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12 PROPERTIES OF SIMULTANEQUS-EQUATION ESTIMATORS
IN THE ECONOMETRIC MODEL
by
Kimio Morimune
2. The Model and Symbols

A single structural 2quaticn such as (1.2) or (1.3) is denoted as

TLTTR iy @1

where vy and yz are T-compcnen:z {columm) vectors of T observations on two

endogenous variables, Z; is a T X K, matrix of observations on K; exogenous

variables, 8 1s a scalar paTazeter, Y4 is a Kl-component vector of parameters,

and u is a T-component vectcer of {(uncbservable) disturbances. The whole system

-

consists of many structural 2quatidns such as (1.1). The whole system may be

written as YB+ZT=U where B ané [ are coefficient matrices of endogenous and

exogenous variables, respectively. Post-multiplying the system of equations

-1 . . ; . . - .
by B 7, it follows the reducec form equatioms of v, and y, which may be denoted

1
BN

as

]

"
4

)

S v (2.2)

where Z is a TxK matrix of sxczzoous variables of rank K, g is Kx2 and consists

- . . -1 .
of two columns of -Bl ~, and V=(wv

1 v7) is a Tx2 matrix of (unobservable) dis-

.. =1 . -
turbances consisting of twocolumsof UB ~. The rows of V are independently amd

aormally distributed, each rcwhaving mean Q and (nonsipgular) covariance matrix

{2=(mij3, 1,j=1,2. (The reducst Form equation represents the stochastic structure
of the endogenous variables: tiiey are determined by 311 exogenous variables which
may be taken as input into the system, reduced form coefficients, and error term V.

However, the reduced form equztien does not include any economic informatioms. On

the contrary, specification of each structural equation is determined by a priori
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or economic informations.) To relate the structural equation (2.1) to the

reduced form equation we partition [0 into Kl and K7(=K—Kl) rows and into two

-

columns: it =(ﬁij), i,j=1,2. 1If we post-multiply the reduced form equation
1, -8)!' i =T, .- =v.,=
by (1, -8)', the structural equation follows, where Y1 fll flzs and u=v, YZB

In order that the structural equation be properly written with Z2 omitted, it

must satisfy that

Ta1 = Tag® (2.3)

which brings on restrictions on the likelihood function and termed over-iden-—

tifiabilitv condition. In order that (2.3) be appropriate as KZ linear equations

) must be of ramk one, and T must have at least one non-

22

the matrix (7r21 7:'22

zero component. The components of u are assumed to be independently and
s . , . 2 c s . .
normally distributed with means 0 and variances 0 , which is defined to be

2
0 2R : )
W _Bm 2*% QZ

11 2°

Symbols used throughout this paper are the number of restrictions omn 3

included in (2.3) termed degree of over-identifiability:

the noncentrality parameter:

21
§ = — n;2 Z' (I - Z

wzz LR oL ~

N _
1(21 Zl) %1)% Toy (2.3)

defining a= (mzzs—mlz)/¢!Q| the coefficient of simultaneity:
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- o
p = cor(y, ,u )= -, (2.6)

/1+e”

and the total degree of freedom in estimation: T-K. (p and o are interchangeably
used because they are umiquely related. The term of simultaneity arises from

the fact that the correlation between Yy and u in (2.1) is essential for the
simultaneous aquation method. The symbol u2 is defined to be (lﬁzz)éz, which

is also termed noncentrality parameter in some papers. See Morimune (1983).)

It is assumed throughout that

1im(1/T)6% = comstant, 1im(1/(T-K))&° = v (2.7

T«)-eo Tesco
- . ; 2 . .
The first condition is reasomnable because § includes a moment matrix among
exogenous variables which grows in value as the sample size increases. The
second condition is necessary to distinguish T and T-K in our study. For sim-

plicity we standardize estimators in the next form:

- Mgy -
; S5 3@; -3 (2.8)

where 1 is LIML, TSLS, or OLS. The (traditiomal) large sample asymptotic

distribution of the BAN estimators such as the LIML and TSLS estimators stand-

~

ardized as e is the standard normal distributiom:

