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RATE O((n 1 log n)*) OF RISK CONVERGENCE IN THE EMPIRICAL BAYES

BOOTSTRAP ESTIMATION : CASE OF RETRACTED DISTRIBUTIONS

by Yoshiko Nogami

University of Tsukuba

1. Introduction.

The empirical Bayes (EB) problem involved here is the same one as stated i:
Nogami (1983). We use the same notational conventioms. We often let P(h) or
P(h(w)) denote Sh(w)dP(w).

For the uniform distribution U[0,06+1) where 0&(~»,») Fox (1970) exhibited
a distribution-valued Lévy consistent estimate an for G. In the empirical Baye
problem where the Gi are iid with a common unknown prior distribution G, Fox (1
the second Remark after Theorem 3.1)\indicated (without rates) a convergence of
the expected risks to the Bayes envelope R(G)(=R) for a bootstrap decision rule
based on component procedures Bayes vs &n. In this paper we consider the squar
error loss estimation and exhibit two distribution-valued Lévy consistent estima

~

&n and &n for G involving the family p(f) of retracted distributions into the
interval [0,0+1). We furthermore obtain two bootstrap estimates $n and 2n (for
0) with a convergence rate 0((n~llog n)%) for both R(@n,c)—R and R(gn,c)—R.
This paper is essentially dealt with an application of the compound estima
in Nogami (1982) for the empirical Bayes problem. Differently from Nogami (198

we here exhibits two kernel type EB estimates and the proof of Lemma 4.5 is

slightly simpler than that in Nogami (1982, Proof of Lemma 2.5).
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In Section 2 we obtain an upper bound of R(ﬁn,G)—R for any bootstrap

R

estimate En (for 0). 1In Section 3 we introduce two EB estimates $n and ¢n. We
- 1 A
shall obtain, in Section 4, a rate 0((n llog n)?) for R(¢n,G)—R and, in Section

5, the same rate for R(@n,G)—R.

2. An Upper Bound for R(%,,G)-R.

Let 0= (~0,»). Assume (O<)m—leSl throughout the paper. Let 6n be any dis-
tribution-valued random variable which is an estimate of the unknown prior

distribution G, obtained from X ,xn,xéxn

1 where each Xi~P=fPe dG(8) for

120

Peep(f) and X~Pe(656n+l). Define an estimate for 6 by

(1.1) t (0)=/5,.6 q(8) dG_(8)/ SX,, q(8) dG_(8)
: n Y xrg® 4 n x'+ ¢ n :

When R(%n,G) and R are finite, we have

X A 2
(1.2) (0<) R(E,6)-R = E(2_(X)-6,(X))

where ¢G(X) is the Bayes estimate vs G at X of the form

_ X X
(1.3) 6o (X) = S3:,0 a(8) dG(8)/ Sy, a(B) dG(6)
where the affix + means the right limit and hereafter we abbreviate it.
To get a bound we need to set the following assumptions on: G:
A i) For some (0<)e<l and a positive constant B

sup su [G'(y)ls B (<+»).

yé%é,sﬁ:)
A ii) For a positive constant C,

sup Fle(yHl-e)=G(y+e)} T dy < ¢ (<ho).
(0<)e<1/3

Lévy distance for two distribution functions F and H of random variables (cf.

Feller (1971), p.285) is defined by

L(F,H) = inf{e>0: F(y-e)-e<H(y)<F(y+e)+e for all ye (-o,0)}.
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Remark that the infimum in the definition atta&ins (see Appendix of Nogami
(1975)).
In this section we shall find an upper bound for (1.2). Since by (1.1) and

(1.3) X'<%n(X), ¢G(X)SX, we have I%n—¢G]sl. Hence, for any 0<e<l,

(1.4) E(%n(x)-¢G(x))2 < EIL(6,G_)>e] + E{(en(X)-¢G(X))Z[L(G,En)ss}}.
The main development of this section is Lemma 1.6 in which we show that two
terms in the rhs(1.6) below are both no more than a constant times 82 for 0O<e<1
which in turn the second term of rhs(1l.4) is no more than a constant times Ez
To reach the bound in Lemma 1.6 we shall use Lemma A.2 of Singh (1974), Proposi-
tion A of Nogami (1975) and Lemma A.3 of Nogami (1975). Hence, we shall state
them here beforehand.

