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Linear Ordinary Differential

Equations with Gevrey Coefficients

By Hikosaburo Komatsu (Univ. of Tokyo)

We consider the linear differential operator
m m-1

(1) P(x ,— ) = a (X)_"E + a (x)
and the equation
(2) P(x, =— Ju(x) = f(x)

on an open interval @ in R
We assume that the singular points, i.e. the zeros of
am(x), are isolated and of finite order. Then the irregularity

0 of a singular point x  1is defined by

ord a - ord a,.
X m X i

}.

(3) o = max { 1, max
0gi<m m - 1

Let ¥ denote one of ¢, (s) and {s} for an s > 1 and
assume that the following irregularity conditiop is satisfied at
every singular point x 1in Q

c =1 1if ¥ = &;

o £ s/(s - 1) 1if ¥ = (s);

o < s/(s - 1) if * = {s}.

Furthermore we assume that thebcoefficients ai(X) are in the
space E¥(Q) of ultradifferentiable functions of class ¥. Ther

we have the following theorems:
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Theorem A. For any ultradistribution f & D¥'(Q) of class"

¥ equation (2) has a solution u € D¥'(Q).

Theorem B. The homogeneous equation
(4) P(x, == ) ul(x) = 0
’ o dx
has
(5) m o+ ) ord a_(x)
X€EQ

linearly independent solutions u € D*'(Q).
Theorem C. If f &€ D¥'(Q), then any solution u, & D*'(QW)

of (2) on an open subinterval Q] of Q «can be continued to

a solution u € D¥'(Q) on Q.

Here E(Q) and D'(Q) are Schwartz' spaces of differenti-

able functions and distributions respectively. E(S)

(Q)  (resp.
E{S}(Q) ) is thé space of all functions a &€ E(Q) such that

for every KCC Q@ and h > 0 there is a C (Pesp; there are h
and C) satisfying sup ]a(p)(x)l £ C hpp!s. They are called
Gevrey classes of fuh?%?ons. D¥(Q) = {¢ € E¥(Q); supp ¢ is
compact} has a nétural locally convex topology and its dual

D¥'(Q) = {f : D¥(Q) — C continuous and linear} is by defini-

tion the space of ultradistributions of class ¥ on Q [2].

When the coefficients a; are all real analytic these
theorems have been proved by the auther [3] in 1973. We em-
ployed the theory of linear ordinary differential equations in

the complex domain, in particular the index formulas [1] and
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the characterization of ultradistributions of class * Dby the
growth order of their defining functions as hyperfunctions [2].
Similarly to that case the theorems are derived from the
existence theorem in the non-singular case and the index formulas
of P(x, d/dx) acting in various spaces of ultradifferentiable

functions as sketched below.

1. Non-singular case.

We assume that an never vanishes in Q. Then the proof
is reduced to the case where a. = 1 by the following.
Lemma 1 (Rudin [6]1). If a & E¥(Q) never vanishes on Q,

then the inverse 1/a belongs to E¥(Q).

For such an operator we have the following existence theorem

of Cauchy type.

Lemma 2. Let Xocf Q. For each f & E¥(Q) and c

0r
Cy 16; C there is a unigue solution u &€ E¥(Q) of
Pu = £,
u(j)(x ) = ¢ j =0, ..., m~- 1.
O j’ ’ ’

This 1s proved by Picard's method of successive approxima-
tion or by Cauchy's method of majorants [5].
Applying the lemma to P and its formal dual P', we obtain

the topological exact sequences



P
(4) 0 — c"™ — E¥(Q) — E¥(Q) — 0,

P'
(5) 0 — D¥(Q) —> D¥(Q) — c" — 0.
The dual of (5) is the exact sequence

m P

(6) 0 — C° — D¥'(Q) —> D¥'(Q) — 0
This proves Theorems A and B. In view of Theorem A we need to
prove Theorem C only for homogeneous solutions. Comparing (4)
with (6), we find that every homogeneous solution in D¥'(Q) 1is
actually in E¥(Q). Hence extendability follows from Lemma 2.

2. The case where 0 1s a unique singular point.
We note that P and its formal dual P' have the same
singular points and the same irregularity at each singular point.

The following is a key lemma.

Lemma 3. Let I be a compact interval containing O and
let d and p be non-negative integers. If 0 is a zero of
V& Cd+p(1) of order 2z d, then the function ¢ defined by

kb(x)/xd

, x # 0,
(7) plx) =
i\b(d)(o)/d!, x = 0
is in Cp(I) and we have
(p) p! {(d+p)
(8) suplo Pl (x)] s —=—= sup |V (%) |
&1 (d+p)! <1
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Hence it follows that the original equation is divisible by

an invertible function so that we may assume that

. . d” d gm-1 4,
(9) Px, 55} = X —x * b _,(x) x o7t e e+ Dy(x) x T
dx dx ,
where d = ordO am, di are integers satisfying
(10) d - o(lm - 1) < d; < d

and b, are functions in E¥(Q).
As we will see later Theorem A follows from the following

uniquness theorem for the formal dual P'.

Lemma 4. Suppose that the irregularity condition is ful-
filled. If u & E¥(Q) satisfies Pu = 0O and u(p)(O) =0

for all p, then wu i1s identically equal to 0.