~

e, ~ n{0,1). i=LIML, TSLS (2.9

The k-class estimator of 3 is defined to be
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—lym
L gy, t (-
312 12
3 = , (2.10)
< gy, T =Ky,

where g.. and Cij are the (k, Dth elements of G=(gkl)=Y'Z'({—%l(%'%l)—l%i)%g,

aij
and C=(c,l)=Y'(I—Z(Z'Z)'lZ’)Y, k,1=1,2; the OLS and TSLS estimators are the
cases when k=0 and 1, respectively, and the LIML estimator is obtained when
k=l+kl, where Xl is the smallest root of the equation lc-ac] =0.

Under our model, the estimators standardized as e includes only four

~

2
parameters which are T-X, L, & , and « or alternatively o. (See Anderson,

2
Morimune, and Sawa (1983) which estimate values of a and & for various models.)

3. Empirical Distributions

We compare the LIML, TSLS, and OLS estimators of 8 by their empirical
st A . - 3/ ) -
distributions of 50,000 observations.— In experiments values of four key

2
parameters o , T-X, L, and & are chosen as follows.

Table 1: Values of Parameters in Four Models

5

5" 52 T-K L
Model A 0.5 25 25 5
Model B 0.5 25 20 10
Model C 0.5 25 15 15
Model D 0.5 25 10 20

The value of L+(T—X) is kept to thirty in four models. Since T=[L+(T—K)]+(1+K3)
where l+Kl is the number of coefficients in the structural equation (2.1),
the sample size T is thirty five if 14K, is five. It is easy to perform further

1
2
experiments by choosing various values of (L+T-K), &7, and ©0, but I want to
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confine this study to bring out effects of greater values of L compared with
T-K keeping their sum fixed. (Figures of empirical demsity functions under
various values of g are given in the Appendix.) There are some empirical

reasons to choose the value of 3 to be 25. See Anderson, Morimune, and Sawa

(1983).
Figure 1 gives four em— 9.5
A
pirical density functions of «n(0,1)
e IML of Models A to D. The
density in Model A is quite

close to the standard normal » : . :
o -3.0 =-2.0 ~-t.0 g.a 1.0 2.0 3.0

density functi t
ensity function even though FIG 1: Empirical LIML Densities for

it is skewed. If the re- Models a, B, C, ana‘D.

lative value of L is greater,

the densityrfunction is flatter and more’spread out while the mode almost stays
still. It is seen that the LIML density function is deviated far from the
standard normal density function in cases C and D.

The effect of greater

value of L is clearly found
if we look at the empirical
distribution function.

Fig 1-2 shows that the dis-
tribution function "rotates”
about the origin as the

value of L gets larger.

—

-3.0 -2.3 ~-t.0 g.d t.Q 2.0 3.9

This figure implies that,

FIG 1-2: Empirical LIML Distribution
Functions for Models A, B, C,
and D.



taking %lMLaS the function of degrees of over-identifiability,

L)l 26} 7 it il > L/ The distribution

~

i ! 1 (1

function has thicker tails if the value of L is greater.

LIML

Figure 2 gives four empiri-

cal density functions of rg of
Models A to D. The TSLS density
function is quite deviated away

from the normal density even in

Model A . It is deviated more

when the value of L is

greater. The TSLS density is . _ , ,
’ -3.34 =-2.3 -t.4 3.0 1.3 2.0

trated e about the mode
concentrated moxr b o FIG 2: Empirical TSLS Densities

for Models A, B, C, and D.

than the LIML density, but the

mode of the TSLS density is far from the origin. It seems improper to represent

the TSLS distribution by the standard normal distribution. This implies that

the BAN criterion is misleading to understand properties of the TSLS estimator

in realistic situations.

Figure 3 gives an empirical density

ES

function of e The OLS density func-

a
(91}

tion is invariant in Models A to D be-
cause it is dependent only upon L+(T-K)
which is comstant in four models and

2qual to T-1-K,: the sample size

1
the number of unknown coefficients. -2.g -2.3 -i.0 0.3 1;0
. . . FIG 3: Empirical OLS Densitie
This p s
figure clearly depicts how the for Models A, R, C,

and D.