Lemma 1.1. (R. S. Singh (1974)) Let y, z and B be in (-~w,») with z#0 and
B>0. If Y and Z are two real valued random variables, then for every y>0

B(| (1/2) - (y/2)|mB)Y < 20O o Vg gy |Y

+ ((v/2)Y + 2—(Y_l)+BY)Elz—Z|Y}
where a+=aVO.

Lemma 1.2. (Proposition A of Nogami (1975)) Let I be a finite interval and
let FI be the retraction of a distribution function F into the closed interval
[F(a+),F(b+)]. Then,

L(F},6) < | (F-6) (at) [ v| (F-G) (b+) | VL(F, )
where we use + on the line to denote the right limit.

For Lemma 1.3 we need to introduce the following definition:

Definition 1.1. With h, a function defined on a real interval I, the modulu

of continuity of h is the function given by
ae) = sup{h(wl)—h(a)z): wy> WL, Iml—wz»] <&}

for every e>0.
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In Lemma 1.3 below, the natural generalization of the inverse probability
integral transformation is used to develop bounds for the same difference of
integrals in Lemma 8' of Oaten (1969, Appendix) without partitioning as in
Oaten's proof.\

Lemma 1.3. (Nogami (1975, Lemma A.3)) Let I be a finite interval {a,b}
supporting finite measures U and vV and let h be measurable on I into a finite
interval [é,d]. Let F and G be distribution functions inducing M and vV with

F(a-)VG(a-)<F(b+)AG(b+). Then ]fh d(u—v)l has the following family of bounds

iEﬁ{l (F-G) (a-) | +| (F-G) (b+) |}
’ + a(L(F,G)+) {F (b+) AG(b+)-F (a=) VG (a-) }+ Q%EJU(I)—v(I),.
We first apply Lemma 1.1 of Nogami (1981) for %n(X) and ¢G(X). (This lemma
is eséentially the Fubini Theorem.) Since by this lemma ¢G(X) = X -

Uaatta(e) de(®) ae/si,a) ac(e)l,

(1.5) ]tn(X)—¢G(X)[2 = I{féf§,+tq(8) dG(e) dt/fi,q ac}
(s a(0) dB_(8) dt/rh,q ab_(0)} 7. ‘

Letting rhs(l_.5)'==[(v/w)--(V/W)]2 and * denoting conditioning on X and {L(G,an)ss}
we apply Lemma 1.1.
-2 2 -2 2,
(1.96) the second term of rhs(l.4) < 8E{|w| E*[v—VI }+12E{|w[ E*]w—W{ i
To get a bound for the second term of rhs(1l.4) we bound rhs(1l.6). To do so, we
shall furnish the following two lemmas:
Lemma 1.4. For any 0<e<l1/3 and with z=X'+t for 0<tsl,
~ 2
(1.7) E{] (6-G_) (2)|/w"} < c(1+2B)e

where B and C are positive constants in A i) and A ii).



Proof.) By the definition of L(G,Gn) and by the fact that the infimum in

the definition of Lévy distance is attained, we have

(1.8) [(G-&n)(z)[[L(c,én)se] <€ + G(zte) - G(z-E).
Thus,
(1.9) 1hs(1.7) < €E(w 2) + E[{ G(z4e)=G(z=€)} /w>].

But, since the second term of rhs(l.9)=/{G(x'+t+)-G(x"+t-€)}f(x)/w dx, by the
Taylor expansion applied to G(z+€)-G(z-€) and by two applications of f = 1 for

the first inequality and an application of Aii) for the second inequality,

z'+tte

Xv+t_€lG'(Y)|dyf(x)/w} dx

(1.10) the second term of rhs(1.9)=/1S
< 268/ {G(x)-G(x")} T dx < 2eBc.
On the other hand, since E(w_2)=fw_l f(x) dx, by two applications of £<1 an
an application of Aii) we have
(1.11) Ew %) < c.
This and (1.10) gives us the asserted lemma.
Lemma 1.5. For any 0<e<1/3 and with z=X'+t and u=X'+s for 0<t, s<1,
(1.12) VEg*{]((G—@n)(z))((G~an)(u))|/wz}SSQZC(1+ZB)2.

