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Abstract. This is an attempt to the application of the
formulation of Fourier hyperfunction to a problem of operator
algebra. Let (M,R,a) be a separable continuous W¥-dynamical
system. Then any element in the continuous crossed product
MXJR can be expressed as a "operator valued Fourier hyper-

function" on IR.
§1. Introduction

Among the various operations in operator algebras, crossed
product is one of the most important tool not only for the
construction of examples but also for the structure analysis
of type II W¥-algebras (see [1],[2],[8],[9]). Let (M,G,u)
be a W¥-dynamical system. If G 1is discrete, then the
generic element of anG is expressible as a M-valued se-
quence indexed by G i.e. M-valued function on G. But in
general, it 1s so difficult to give a desireble expression

of the element of anG is G 1s not discrete.
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In this note, we have an intension to offer one trial

to answer the following problem of Fourier expansion.

Problem. Are there any suitable way to give an expres-
sion of the generic element of the continuous crossed product
anG of W¥-dynamical system (M,G,a) as a "function™ on G
with values in some topological vector épace similar to M 2

In the preceding discussions, we only consider the case
G =R and further assume that the predual M, 1is separable.
Throughout this note, we use the standard notion of continuous
crossed product (for example, see [9]) and the discussion on
standard form (see [3]). We also use the formulation of

Fourier hyperfunction and its vector valued version, see [4],

[51,06].

Remark. The problem of Fourier expansion for G = 1R
is already discussed by H. Takai [7] based on the analysis
of the predual of the crossed product Mx&ﬁ and distribution

theory. Our approach 1s different from this direction.
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§2. Twisted Plancherel Transformation

In this section, we consider W¥-dynamical system (M,G,a)
with locally compact abelian group G and present some dis-
cussions on Plancherel transformation for later use. The
crossed product anG associated with the W*—dynamicél system
(M,G,a) 1is a W¥-algebra generated by the following two families

of operators on a Hilbert space LQ(G)®H:

(2.1) [n(x)el(g) = a_,(x)E(g), x €M,

(2.2) [A(n)El(g) = £(-h+g), g,he G, £eLA(G)eH,

where H 1s some representation Hilbert space of M. Let
0l= K(G,M) be the set of all M-valued continuous (with re-
spect to the ¥-strong topology on M) functions on G with

compact support. Then (1l 1is a ¥-algebra by

(2.3) [ry#,1(8) = | £y(n)ag[f,(-htg)lan,
G

(2.4) f¥(g) = ag[f(—g)*],

where the measure on G 1is the Plancherel measure associated
with G. There exists a ¥-homomorphism T: Jl+-B(L2(G)®H)

given by

(2.5) [#(£)E)(g) = j a_,L£(n)JE(~ntg)dn.
G
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The crossed product deG is also given by the weak closure
of @) (for example, see [9]). Now, we take H to be a
standard representation Hilbert space of M so that the
action a 1is implemented by a unitary representation U of
G on H i.e. ag(x) = U(g)xU(g)¥*, ge G, xeM (see [3]).

We define a twisted Plancherel transform E£¢€ iE(G)@H - £ §

12(G)eH by

(2.6) &£(k) = [ <k,g>U(g)e(g)dg, ke G.

G
Let & = K(G,B(H)) Dbe the set of all B(H)-valued continuous
functions on G with compact support, where B(H) is the
set of all bounded linear operators on the Hilbert space H.

We define a mapping f{— f‘, fep by

(2.7) B(x) = j<E§»ﬁgnngg,keé,

G
where the integral in (2.7) is in the sense of weak integral.
Then by Riemann-Lebesgue theorem, f‘elﬁ(@)@B(H) and we obtailn

the following facts.

Lemma 2.1.

(1) (£p%£,)(k) = £ (k) -F,(k), £p,7,€00.

(2)  T*(k) = T(k)*, ren.

(3)  (F(D)E,0) = (ng(D)E,0), e, g,z eL’(a)em,
where [ (£)E1(k) = F(R)E(K).

1

(4) 7o) = ess.sup||T(K)|.
keG

(5) j P(0)E(K)ak = f (g)e(-g)dg, £e0l, £el2(C)8H.
G
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Proof. (1)~(3) and (5) follow from the definition.
(1) follows from (3) and the unitarity of the twisted Plancherel

transformation & » é. R.E.D.
83. Embedding into FTOR,M).

Now we consider the special case G =1R. Here, we apply
the formulation of Fourier hyperfunction. Let T be the
self-adjoint operator on H satisfying U(t) = exp(itT),

teR, and {E(A)} be the spectral family of T i.e.

relR

(3.1) T = j AAE(A) .
- .

According to this decomposition, we set

(3.2) H, = E[-A,AJH, x>0.
For a triple of positive real numbers A = (e,A,n), we
denote by GA the set of all Hx—valued function ¢ on
U€ = Rxv/-1[~-e,e] which is
(a) holomorphic in the interior of U,

(b) continuous on Ue’

(¢c) sup ch(z)”eulzl

|I¢!{A< ®.
zeU8

Then we obtain the following facts.

Lemma 3.1.
(1) ¢, 1is a Banach space by the norm |-f,.

(2) There exists an injection OA > LEGR)®H with a




dense image.

(3) The (usual) Fourier transformation ¢ » 5 defined

by

(3.3) (k) = J e 1KE, (tyas

R

induces a mapping O(e,A,u) » G(usr,e).