\H\(O,l)
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inconsistent estimator is distributed and concentrated about a wrong value.

The probability that e is positive is almost zero in this case.

QLS
In sum it is found out from the empirical demsity functions that the LIML
and TSLS estimators are deviated from the normal density in spite of their BAN
properties. In particular the TSLS density is not close to that of normél even
when L is five or ten. The value of L which is ten is not unrealistic but

often found in empirical studies. Therefore it seems improper to use the TSLS

estimators in real models relying on its BAN property.

4, Asymptotic Expansions I

Properties of estimators are reviewed from the view point of the conventional
large sample asymptotic expansions in this Section. It may be new to compare
the estimators by nonparametric measures such as the asymptotic mode and per-
centiles.

Anderson and Sawa (1973) derived an asymptotic expansion of the distri-

-3/2, -

-1, .
bution of the TSLS estimator of 3 to 0O(T ). Their result to O(T ) is,

denoting 3(.) and 9(.) as the standard normal cdf and its demsity functiom,

~ 5 . , o,
28
2 2 '2 4 o
F a2 A 3T+ 5] a@) (e.1)

Anderson (1974) derived an approximation to the distribution of the LIML

estimator. His result to O(Tal} is



n

[
Ut

-8-
- ; o o .2 £ 2 -
Plong st =@+ F& - 75 (Lap) =20
2 2 4 s .
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iAnderson (1974) made some comparative statements about these wo expansions.
The probability in every symmecric interval around 3 is greater for the LIML
2 . . . -
estimator if o~ >2/(L+2). ‘It is expectad that the LIML astimator is concan—
tratad more about a true value than the TSLS estimator if the degree of over—
identifiabilicy and che simulranelcy ara largze. de also made some comparisons
. . _ . . 4/
using che first cwo mowents of asvmptotic expansions — . Instead of moments,

some nonparametric characteristics of asymptotic expansions are compared below.

First the asymptotic mode Of'eTSLS and e mp 3Te derived by setting the second.

derivative of (4.1) and (4.2) to be zero:

-1
AMODE g = (L +2)g/8 + o(T 7, (4.3)

AMODE, ; = 22 /8 + o(T ).
The AMODE is nor derived as an approximation to the exact mode. However, chis
is axpecred to remain &tTue under usual regularity comnditions Decause the sxact
mode may exist on the distributioms. (Similar remark is necessary for the

asymptotic percentiles discussed below.) It is found from (4.3) and (4.4)

~

o eTSLS 1s biased

that the centers of two estimators have the same sign as

-~

more than eLIML’ in particular, when L is large. Next, asymptotic percentiles

of the eTSLS and eLIML are calculated from (4.1) and‘(4.2) in terms of the percentiles

of n(0,1) : denoting xa the "a-percentile” of n(0,1), the same TSLS percentile

is given by
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2 2 2 1 z 2 -
a g , 2 _ o] Z L—o < v o e 4 3
fre = - (x =L +x &5 (x -2L) + 5 (= L) F+o(T T ¢.3)
TS a 8 a o 4 Q@ e = a
§ 248
similarly for the LIML estimator,
. 2 2
o = °~x2+xt'g‘-‘{2-'-l '(‘cz-'-L)I-':-o(l'_l) (£.9)
arT Rt TR Rl Z T G DI :

By substituting zero for X it is found that the asymptotic median of ®1sLs

is (Lp/8), but it is zero for e The LIML estimater is asymptotically median

LIML®
unbiased, but the TSLS estimator is asymptotically median biased, and it is
worse as L and p are greater in value. Tt is also possible to calculate the

asymptotic inter-quantile range (AIQR) between the (100 ~ @) percentile and the

a percentile. Then, by (4.5) and (4.6), the AIQR for the TSLS and LIML are

o 02 2 1- 02 2 1 -1 L7
AIQRg=2x [ 1 + [ 5(3, - 2L) + ———~(%, - L] } +o(T ), @.7
a8~ 28
& 2 2 1 2 pd 1
AIQR =2x [ 1 + | g—,— X + ‘_"7(3; + W] T+ ofT . (4.8)
37 287
T~ % £ 2 e a [0 ) ) ) N )
Lz is found that AIQRTS< AIQRLI for all values of xy. This implies that &rgrg 1S

concentrated more about the center of its distributiom, i.2., mode or median

-~

a0t about the origin, than e is. It also follows that

LIML
. a
BAIQRTS/ 3L <0, (4.9)
o 2 2 ,
BAIQRTS/ 30° <0 iz x, < 3JL. (4.10)
Then e is concentrated more about its center if the wvalues of L and pz