Proof.) Let h}z=h(b)—h(a) until the end of the proof. As in the proof of

Lemma 1.4, for 0<e<1/3,

2 ute } z+e

+ a{c]zfi + ¢1" €1+ ¢

(1.13) j(c_an)(z)]](e—an)(u)l[L(G,En)se] < e e

Thus, in the similar fashion to (1.9) and by applying (1.10) énd (1.11), we hav
(1.14)  1hs(1.12) < e’c + 2678 + B{61%7E 61%7C ).
But, again, applying the similar method to obtaining (1:10) leads to

(the third term of the extreme rhs(l.14)) < 48232C

which completes the proof.

We shall now find an upper bound for both terms in the rhs(1l.6).



Lemma 1.6. For O<t<l,

X'+t

X1 a8 (0) - 1) ac0)’ Y

(1.15) EE, { (U5

< m%ce?{m + 2(wrl) (1+2B)} 2.

Proof.) Let the numerator in the curly bracket be |Y-y|2. By letting
I=(X',X'+t], define by GI the retraction of G into the closed interval ,
[6(X'),G(X)]. Then, by Lemma 1.2, L(G,,6,)<L(G,G_)VSVT where $=|(6-G_)(X") |

and T=] (G-G_) (X'+t)|. Thus,
(1.16) L(G,én) < e ==> L(G,8)) < evsvI (2)).

By applying Lemma 1.3 with h(8), the retraction of q(6) to I, and weakening the
resulted bound,
(1.17) L(GI,&I)sA ==> ]Y_Y\Z < {a(+) + m(s + T)}z.

To bound G (A+), pick wl, wzel such that O<wy-w;<A. Now, by the definition
of h and q, h(wz)—h(wl)=q(m2)—q(wl)=q(w2)q(wl)(fxi f(s) ds - fgii% f(s) ds) and
since q<m and f<1, lh(wz)—h(wl)}fémzl. Thus, by Definition 1.1, a(k)mezk.
Thus, the same bound applies for 0(A+). Therefore, by (1.17) and weakening the

bound

(1.18) L@, 8k == [v-y|? < (o’ + m(m+1) (5+D)}7
Thus, in view of (1.16) and (1.18),
1hs(1.15) < me2E(w™ %) + 200 (wHl)e (E(S/w2)+E(T/w?)] + m2(atl) 2{E(s2/w?)

+ 2E(ST/w2) + E(Tz/wz)}.
Thus, applying (1.11), Lemma 1.4 twice and Lemma 1.5 three times. leads to the

asserted bound.
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From (1.4), (1.6) and Lemma 1.6 we obtain
Theorem 1.1. If Peep(f) for (0<)m_l§f§l and G satisfies the assumptions
Ai) and Aii), then for 0<e<1/3,

~ ~ 2
- R< >
R(tn,G) R E[L(G,Gn) e] + cos:

where c0=20m2C{m+2(m+l)(l+2B)}2.

3. EB bootstrap estimates $n and @n.

We first construct normalized (but not monotonized) estimates G and G* of
an unknown prior G and then get a distribution-valued (monotonized) estimates,aI
and én for G. We then play Bayes vs én and én to get $n and $n’ respectively.

Let Q=(—¥,w). Let Q be the distribution function defined by

Q(y) = {Zg(@) dG(8) for every y.
Since q21 and q is the density of Q wrt G, it follows by Theorem 32.B of Halmos
(1950) that
(3.1) 6 = 7 a®) ™" dace).
This form gives an estimate of G by inserting an estimate for Q in place of Q.

Letting p(y)=fp6(y) dG(8), we have by the definition of Pg that p(y) =

f(y)(Q()-Q(y')) and by a telescopic series,

- v° PG-1)
(3°2) Q(Y) - Zr=0 f(y—r)'

We remark that if the r-th term of rhs(3.2) is nonzero, then

cee 0 1.