Let Q, = {x € Q; £ x 2 O}. To prove Theorems A, B and C

*

we make use of the topological exact sequence

0
(171) 0 — D*Q (Q) — D¥(Q) —> D*(Q+) — 0
and its dual
(12) 0 — D*'Q (Q) — D¥'(Q) — D#*r'(q ) — O,
N -
where D*Q (Q) = {9 € D¥(Q); supp o C,Q_}, D*'Q (Q) = {re
- +
D¥'(Q); supp f C Q+} and D#'(Q ) 1is the space of all ultra-

distributions on Q_ \ {O} which are extendable across 0. 0
is the restriction mapping to Q+. The topological exactness of

{11) is the Whitney type extension theorem with bounds due to
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Ritt, Carleson and Komatsu [4].
We claim that all rows of the following diagram are topolog-

ically exact.

0 0 0
" v v
P‘
0 — D¥, (2) — D*_ (Q) — ¢ 5 o0
v v v
pr .
(13) 0 — D¥(Q) —s D¥(0) — %™ 5 0
¥ v ¥
P'
0 — D¥(Q ) — D*(g,) — cd s g
v v v
0 0 0

The exactness on the left follows from Lemma 4 for every row.
The exactness of the middle and lower rows 1is proved by the
stability of indices. If P' = x3(d/dx)™, it is easy to see

)  are Cd+m

that the cokernels of P' in D¥(Q) and in D*(Q+
and Cd respectively. Since we have good stability theorems

only for operators in Banach spaces, we approximate the spaces by

M M
D¥(Q) = lim lim D P_, D¥(Q ) = lim lim D P_(Q ),
=5 == K s T = =2 K+
KQ M KCCQ M
p p
M M
where D pK (resp. D pK(Q+) ) is the space of all functions ¢
€ D(Q) (resp. D(Q+)) such that supp ¢ C K and sup l@(p)(x)l

/M —> 0 as p —> o, Mp ranges over the arbitrary sequences

of positive numbers such that the multiplications by bi are
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continuous if ¥ = g, the sequences of the form h1h2 ca hpp!s’
where hp > 0 tends to 0 as p — o, if ¥ = (s) and hpp!S
for large constants h > 0 if #* = {s}.

In DMPK (resp. DMPK(Q+)) the operator Xd(d/dx)rh is a
closed linear operator with dense domain and index - d - m
(resp. - d). It follows from (10) and Lemma 3 that Xdi(d/dx)i

are compact relative to xd(d/dx)m Hence the middle and loWer
rows of (13) are exact as the inductive limits of exact sequences
of the same form. Then the exactness of the upper row is proved
by the exactness of the columns. The topological exactness
follows from the open mapping theorem.

The dual dagram

0 0 0
¥ ¥ ¥y
4 P
0 — C° —> D*‘Q (Q) ———s D*! (Q) — 0
+ +
¥ ¥ ¥
d+m P
(14) 0 — C —> D¥'(Q) —> D¥'(Q) — O
v ¥ v
P
0 — ¢c" —5 B¥r(Q ) — D¥r(Q ) — O
v ¥ ¥
0 0 0

proves Theorems A, B and C. The exactness of the middle row is
exactly Theorems A and B. Compare the lower row with the exact

sequence
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P
0 — c" — pxr(g_\ {0}) — pxr(g \ {o}) — 0O

in the non-singular case. Then we find that any homogeneous

solution u, € D*'(Q_ \ {0}) is an extendable ultradistribution.

Let U, € D¥'(Q) be an extension. Since Pu2 é D*'Q (Q), we
can find a solution uy & D*'Q (Q) of Pu3 = Pu2 by+the
exactness of the upper row of ?14). Then u = U, = U, &€ D¥1'(Q)
is an extension of u as a homogeneous solution. Similarly
every homogeneous solution u, € D*'(Q+ \ {0}) on Q_ \ {o}
can be extended to a homogeneous solution u € D¥'(Q) on Q.

3. General case.

We arrange the singular points X in Q so that

Theorems A and C are immediate consequences of ‘those theorems

on intervals (Xj_1, Xj+]). To prove Thorem B we extend m
linearly independent homogeneous solutions in D*'((x_q, XO))
to homogeneous solutions in D¥*'(Q) by Theorem C. For each j
2 0 (resp. Jj < 0) there are ordx' a. linearly independent
homogeneous solutions in D*'[x_,x‘+:)((xj—1’ Xj+1)) (resp.
D*'(xj_1,X.]((Xj-1’ Xj+1)) ) bg tge upper row of (14). We

extend them to homogeneous solutions on @ with support in
{(x € Q; x z Xj} (resp. {x &€ Q; x < xj}). Then it 1is easy to
see that these homogeneous solutions on @ form a basis of the

homogeneous solutions in D¥'(Q).
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4. Example

In case the coefficients are real analytic it is proved in

[3] that for each singular point X of irregularity o there
is a homogeneous solution which belongs to D(G/(O_1))'(QO) but
does not to D{G/(U_1)}'(QO) on a neighborhood Q of «x

0 0°

Hence the irregularity condition is necessary for Theorem B to
hold. To demonstrate the same for Theorems A and C we give an
example.

The operator

has the singular point O of irregularity 2. On each interval
which does not contain O every homogeneous solution is written
const e‘T/X. The solution e_”X on (- «, 0) cannot be
extended across 0 as an ultradistribution of class {2}. The
famous infinitely differentiable function

{6—7/X, x > 0,

0, x £ 0

p(x) =

is an ultradifferentiable homogeneous solution of class {2}.
Therefore Lemma 4 does not hold without the irregularity condi-

tion.
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