TSLS

are gr2ater. Since the firsc temm ZXa on the right side of (4.7) is the IQR of
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a0, 1), 2rqs is concentrated more about the center than the standard normal
distribution as long as x < L. (IfL is 3, x is the 92 percentile so that the

s

-

2quality holds.) On the other hand the mode of 2., is less biased than thac
i ey

of ®rSLS’ and e ML is asymptotically median unbiased. The distributionJerL: has

. - a a [V} .
fatter tails than eqg; o and n(0,1) because AIQRLI>AIQRTS and AIQRLI>2xa uniformly.

Further
aAIQR‘-fLI/ iL >0 (4.11)

which is opposite to (4.9), and

I+ 2 - 2
BAIQR__/ 30 < 0 if x < L. (4.12)
LI a
The eLIMLiS less concentratad if the value of L is greater and more concentratad

if the value of p  1is greater about its center of distributiom.

_ These theoretical properties derived by asymptotic expansions (4.1) and
(4.2) reassures characters of estimators found by examining empirical distri-
butions in the Section 3: Effects of L and pz on expansions summarized by
(4.9) to (4.12) have been realized by empirical distributions. (The effect
of o on empirical denmsities are summarized in the Appendix.) It may be reasonable

to say that properties of estimators observed from empirical distributions

hold wmore generally than only to the few models examined in the Section 3.

5. Asymptotic Expansions II

Anderson and Sawa (1979) performed various numerical evaluatiomns of the

€xact TSLS distributions. One result by Andersomn and Sawa (1979) is that the

asymptotic expansion given by (4.1) provides poor approximations to the exact
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TSLS distributions even when L is five, and «¢ is two (p2=0.8).

This inaccuracy of approximation may be explained, at least partly, by
terms of (L/S)i i=1,2,3 in the expansion. (The expansion is originally to 0(5_3),
and i=3 appears inm terms of 0(5-3).) To avoid this difficulty a new condition

is introduced recently: [=Q(T) oY L=0(/T). This seems the only way to incorporate

into the theoretical framework such an intuitive situation phrased as "the value of
is not negligible compared with the sample size, and L/§ is even greater than
one'., TFor simplicity effects of the condition L=0(T) on asymptotic expansions

are summarized in this section. (See Morimune (1983) for more comprehensive

5
analyses.) Together with the assumption (2.2), L=0(T) implies that—/

2
lim §2/L = 12, (5.1)

T

2. . .
where 7t 1is a newly defined constant. Once a new condition is added to the

-

analyses, the probability limit of e is given by

TSLS
p&fu/@;%m = ir:(a//f) (1 - (1/9))e (5.2)

2 .
where ¢=1+7 defining z=1/t . The eq.(5.2) implies that the TSLS estimator
is inconsistent (p.608 of Theil (1971); Kumitomo (1980)). The eq.(5.2) which

- 2
is a location of e, is a increasing function of pgiand L. Defininge=[1+(1-p -

TSLS

2,2 - . 2 . .
(207/¢v7))z], the asymptotic variance of e is e/9° which is less than

ISLS

~one. This variance is a decreasing funcitom of p and L. These relationships

between the two asymptotic moment and L or p are in agreement with the properties
. ' . -1, .