3. -1 < 10
(3.3) r-1 < range of { 1° 62, a
We shall first exhibit $n' To estimate Q, we introduce a kernel function

which is a nonnegative bounded-variation function vanishing outside the interva

(0,1) and satisfying
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(3.4) 0 <K(y) <1 and fé K(y) dy = 1.

Let us first estimate p(y) by ﬁ(y)=(nh)_12?=lK(h_l(Xj—y)) where

O<h=hn(<l)+0 as m+°, In view of (3.2), Q(y) is estimated by

Scoy = 72 BG-T)
(3'5) Q(Y) - Zr=o f(y__r)'

Thus, by (3.1) we estimate G(y) by

(3.6) W) = 1Tq@e) ™t dae).

We use a raw estimate of the empiric distribution Gn of n parameters 91,... > 8
from n populations as an estimate of G. Let Fn(y)=n—12?=l[xj§y]. Since

Fn(y)SGn(y)SFn(y+l), we get a raw estimate
(3.7) C,(y) = (F_(y)VH(y))AF (y+1).
We let 5=N_l, N being a positive integer depending on n, and consider the follow-
ing grid points on the real line: ... < -26<-0<0<8<28< ... . We finally estimate
G at y by
(3.8) én(y) = sup{G_(38): 36<y, 3=0, *1, £2,...}.

Our EB bootstrap estimate @n(X) at X (for 0) is of form
(3.9) 3@ =X, eqe) at_)/rE, qee) at_co).

n X n X n
Similarly, we shall exhibit gn. To estimate Q, we use above kernel

function without the assumption fé K(y) dy = 1 in (3.4). 1In view of (3.2) Q(y)

is estimated by

* =5 -1
(3.10) Q*(y) =2 __,(nh)

n -1 N
L, IK(h T(X,-y+ £(X.)}.
=1 (h 7 ( 57y r))/f( J)

Thus, by (3.1) we estimate G(y) by

(3.11) Wi (y) = /7 @) aqx(e).



Hence, as above we get a raw estimate

1]

(3.12) Gx(y) = (F_()VI%(y)) IF_(y+1)

and finally estimate G at y by

(3.13) én(y> sup{Gx(38): josy, 3=0, 41, .
The second EB estimate (for 8) @n(X) at X is of form -

X
X!

(3.14) 3.0 = 1% e ab e/ ae) 4G (o).

N

4. A Rate O((n—llog n)~) for R(cAbn,G)—R.

To get a rate of convergence for R(@n,G)—R we use the bound of Theofem 1.1
we shall get an upper bound for E[L(G,an)>€] (forthcoming Lemma 4.6). This
bound is essentially given by bounding l—@({G(y—e)—eﬁén(y)sG(y+€)+€}) (forth-
coming Lemma 4.5). Therefore, main part in this section is Lemma 4.5. But,
since we will apply Theorem 2 of Hoeffding (1963) for its proof, we need to get
the bounds for gﬁ(y); with a positive constant bl’ G(y+h)+blh for an upper boun
and G(y)—blh for a lower bound (Lemma 4.4). To do so we shall furnish Lemmas
4.1, 4.2 and 4.3.

Throughout this section we assume =[c,d] where —o<c<d<+». In addition tc
the assumption on f in Section 2‘we also assume that 1/f satisfies the Lipshitz
condition:

(4.1) supl (v=u) " (E(v)) To ¢ (u)) T rusvim
for a finite nonnegative constant M. This is equivalent to
(4.2) | (£(s)/£(t)) - 1| < M|s-t].

By the definition (3.7) of ﬁ; ﬁ¥n_12?=lﬁj where for each j
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@3 nw =T Y @en™ dt{K(h"l(xj-t+r))/f(t-r)}

where the subscript t in dt denotes the variable of integration. To find bounds
for Eﬁ(y) we shall find an upper and a lower bound for ﬁj' Fix j and use the
corresponding notations without subscript j until the end of the proof of Lemma
4.4. Hereafter, we abbreviate g(b)-g(a) to g]z until the end of the proof of
Lemma 4.5.

