time in [0,k] for G denoted

by n(G,x) as n(G,x) = inf{ m: gn® gn 1 08g(x) <k}



here if { m: gmogm_1\nogo(x) <k }= ¢, we set n(G,x) = +ow,
Especially sojourning time by a map g ( i.e. g;=g for all i )
is denoted by n(g,x).

The "length of rarity time per population flﬁsh x" which
Vanderméer studied equals n(f,x)-1. Here, we are interested to
know how far sojourning time will be fluctuated as the choice of
G from U(f,8) varies arbitrarily., After the first iteration of
gOeU(f,ﬁ), the value go(x) must be smaller than f(k)+S8. Hence
we are permitted to estimate sojourning time for xeflk,f(k)+d7].

Definitibn 4. estimate of sojourning time
We define An(f,8) such as
An(f,8) = 0 if f(k)+8 < k otherwise
| | sup |n(G,x)-n(G',x)]|
xelk,f(k)+8] and G,G'cU(f,S)
where if both n(G,x) and n(G',x) equal +», we set

n(G,x)-n(G',x) = 0.

To take primarily the supremum of the definition for G and
G', we have é following lemma.

Lemma 2-1.
If k<f(k)+S§, then
An(f£,8) = sup In(f+,x)—n(f_,x)]
xel[k, f(k)+6]
where fi(x)-= (1t6/£(k))f(x) respectively.

Through "toughness" defined right after we know how large we

can take § if we want to predict the sojourning time of a fluctu

ating system from non-fluctuating one's with a error of =*1.



Definition 5. '"toughness"

T(f) = sup{S6: n(f,8)<1} 1is called a toughness of f.

§2 Degree of chaos and sojourning time.

First we consider a unimodal map from a closed interval to

itself.
Definition 6.

Let I be a closed interval and I=la,B8]. Then a map f
from I todtself is called unimodal if there exists k such that
a<k<B, f+{a,k] and £v[k,8].

Here we also define sojourning time just same as Definition 3
et f be a unimodal map from a closéd interval I to itself,
£f(k)>k and define N(f) by N(f)=n(f,f(k)). Then we can give a
relation between N(f) and ent(f) by Milnor-Thurston's kneading
theory. ( See Milnor-Thurstonl[2]. )

Theorem 3-1.

Let f be a unimodal map from a closed interval I to

itself with f(k)2k. Let w_ = be 1/( positive minimal zero of

DT o441 ). Then we have

t
(1) w <w ,q and w 12 as ntite
(i) If N(f)<+tw, then 1og(wN(f)) < ent(f) < log(wN(f)+1),

otherwise ent(f)=2.

It is well known that ent(f)>0 leads the chaos studied by

Li-Yorke[4] in the interval dynamical system given by iterations

of f. In case of the chaos studied by Li-Yorke, we often observe -

RS i b
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the so called "window phenomena", that is theré exlist stable perio-
dic points and almost every points of the interval are attracted

to the stable periodic points. However we need to observe the
system for infinitly long time if we want to see that an orbit
becomes asymptotically periodic. In the present paper we discuss

a "transient" orbit starting from x>k and we don't discuss
whether the orbit will be attracted to some periodic point or not.
Complexity of a "transient!" orbit is represented by topological
entropy i1f we recall the definition of it and therefore we can
regard entropy as a degree of chaos here.

Through Theorem 3-1 we see that N(f) is a characteristic
number for the degree of chaos of a unimodal map f.

Now, let us return to a unimodal map from Ig to-1tself. If
f(k)>k, f can be confined on [0,f(k)) and the chaotic behavior
of iterations of f take place in [O,f(k)]. Therefore we may
consi&er a interval map ‘fI[O,f(k)]’in place of f.

Lemma 3-2

Let f be a unimodal map‘from R to itself and fk)zk.
Then we have entd(f) = ent(fl[O,f(k)])'

This lemma gives a corollary of Theorem 3-1.

Corollary 3-3

Let f be a unimodal map from. R to itself, f(k)>k and

define N(f) = n(f,f(k)). Then we have
1og(wN(f)) < entd(f) < log(wN(f)+1) if N(f) < +o,
otherwise entd(f)=2.

Hence by Corollary 3-3 N(f) is also a characteristic number
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for the degree of chaos in case of a unimodal map from }% to
itself,
We give a sketch of the proof of Theorem 3-1.
Step 1. If N(f)=0, then ent(f)=0.
( We can easily see that the kneading determinant of £ is 1/1-t
r 1/1+t. )
Step 2. If N(f)>2, then ent(f) is positive.
( There exists 3-periodic point of f. ) v
Step 3. Suppose ent(f) be positive, and let s = exp(ent(f)).
Then there exists a continuous nontrivial nondecreésing map g

from I to [0,2] such that following diagram commutes.

I———g——ﬁb,ZJ ~ Here, FS(X) = |s*x onl[0,1]
t ix_jg_;{ple Ts s+(2-x) onl1,2].
( This is a direct consequence of Theorem 7-4 of Milnor-Thurston[2].)
Step 4. Under the situation of Step 3, N(f):N(FS) or
ent(f):log(wN(f)).
Step 5. We can verify that Theorem 3-1 is true for the plecewise
linear map FS by caluculating directly.
Step 6. Now we are ready td complete the proof of Theorem 3-1.
We may consider only these four cases by Step 1 and Step 2.
r N(f)=0, then it follows by Step 1.
N(f)=1 and ent(f)=0, then it follows by the fact that wi1=0.

N(f)<te and ent(f)>0, then it follows by Step 3,4 and 5.