found from empirical distributions. The asymptotic expansion to O(T 7) is

given as follows.
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Vs 1, . 1 3.2
i 1 - = cl = (Y - =/ { - (= -
PUT (epgps-(t — P Sed < gk = e(g )17 (& -Di
< < *
i 4,2 .3 A 2 . L. 2 ; -
f'g'fz— (g - 3) + =5 (& - 106 + 15) +‘% (fz + Kl)} f 8(8) + o(T l), (3.3}
— 2 2,2 2 - 2 2, ..
where < = o(a+l) /wve ), <, = (L/e) [l +(20 /v ) I+(1/97) [(So /e)a +1246¢ ]

-2/ we)) (210D = (o 1u) (4+88) 1-(2/0) [1+(2C/) |, <3/6 = 0/ (A=) (2/e) ]
< /2 = (A7) /7] € (1/2) 1+ ") (0.5-(4/4")) g 1=(o” /) E-2(o% 19) (2 ~(D/ (1=0")) I}
S(1/67) [ (To2/(2e))al42+r } =2/ (e ) { (1=07) (4/€)A-E+1-(1/b) (a+43)} +(20*/ (96" =%)) 1
/(b ), defining a=-2/p, B3=(L/%) (9=2-(2/3)c} , C=1+{1-a"=(8 /(")) ]z,
D=L+{1~pz—(28gz/(9¢2))]c , and E=(1/9) [c-(c/(l—pz))}. This final result was

given by Morimune (1983) in the large L expamsion of the general fixed k-class
escimator.éj It is also proved by Morimune (1983) that the conventional large

sample asymptotic expansion of eyLs ° O(T‘l) coincides with (5.3) if we change

the definition of ¢ to the following:

. 2 2 2 .
g = (1/t7) + (/7)) = lda((L + T - X)/87). (5.%)
T
The ; expansion in this section is differemt from the conventionalleOLS

TSLS
2xpansion by one element. The new ¢ has effects on the location (5.2), the

dispersion, and the expansion itself. However it is naturally expected that

~ ~

r . ) . .. . . .
he distributions of ®4Ls and ETSLS are similar Figure 4 clearly depicts the

TSLS empirical demsity in Model A to
D and the OLS empirical density. The OLS
TSLS density in Model D is very close

Lo the OLS density in shape and location.

It is also seen that the OLS density is

-3.0 -2.0 -t.0 g.ao 1.0 2.3 3.0
FIG 4: Empirical TSLS and OLS Densities.
The leftest densitv is of the OLS
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a sort of limit of the TSLS demsity in the sequence where L increases.

The asymptotic expansion of the distribution of &ML under the additiomal

condition (5.1) is given belaw:

1: w22 e
E ale:.f—E} 2(g) + T /n & 8(8)
c 2 4 2 ]_._02_ 2,2
-=5{oTn(E -~ FT A R E =)
23 2Zn"

1

—92 2 2, .2 . ) €5.5)
. [(kO-SAO-B)a -.-A0+7x0+31}¢(5, .

2L - 0B (n +aEl +
- jal n ‘Ags zn

-1 . 2,2 , 2 2 ,
to XT ~ ) defining Ag =V /T, and n= 1+((1-0 )/= )(lfko)-
The mean and variance of the asymptocic discributiom of S ML under a2 new condicioh
iTe zero and . b e the location of ; remains at the origin.
T n Contraty to eTSLS’ LIML g

Iowever itcs dispersion 7 1s greater than unity which is the asymprotic variance of

-~

211ML in the conveational large sample theory. Ir seems that n characterizes

he well known "fat" tails of the LIML distributiom better than the traditiomal
malyses. The definition of n inplies that the asymptotic variance is a increasiz§
3 - = . - - = 2 ; i it
‘unction of L bur a decresasing fucnctiom of p . These relatiocuships agree with

yroperties of e summarized from empirical distributioms.

[ Accuracy of Approximations

~

Now I examine accuracy of the two kinds of expansions for each of e ML

-

mnd eTSi.S by Figures. Since the exact density has never been calculated for

he LIML estimator the empirical density is taken as the "true" gdemsity in
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Models are the same as those used in Section 3. I denote

v

accuracy checkings.
A, B, C, or D in each Table to make clear which model it is about. The thick
sotid line is evaluation of the demsity of the conventional large sample expansion.
The thin solid line gives the empirical demsity without smoothing. Asterisks*

are evaluation of the expansion given is Section 5. Asterisks are dotted at

every two decimals on the horizontal axis to avoid confusion with the empirical
density.