Lemma 4.1. For 0O<h<1,
@4 [h@®) R - 1) + S| < M arennw)

where N=d-c+2, I(y)=(h/q(y))fé K(u) [6-y<hu] du and S(y)=hfzwfé K(v) [6-t<hv] dv
) f]z+ldt.

Proof.) Because a function satisfying the Lipshitz condition is absolutely
continuous (cf. Ryden (1968), p.108)) and 1/q is clearly absolutely continuous,
1/f(.-r), 1/q and K are all of bounded variation in the definition (4.3) of W.
Applying integration by parts (Saks (1937), Theorem III. 14. 1) and using

d(q(t))_l=f]z+1dt gives us that

-1 -1
~ _ @ Kt T(X-y+r)) _ v +* K(h “(X-t+r)
(4.5) hw = r=0 f(y-r)q(y) —er=0 f(t-1)

t+1
f]t dt.
Taking expectation wrt Pe and multiplying (q(@))"l on both sides gives

y_r+h[esS<e+1]K(h‘1(S_y+r))iggg__ ds

(4.6) h(q(e))_lPeﬁ = (q(y))_lZc::Ofy_r £(y-1)

) fzwzj=of§:§+h[953<9+11K(h'1(s—t+r))%%%%;7 as £15 ae,

Changing the variables u=h—l(s—y+r) and v=h—l(s-t+r) for the integrals in the

first term and the second term, respectively, we get

10



(4.7) rhs(4.6) = h(q(y))_lzo;ofé K(u)[6—(y-r)Shu<6+1—(y-r)]“‘“—fg;f;;?u) du

Since by (4.2) I(f(t-r+hv)/f(t-r))~l[SMh4for 0sv<l, applying telescopic series
gives

4.8)  |n@®) Rgl - T + S| (@) T K@) [6-y=<hu] du

t+l

. ldt}.

+ fzwfé K(v) [0-t<hv] dvlf]

Since (0<)K<1l, [6-t<hv]<[B8-h=<t], If[t+l|

<MA] and (q(y)) <1, rhs(4.8)
SMh2(1+(MAl)(y—6+h)) which proves the lemma.
Following Lemma 4.2 is straightforward, so we omit the proof.
Lemma 4.2. For I(y) defined in Lemma 4.1,
4.9 h(q(®) T8yl < 1(3) = h(q(8)) L[e<y+h].
Lemma 4.3. For S(y) defined in Lemma 4.1

(4.10) IS(y) - hlB<y1((a(y)) T = (@@ ™HI = ouaryn’.

Proof.) Since by (3.4) fé K(u)du=1,

.11)  s(y) = w(7 qese1e]™ae + Y [e-hee<olst k(vyav £15ae .
- ‘ ~ nl(e-t) t

t+1

§+1 N |<MA1 and (0<)K(*)s

since /7 [6st] £] " dt = [6<y]{1/q(y) - 1/q(8)}, using |f]
and weakening the resulted bound leads to the asserted bound.
We are now ready to prove the following lemma:
Lemma 4.4. Tor any ye[c-1,d+1],
(4.12) G(y) - bjh < EW(y) < G(y+h) + b h
where bl={(MA1)+M(1+(MA1)N)+hA((l+h)MAm)}mi

Proof.) From Lemmas 4.1, 4.2 and 4.3 and after a little computation,

(4.13)  [9y1/q(8)-b,h < P,ii/q(8)<[0<y+h]/q(8)+[y=8<y+h]{(a(»)) "~ (a(8)) 1 14b,

11



where b2={(MAl)+M(l+N(MAl))}. From the definition and f<1,

(4.14) [y<e<y+h1[(a(x)) = (@(®) | = h.

On the other hand, lhs(4.l4)=[y£6<y+h]ﬂ(q(e)/q(y))—l[/q(6)}S«l+h)M)Am where the
last inequality follows because q_lﬁl and the Lipshitz condition (4.2). Thus,
putting these together gives lhs(4.14)<hA((1+h)MAm). Therefore, noticing q<m
leads to

W< [6<y+h] + b.h

[6<y] - b,h < E 1

2 ~8
where Ee means the expectation wrt n products of the conditional probability

distribution P6 and b =b2+lA((l+h)MAm)h“l). Taking the expectation wrt G gives

1

the asserted bound.
Following Lemma 4.5 becomes a direct generalization of Lemma 3.1 of Fox

(1970) in the empirical problem in the sense that if f=1, then m=1 and M=0 and

hence we get his bound 2exp(—2nh2€2).