N(f)=+e, then directly caluculation shows that the kneading

\

determinant is (1-2t)/(1-t). Therefore ent(f) is 1log 2. //
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§ 4 Prediction of sojourning time and resolved chaos.

Now using the conceptions defioned in the previous sections,
we cén st te a little quantitatively Vandermeer"s "resolwed chaos"
such as "If a map with high degree of chaos has large toughness,
then we say that the map is with resolved chaos.". This statement
is not enough for mathematical discussion because the words "high"
and "large" in it are very vague in the meaning. Henee we give
a definition of resolved chaos for'1-parameter family of unimodal
maps as follows.

Definition 7. '"resolved chaos"

Let {fA}K:O be a 1-parameter family of unimodal maps. We

say this family is with resolved chaos 1f it satisfies
(1)  1lim N(f

A
2>+
(i) There exists a positive &¢ such that for all s€l0,680)

) = 4o and

1im An(fx,é) 1.

A>too

fin

The degree of chaos of {fk} increases as Artw by the
assumption (i) and sojourning time is predictable for a fluctu-
ation smaller than 6, as A>+e by the assumption (ii).
Proposition 4-1
Let {fk} be a family with resolved chaos, then under the
notation of Definition 7, we have lim T(fy) 2 So.

A>Foo

We will study some sufficient conditions for resolved chaos.

Hereafter we assume that a unimodal map f satisfies k=1, £(1)=1
and f(x)>0 for all x€R, through this section. f 1is necessaril

ly a unimpdal map of type(A) in Definition 1 from this assumption.
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We consider a 1-parameter family {fk} defined by fk(x):xnf(x).

Next theorem connects the decreasing order of f with the

increasing order of N(fx).

Theorem A4-2.

Let alzsup f(x)/x and az=inf f(x)/x. If ai<teo gnd a2>0,

xe(0,1] . xe(0,1]
th we have
en . N(f ) )
1+%\1xﬁ Tocr (3T og TOU S i_~ ~Tog f()\)/log xoan
N(f,) :
Tim .
Aot 108 f(K)/lOG A=
) o s log £(X) _ .o
Especially, 1lim N(f,) = +» if and only if lim ~~j%gfjf—" ¥
A+t A>too
. N(f,)
and if 1lim N(fk) = +o, then lim ~Tog f(k)/log X T
A>too A>too

We think a little wider class of 1-parameter families of uni-
modal maps. Let £, K (x) = A*k+f(x/k), then the turning point of
fk,k is k and N(f
{F

]

N(fk)' We get a l1-parameter family

X,k)
K} by letting k 'be dependent on A and defining szfx,k(X)'
Now we study some conditions on f and k(A) which ensure

that {F\} is with resolved chaos.

Theorem 4-3.

We assume f 1is twice differentiable at 0.

Let §83=1im A+k(A). If one of two conditions

A>+ oo
. X log £(\)
(1) lim k(A) > 0 and 1lim - =0
A>too A+t A_log A)? :
() k(A)¥0 as At+e and 1im. - log £(1) =0

Noie AE(AJ(Tog XJ2

is satisfied, then we have TIim An(Fx,é) <1 for all &ef0,68:).
A>+o

- 10 -
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One can easily verify next corollary of Theorem 4-3 by Theor:
L-2.
Corollary 4;4.
If N(Fk)ﬁ+m as A+>tw, then the conditions (I) and (II) are

equivalent to (I)' and (II) respectively.

(1) k(A) £ 0 and 1 HE) 0
I lim A) = an im ~——=— = 0.
N>t oo X++wk-log A
: ) N(Fx)
(1) k(A)¥0 as At+eo and ]iirf:o'ok’k(Mlog - = 0.
Remark.

We consider the case where both A and %k depend on a para-
meter t. Let A(t)++» as t+>+w, then Theorem 4-3 is also true i
we replace the limit for A>+e by the limit for t>te,

It is obious from Corollary 4-4 that if 1lim N(FX):fw, (I)!
and (II) leads f to be with resolved chaos. XE;Zalling Theoremn 3
we may consider that (I)' and (II)' indicate that resolved manner

a 1-parameter family depends on the increasing order of entropy t

the parameter of the family.

§5 An example from population biology.
We consider a population model by R. May[B] such that

X = Xnexp(r(T—Xn/c))

nt1
where X is a population of n-th year, r 1is a growth rate and

¢ is a carrying capacity. Fixing the carrying capacity and lettd
the growth rate to infinity, we have a 1-parameter family of uni-

modal maps {Fr} where Fr(x) = xeexp(r(1-x/c)). Instead of thi:

family we can consider a family »{fk} defined by

- 11 =



f}\(X) = )“X’eXp("—X/k<)\>)’ k(}\.) = i‘ﬁg—é—“x.

( If ec=1, then fi(x)=x-exp(l-x) satisfies the assumptions in §4.
For example, 1 is the turning point of f1 , £1(1)=1, ai<+wo, a,>0,
f1 is twice differentiable at 0. ) We examine the results in §/
to this family,

(1) lim -log £1(X)/log A = +o

A>+oo
Hence we see lim N(fA) = +o from Theorem 4-2.
A>t oo -
(i) 61 = lim A-k(A) = +o and

A>+o

lim -log f1(A)/A+k(A)(log A)%2 =0
A+

Hence we see 1im An(fx,ﬁ) < 1 for all 6>0 from Theorem 4-3.

A>+oo

Therefore {fk} ( i.e. {Fr} ) is with resolved chaos. We also

get 1lim T(F_) = +o from Proposition 4-1.
r>+w T
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