First Figures 5A to 5D depict the empirical density and numerical evaluations
of derivative of two expansions (4.1) and (5.3) for the TSLS estimator. It is
obvious from the four Figures that accuracy of the conventional expansion is
rather miserable; accuracy is worse if the value of L is greater but the expansion
is useless even when L is ten. On the other hand, the expansion given by (5.3)

is extremely accurate. It is accurate when L is as large as twenty in Model D,

but it is as accurate as the large sample expansion when L is five.

.0 -2, -i.0

g.s -

Empirical TSLS Density and
Asymptotic Expansions for
Model B.

FIG SA: Empirical TSLS Density and FIG 5B:
Asymptotic Expansions for
Model A.
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FIG 5C: Empirical TSLS Density and
Asymptotic Expaunsions for
Model C-

L3.5

FIG 5D:

Empirical TSLS Density and

Asymptotic Expansions for
Model D-.
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Table 2 below tabulates the mean and standard deviation of the empirical dis-

-~

tribution of e Table 2 also tabulates the probability limit and the asymptotic

TSLS®

-~

standard deviation of two asymptotic expansions for e They are zero and 1 in

TSLS®

the conventional expansion, and they are (5.2) “and /= /¥ 1in the large-L expansion.
It is surprising to see how closely the first two empirical moments are approximated |

by the large-L expansion.

Table 2: Mean and Standard Deviation of Crers

Model A Model B Model C Model D

E.D. large large| E.D. large large(E.D. lé.rge large{E.D. large large
-T -L -T -L -T -L -T ~L

mean |-0.60 0 -0.59{-0.99 0 -1.01{-1.32 0 -1.32|-1.57 0 -1.57
stand. | 0.89 1  0.82| 0.74 1  0.71 0.67 1  0.65| 0.62 1  0.60
e i

® ;TSLS - n(0,1) in the large-T sequence, but it is n(8(1-(1/¥)) o, E/q;z)

in the large-L sequence.

% -2.0 -1.0 8.0 1.0 2.0 3.0 -3.0 -2.0 -1.0 0.0 .0 0 g
7IG 8A: The Empirical Density and FIG 6B: The Empirical Density and
Asymptotic Expansions for Asymptotic Expansions for
Model A. Model B.
8.5 g.5

G 6C: The Emoirical Densitv and FIG 6D: The Emoirical Densitv and
Asymptotic Cxpansioans oK Asympcocrlc Expansions for
Model C. Model D.
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Figures 6A to 6D depict the empirical density and derivative of two expansions
(4.2) and (5.5) for the LIML estimator. It is again obvious from these figures
that the expansion given by (5.5) is generally more accurate than the large
sample expansion, and particularly when L is large. It is found again that the
(5.5) expansion is not worse than the (4.2) expansion even when L is five.

Accuracy of asymptotic moments are not studied. for the LIML estimator because

there are not proper estimators of exact LIML moments which “do not exist.”

7 - Improvement of the LIML Estimator

There have been some afforts to improve estimators. Probably the
nost important improvement from a practical point of view was proposed by
fuller (1977). He modified the- LIML estimator by subtracting a small comstant
from the smallest characterisctic root: A is replaced by (i-c/(T-K)) where c
. 7/ . .
is any coustant— For simplicity the modified LIML sstimator by Fuller will be
ceferred to as the F astimacor. The exact moments exist for the F estimacor. The
:raditional asymptotic discribution of the F astimator is the same as those of
he LIML znd TSLS estimators. The F estimator is BAN. Fuller also derived
‘he first two moments of the large sample asymptotic expansion and proved chac
the F estiﬁator is asymptotically umbiased to O(T_l) if ¢ is set to unity.
Takeuchi and Morimume (1983) has arrived at the F estimator from a different

riew point. The first theorem in their paper is the extemnsion of the recently

leveloped "third order afficiency” theories chat are mostly about i.i.d. observacions
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to the multivariate linear regression problem. The theorem is then applied to
the simultaneous equation model, in particﬁlariyto the subsystem model. Results
on the single equation model is a specific case of the subsystem model. If we
confine to the estimation of 8 in a single structural equation, their result is