Lemma 4.5. If O<h<e<l, then for each y
2nh2<(e—blh)+)2

(4.15) 1 - E({c(y-€)-e<C(y) < G(y+e)+e}) < 2exp{- 5
(by+2b,)

where b3=(l+(N+l)M)Am(N+l) and b4=(m(MAl))A((N+l)(1+MN/2)).

Proof.) For any y, it is sufficient to prove the lemma for the raw estimate
ﬁ; for if G(y-e)-€ < ﬁ(y) < G(y+e)+e, it is easily checked that G(y-g)-€ <
WAF_(+1)<C(y) < WHVF_(y) < G(yHe)+e ae. (GPy)".

As in the proof of Lemma 3.1 of Fox (1970) we shall apply Theorem 2 of
Hoeffding (1963). To do so we shall use the bounds for Eﬁ(y) in Lemma 4.4 and
furthermore need to get an upper and a lower bound of ﬁj for each j.

In the definition (4.5) of % since K(h_l(X—y+r)}20 when X-h<y-r<X, there is

at most one positive term in the first term of rhs(4.5). Applying (4.2) and the

12



fact that rsN and K<l gives that
0 £ the first term of rhs(4.5) < 1+(N+1)M.
Since f_lSm, q_lél and K<1, we also have the first term of rhs(4.5)<m(N+1).
Hence, putting these two bounds together gives
(4.16) 0 £ the first term of rhs(4.5) = (I+(N+1)M)Am(N+1).

In the same way, .

(4.17) the second term of the rhs(4.5)

-1
S AR _ K(h ~(X=t+r))
JZ T oo[¥tr-hst<Xir] flt-1)

t+1
f]t dt.

<MA1,

Since the summation in r has at most one positive term and since Lf]E+ll
f—lSm and K<1, we have
(4.18) [ (4.17)] < hm(MALl).

On the other hand, by changing a variable u=h_l(X—t+r)

! o) —l -
(4.19) 4.17) = w= b Kyt

=0’ - [O<ugl]

Tt (£ (Rr-hut1)=£ (Xbr-hu) ) du

Since‘f(X+r—hu+l)/f(X—hu) < 1+(r+1)M and K<1, extending the range of iﬁtegratio
leads to
(4.20) [ (4.17)] < h(WL) (1HIN/2).
Therefore, putting two bounds (4.18) and (4.20) together and using h<l gives
[(4.17)|sb4.

Therefore, in view of (4.5), (4.16) and (4.17), b, < hif < bytb, .

We now apply Theorem 2 of Hoeffding (1963). Since hse, using the second

inequality of (4.12) in Lemma 4.4 and applying Theorem 2 of Hoeffding (1963) gi

(h.21) E[W(y)>G(yte)+e] < EW(y)-EW(y)>e~b h]
2P ((ebym D
< exp{- 2 3.
(b3+2b4)

13
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Furthermore, by the first inequality of (4.12) {ﬁ(y)<G(y—€)—E}C{gﬁ(y)—
ﬁ(y)>€—blh}. Hence, by the symmetry of the tail bounds, E[ﬁ(y)<G(y—€)—€] <
rhs(4.21), which together with (4.21) gives us the asserted bound of Lemma 4.5.

With 6n defined by (3.8) we can use Lemma 4.6 (Nogami (1982, Lemma 2.6))
below for an upper bound of the first term of the right hand side of Theorem
1.1. By the triangular inequality applied to the first inclusion sign,
{L(G,an)>2€}C{L(G,Gn)+L(Gn,@n)>2€}C{L(G,Gn)>€}U{L(Gn,@n)>€} where G_ is the

empiric distribution of 61, cee ,Gn. Hence,

A

(4.22) E{L(G,G )>2e} < E{L(G,G )+L(C_,C )>2e}

IA

Q{L(G,Gn)>e}+g{L<Gn,6n)>e}.