(4) The mapping ¢ » Ud¢ defined by [Uop](t) = U(t)o(t)

induces a mapping 6(g,A,u) - G(e,k,ﬁ—k).

(5) Let €125, Ay

mapping 0(el,kl,ul) > 0(22,A2,u2) is a norm decreasing

2X5s My 2H,. Then the natural

injection.

Proof. (1),(2),(5) follow from the definition. (3)
follows from the property of Fourier transformation, ()
follows from the definition of HA’ Q.E.D.

- If we define the order (15X ,up) £ (82,A2,U2>v by
61;82,
{9A} is a projective system of Banach spaces (all mappings

k1;=k2’ ul;;ug, then by Lemma 3.1 (5), the family

are norm decreasing embedding). Now, we define a locally
convex topology on 8> (l, for which we denote by 7T, determined

by the following family of seminorms;

(3.1) 07 (1) = (] f(0)8(6)at,E)], 0e By, EcH.
v R

Definition 3.2. We define FTGR,B(H)) (resp. FTGR,M))
to be the sequential closure of B (resp. 0l) with respect

to rT1-topology.



Lemma 3.3. The twisted Plancherel transformation (for

G =1R) extends to give an automorphism of FTGR,B(H)).

Proof. By Lemma 3.1 (3),(4), the family {OA} is in-
variant under the twisted Plancherel transformation (2.6).
By Lemma 2.1 (5), 0% (%) = o1 (f), where (t) = ¢(-t).

¢, PR3

Hence we obtain the assertion. | Q.E.D.

Proposition 3.4. There exists a continuous injective

linear mapping MXJR > FTGR,M)CIFTGR,B(H)).

Proof. ’By the separability of My, H 1is separable and
hence, LEGR)®H is separable. It follows that the ¥*-strong
density of #@U 1in MX&R implies the weakly sequentially
density of #{1) in Mx&R. Asuume that {fn} is a sequence
in 0l such that zero Cauchy in r—topoiogy and Cauchy in 7-
topology, where T-topology is defined by the family of semi-
norms f ~ |(ﬁ(f)gl,£2)f, gl,gzeﬁLgﬂR)®H. Then {fn} is a
zero Cauchy sequence in t-topology by Lemma 3.3 and a Cauchy

sequence in 7 ,-topology by Lemma 2.1.(3), where ﬂd—topology

d
is defined by the family of seminorms f » ](ﬁd(§)§1,§2)[,
gl;gge_L20R)®H. By Banach-Steinhaus theorem and by the féct
that {%n} is a Cauchy sequence in nd—topology, {%n} is a
uniformly bounded sequence in LT (R)®B(H). By the definition
of t-topology, the family of seminorms defined by (3.4) sepa-
| rates LT(R)®B(H), we conclude that {%n} is a zero Cauchy

sequence and hence {fn} is a zero Cauchy sequence by Lemma

3.3. ‘Hence the identity mapping of (1 extends to gilve an
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injection MﬁﬁR > FTGR,M). : Q.E.D.
§4, FEmbedding into tensor product space

In this section, we show the existence of continuous
injection FTGB,M) > RGD)@SM, where R(@D) 1is the space of
Fourier hyperfunction on IR, and M is a topologiéal vector
space obtained by the sequential closure of M with respect
to the family of seminorms x » Pg,n(x) = | (xg,n)], £eH,,

Ae€R, neH. It is easily seen that CCGR)®algM is sequentially
dense in 0l with respect to m-topology, where CCGR) is the
set of all continuous function on IR wilth compact support.
Hence, CCGR)®algM is sequentially dense in FTGR,M) with

respect to t-topology.

Proposition 4.1. There exists a continuous injective

linear mapping F_(R,M) > R(D)8_M.

Proof. We define a locally convex topology on CCGR)galg

M, for which we denote by TW, determined by the following

family of seminorms:

W

o >|;¢60@ﬂU,EeHK,neH,

(4.1) ¢ ’E,n(f) = |<f, $8w

E,N
where @(e,u) 1s the function space defined in Section 3
with HK replaced by T and wg n is a linear form on M
3 - .
defined by W n(x) = (x£,n), xe M. Then by the similar
>

argument as the proof of Proposition 3.4, we obtain a continuous
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injective linear mapping from FTGR,M) to the sequential
closure of CCGB)QalgM with respect to Tw—topology. By
making use of the bipolar theorem, it is seen that the semi-
norms of Tw—topology coincide with the seminorms which give

rise to the g-tensor product of R@D) and M. Q.E.D.

Combining Propositions 3.4 and 4.1, we obtain a continuous
injective linear mapping MX&R > RGD)@SM i.e. any element
of MﬁfR is expressible as a "M-valued Fourier hyperfunction"

on IR.
§5. Discussions

The results obtained in this note is not so concrete,
only presenting the trial to attack the problem of Fourier
expansion in continuous crossed product. The remaining problem
is the following.

(1) Which space is more convenient to handle, FTGR,M)
or RGD)@EM‘? Are there any more "good" space in which we
can embed MﬂER?

(2) Characterize the image of the embedding map in
FTOR,M) (resp. ROD)@EM) and write down‘the formula of *-
algebraic operation.

(3) Is it possible to replace ﬁ by a more éoncrete

space?
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