-~

summarized as follows: let BBAN be a regular BAN estimator of B, and BALI
be the adjusted LIML estimator such that AMT(eALI)zAMT(eBAN) where AMT(') is
the mean operator dependent upon the derivative of the asymptotic expansion of

distribution to O(T-l) such as (4.1). Then, for any interval which includes the

origin, it follows that

%_5:2 T{P{Eli;ALIiEZ} - ':"{Elf_ ;BANE- EZ} } ; 0. (7.1
This result itself does not yeild a practical solution. However if the
cogparison is limited to the BAN estimators which do not include higher order
biases, namely that AMT(;BAN)=O, then the F estimator with c=1 is also the ALI
estimator. The F estimator is the best in the sense of (7.1) among all bias
removed BAN estimators.

It seems that the F estimator is the best for practice because its exact
moments exist, it is BAN, third order efficient, and easy to compute. It is
possible to add another advantage to this list. Morimune (1983) derived the

asymptotic expasion of the F distribution under the additional condition of

(5.1). 1It is found that, for any symmetric interval about the origin,

plle o< £} < Blle | <€} +oar™h, (7.2)

where the inequality is in terms of the large-L asymptotic expanmsiouns to O(T-l).
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Since the F estimator has not

been numerically analyzed much, I

first give the empirical demnsity

-~

function of es in Figure 7 for

Models A to D.

with Figure 1, it is found that

shapes of the empirical demsity

~

function of eF

to that of eLIML’

asymptotic expansion of this estimator is given by Morimune (1983).

is very similar

The large-L

If Figure 7 is compared

FIG 7:

The Empirical F Densities for
Models A, B, C, and D.

Here

I study accuracy of expansions only by comparing empirical moments and

moments of asymptotic expansions as they are given in Table 3.

Accuracy of the

Table 3: Mean and Standard Deviation of ;F
Model A Model B Model C Model D
E.D. large large{E.D. large large| E.D. 1large large|E.D. large large
=T -L - -Li - -L -T -L
mean 0.00 0.0 0.00.02 0.0 0.0{0.02 0.0 0.0 |-0.04 0.0 0.0
atand.dev.{1.11 L.0 1.06f1.26 1.0 1.14{1.48 1.0 1.26{ 1.94 1.0 1.48

~
o

AeE

~n{0,1) in the large-T sequence, but it is n(0,n ) in the large L sequence.

asymptotic standard deviation in the large-L sequence 1s not so accurate as it

has been observed in Table 2 with respect to e

TSLS

. However it gives better

‘approximation to the empirical standard deviation than the conventional large

sample sequence.
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Finally I calculate the probability of concentration about the origin

~ -~

for aLIML and eF.

P{—Ei_eLIMLig} in small samples even though this inequality holds in the

It is not sure whether P{-S'E.eFi_E} is greater than

large-L sequence. Figures 8A to 8D clearly confirm that the inequality holds

in small samples as far as Models A to D are concerned.

1.3 2.0 3.3

‘.;3 2.0 ' 3.3 1.4 1.d 2.4 3.3 3.0
FIG. 8A to 8 D: DP{-f<e<f} for positive { 1is figured with respect to
Sino 39 ep
8. Conclusion

There have been two objectives in this article to study properties of
estimators: first the partial effect of the degree of over—identifiability

and then the coefficient of simultaneity on the density functions of estimators.
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For this purpose I have set the value of key parameters as presented by Table

1 and Table 4 in the Appendix A, and performed Monte Carlo experiments to
calculate empirical densities. This analysis has brought out the/fact that

the BAN property of the TSLS estimator is misleading and not trust worthy in
small samples. This estimator is biased, and it is biased as much as the

OLS estimator in small samples when the degree of over-identifiability is large.
As for the LIML estimator, it stays still about the origin in small samples
under various sets of parameters even though the 'demsity functiom has a thick
tail when the degree of over-identifiability is large. It seems, on the whole,
that the LIML estimator is more reliable than the TSLS estimator because the
former is distributed about the true value any way, but the latter is distributed
about a wrong value in small samples. Numerical analysis also confirms that

the OLS estimator is biased in small samples: it is correct to assess the OLS

estimator in small samples by its inconsistency in the large sample theory.