We shall use Lemma 4.6 below to get a bound for the second term of the extreme
rhs(4.22). Since the proof involves only on the truncation of the raw estimate
ﬁ(y) into [Fn(y),Fn(y+l)] and the monotonicity of an, the same proof as Lemma
2.6 of Nogami (1982) applies. Hence, we omit it.

Lemma 4.6. (Nogami (1982, Lemma 2.6)) For any €>0, if h<e and 6<e, then

Ly e ™M1 (ehs (4.15)).

) E[L C -
(4.23) E{ (Gn,Gn)>Ze] < (S

For bounding the first term of the extreme rhs(4.22), we use Lemma 4.7
below.

Lemma 4.7.

(4.24) Q{L(G,Gn)>€} < 2exp{—2nez}.

Proof.) Since the lhs(4.24=§({G(y)>Gn(y+€)+€}U{G(y)<Gn(y—€)—€}) <
E{G(y)>G_(y+e)+eHEIG(y)<6 (y-e)-e} < GlG(y)-G_ (y)>e}+6{G (v)-G(y)>e}. Since
Q(Gn(y))=G(y), Hoeffding's inequality (1963) applied twice gives us the asserted

bound of the lemma.
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Lemmas 4.6 and 4.7 gives

l+1) [e'l+1] (rhs (4.15))+2exp{—2n€2} .

(4.25) | E[L(6,G )>2e] = (8~

To get a rate of convergence for R(@n,G)—R defined in (1.2) we use the
bound of Theorem 1.1. Le£ us assume =[c,d] in the definition of p(f). Since
the similar proof fo that for Theorem 2.1 of Nogami (1982) does work, we shall
omit the proof of the following theorem:

Theorem 4.1. If Peep(f) with §i=[c,d] and f satisfying the assumptions
(O<)m_lsfsl and the Lipshitz condition (4.1) and if G satisfies the assumption
Ai) and Aii), then there exist positive constants a; and a, so that, for an with
a.h=a 6=(n_llog n)%,

1 2

(4.23) ]R(@n,c) - R| = 0@ Tlog m)?).

3 2
5. A Rate O((n_llog n)?) for R(¢n,G)—R.

To get a convergence rate for R(@n,c)—R we shall proceed in the similar
fashion to Section 4. In this section we dare not assume Lipshitz condition
(4.1) or equivalently (4.2). As we can see from Section 4, Lipshitz condition
(4.1) leads Lemma 4.5 to a direct generalization of Lemma 3.1 of Fox (1970).

Even in this section we may be able to use this assumption (4.1) for;this purpose

However, we may not have much interest of it, so that we do not assume (4.1).

By the definition (3.11) of W*, W* = n’lZ?=lwf= where for each j
(5.1) mix =20 Y qen ™t a km T x -t /£(x,))
’ j r=0 "~ t j j

where the subscript t in dt is defined in (4.3). Fix j and use the corresponding
notations without subscript j until the end of the proof of Lemma 5.3. Following

Lemma 5.1 corresponds to Lemma 4.1.

15



Lemma 5.1. For O<h<1,

_l i
(5.2) h(q(0)) "PW* = I(y)-S(y)
where I(y) and S(y) are defined in Lemma 4.1.
Proof.) Let g]2=g(b)—g(a) until the end of the proof. By the similar

reason to getting (4.5),

-1 -1
o = v°  Kh "(X-y+r)) _ ,y.*° K(h “(X-t+r)) t+1
(5.3)  me =3 KLUeyi)) pven KG( £15 e,
Thus,
(5.4)  h(q(8)) TRgux = (q(y))—12j=0f§:§+hK(h_l(s—y+r))[6Ss<6+l]ds
—{z§i=of5:§+hK(h‘l(s-t+r»{esS<e+1]ds f]z+ldt.

Changing the variables u=h_l(s—y+r) and v=h_l(s—t+r) in the first and second

integration in the rhs gives

(5.5) rhs(5.4) = h(q(y))_12j=0fé K(u) [6-y+r<hu<b+1-y+rldu

_hf,};zlofé K(v) [6-t+r<hv<6+1-t+r]dv f] !t:+ldt.

Two telescopic series leads to the equality in the lemma.
We use Lemmas 4.2 and 4.3 to get following Lemma 5.2 which corresponds to
Lemma 4.4.
Lemma 5.2. For any y
G(y) - mh £ EW*(y) < G{(y+h) + 2mh.

~

Proof.) By Lemmas 5.1, 4.2 and 4.3 with MA1l replaced by 1,

IN

[6sy] - hq(8) < PgW*

[B<y+h] + q(8) [y<O<y+h]{ (q¢(y) =(q(8)) 1} + q(®)h

IA

Thus, applying inequalities (4.14) and (0<)q<m and taking average wrt j and then

expectation wrt E leads to the bounds of the asserted lemma.

16
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Following Lemma 5.3 is no more a direct generalization of Lemma 3.1 of Fox
(1970). However, as the author stated at the beginning of this section, we can
easily check that if we have the Lipshitz assumption (4.1) on 1/f, then resulted
Lemma 5.3 would be a direct generalization of Fox's lemma.

Lemma 5.3. If O<h=<e<l, then for every y
(5.6) 1-E({G(y-€)~e<G*(y)<C(y+e)+e})

2nh? ((e-2mh) )2
((1+2h)m)

-

< 2expi-

Proof.) The proof is similar to that for Lemma 4.5 except bounds for Wj*.
In view of (5.1), we have that 0 < the first term of rhs(5.1) < m because
(0<)R<1, £ 1<n and q‘ls1. Similarly, (4.18) with MAl replaced by 1, gives us
]the second term of rhs(S.lﬂ < hm. Therefore,
-m < Wk < (h'1+1)m.
Using Lemma 5.2 and Hoeffding's bound (1963) gives the asserted bounds.
As in (4.25), Lemmas 5.3 and 4.7 gives

L1y (e Y1) (rhs (4.6)) + 2expl-2ne2}.

(5.7) E[L(G,G ) > 2] < (8~
Therefore, we obtain withouﬁ a proof

Theorem 5.1. If Peép(f) with>(0<)m_leSl and if G satisfies Ai) and Aii),

- 1
then there exist positive constants kl and k2 so that for klh=k26=(n llog n)*,

(5.8) [R(G_,0)-R| = 0((n "log n)°).

17



1314

REFERENCES

[1] Feller, W. (1971). An Introduction to Probability Theory and its
Applications. Volume II (2nd ed.), Wiley, New York.

[2] Fox, R. (1970). Estimating the empiric distribution function of certain
parameter sequences, Ann. Math. Statist., Vol. 41, 1845-1852.

[3] —— (1978). Solutions to empirical Bayes squared error loss estimation
problems, Ann. Statist., 6, 846-853.

[4] Halmos, P. R. (1950). Measure Theory, Litton Educational Publishingg.

[5] Hoeffding, W. (1963). Probability inequalities for sums of bounded random
variables, J. Amer. Statist. Ass., 58, 13-30.

[6] Nogami, Y. (1975). A non-regular squared-error loss set-compound estimation
problem, RM-345, Department of Statistics and Probability, Michigan

State University.

[7] ———————— (1981). The set-compound one-stage estimation in the nonregular
family of distributions over the interval [0,0+1), Ann. Inst. Statist.

Math., 33, A, 67-80.

[8] —————— (1982). A rate of convergence for the set compound estimation in
a family of certain retracted distributions, Ann. Inst. Statist.

Math., 34, A, 241-257.

{9] —————— (1983). Exact rate n—z/3 in the empirical Bayes estimation: case
of retracted distributions, (accepted from the Proceedings in
Pacific Area Statistical Conference, North Holland).

[10] Oaten, A. (1969). Approximation to Bayes risk in compound decision problem,
RM-233, Department of Statistics and Probability, Michigan State

University.

[11] Royden, H. L. (1968). Real Analysis, The Macmillan Company, New York.

[12] Saks, S. (1937). Theory of the Integral (2nd ed.), Monografie Mathematyczne.

[13] Singh, Radhey S. (1974). Estimation of derivatives of average of uU-densities
and sequence compound estimation in exponential families, RM~-318,
Department of Statistics and Probability, Michigan State University.

18