Secondly the accuracy of the comventional large sample asymptotic expansions
and the new kind of asymptotic expansions for the estimators is studied by
comparing expansions with empirical demsities. It was found that the new kind
of expansions are more accurate than the conventional expansions for the LIML
estimator and particularly for the TSLS estimator when the degree of over—identi-
fiability ié large. The new expansions are as accurate as the conventiomal
expansions even when the degree of over—identifiability is small. This implies
that the smali sample properties of the LIML and TSLS estimators are represented

better by the new expansions than by the conventional expansions.



169

22—

This may be alternatively summarized as that the properties of the esimators
derived from the empirical distributions hold more generally than only to a few
models for which experiments are performed: the TSLS estimator is biased and
concentrated about the bias; the LIML estimator is not biased much but has thicker
tails than expected by the conventional theory.

It is known that the LIML and TSLS estimators are identical when the degree
of over-identifiability is zero. It has been also proved that the LIML, TSLS, and
OLS estimators are identical when T-K is zero, i.e., the degree of over-identi-
fiability is equal the sample size minus the number of coefficients. The con-
ventional expansion and the new expansion describe properties of estimators
between these two extremities. The conventional asymptotic theory classify the
LIML and TSLS estimator into the class of BAN (good) estimators but the OLS
estimator into the class of inconsistent (bad) estimators. The new expansion
classify the LIML estimator into the class of the best estimators (Kunitomo
(1982)) but the TSLS and OLS estimators into the class of inconsistent estimators.
The numerical analyses assure that the small-sample properties of estimators are

better assessed by the new expansion.

Finally I gave some numerical and theoretical analyses on the modified
LIML estimator by Fuller. In short, this modified estimator has similar distri-
butions as the LIML estimator, but it is more efficient than the LIML estimator

asymptotically in the new sequence and has exact moments.
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Footnote

Other method includes the full-system method: to estimate all coefficients
included in a system jointly, and the sub-system method: to estimate all
coefficients included in a subset of equations in a system.

The exact LIML distribution was derived by Mariano and Sawa (1972) but has
never been numerically evaluated. The exact TSLS distribution was derived
by Sawa (1969) and numerically evaluated by Anderson and Sawa (1979), but

it uses an Edgeworth expansion of the doubly noncentral F distributiom

in "exact™ calculations.

In short e, is a function of the four key parameters and independently
distributeé'standard normal random variables. See Morimune and Tsukuda
(1983) for details. ‘

These moments are defined to be the expected values of e and ez where
the integral is taken with respect to the derivative of (4.1) and (4.2).
However there are some ambiguity left in comparing mements of asymptotic
expansions because they are not necessarily approximations to the exact
moment—-paricularly when they do not exist. Further, the axact moments
do nmot exist for the LIML estimator. See Mariano and Sawa (1972).

If it is possible to derive a valid expamsion such as by Durbin (1980) or
by Kariya and Maekawa (1982), it may be unmecessary to assume that the value
of L increases to infinity nor to assume that the sample size T increases
to infinity. See Taylor (1983) for criticisms against the large-L sequence.

The equation (5.3) should be identical to the large sample asymptotic
expansion of the least squares: estimator in the fupctional relationship
model. This latter expansion was derived by Kunitomo (1980) but the
final equation is not given.

It is known that the exact moments do not exist for the LIML estimator
because (Gpy~ACpy) is positive semidefinite, but not positive definite.
Note that Gz and Cj2 are diagonal sub-blocks of G and C corresponding
to Yy, and a matrix imversion of (gzz -ACp,) 1s necessary in the LIML
estimation. If y is the smallest root of am equation I§22~¢Q22|=0, then
% < X, and there is a positive probability that the equality holds.
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