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' MOVABILITY IN FIBER SHAPE THEORYV
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§1. Introduction.
In the shape theory ([Bo,M3S]), the notion of movability is
one of the most important notions and is very useful. In this

article, we will study the movability in the fiber shape theory

and give some results which are related with hereditary shape
equivalences and shape fibrations. For this purpose, in §2, we
give a brief description of the fiber shape theory according to
the method of S. Marde8ié and J. Segal ([MS]1). Then the notion
of‘(strong) movability in the fiber shape theory 1s defined in
the same way as in the shape theory. In §3, we study the rela-
tion between the movability and hereditary shape equivalences or
shape fibrations. As a summary of this section, we have the

following diagram:

hereditary shape - strongly

- — s movable
eguivalence movable o fibration

T

shape

for CE - maps



In [CD], D. Coram and P. F. Duvall introduced the notions of
vcomplete movability and k - movability for maps between ANR's

and characterized the approximate fibrations in these terms.
Compared with our  movability condition, these movability can be"
regarded as local ones. In §4, we will generalize the notions

of these local movabilities so that we can deal with maps bet-

ween metric spaces, and then we will study their relation with
the global movability and shape fibrations. In particular, we

have the following result.

Every completely movable map f : X - Y 1is a weak shape
fibration and in addition, if dimY < », then f 1is a shape

fibration.

We will also obtain some results concerning strongly regu-
lar maps with ANR fibers ([F,Ka,]).

Throughout this paper, spaces are assumed to be metrizable.
ANR'!s are ones for the metric spaces ([Hul). A map f : X > Y

_]_(

is proper if £ B) 1is compact for each compact subset B of

Y.

§2. Fiber shape theory.
The fiber shape theory has various approaches, which corre-
spond to those in the shape theory. In [Ka,], Borsuk's

and Chapman's approaches are taken. [CM] is based on fibered
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ANR sequences over a base space. Here we will give a much sim-
pler and fairly general description of the fiber shape theory
according to the method of S. Marde¥ié and J. Segal ([MS]). We
will use fibered ANR’systems instead of ANR systems. Now we go
into the details.

Iet Y be a metric space and be fixed. Let f : X » Y
g + Z~»Y Dbe two maps. A map ¢ : X > Z 1is said to be a fiber
preserving map from f to g over Y 1f g¢ = f .- In this
case, [¢]g,f denotes the fiber homotopy class of ¢ from £

to g . By FHY , we denote the fiber homotopy category over Y,

that 1s, the objects of FHY are the maps from metric spaces to
Y and the morphisms are the fiber homotopy classes over Y

We say amap f : X - Y 1is a fibered ANR over Y ([CM]) if

there exists an ANR M and an open set U of YxM and maps
X 1 U % X such that ri = :'LdX and 1 , r are fiber preserving
(i.e., pi=f , fr = p , where p : YxM >~ Y is the projection).

By FAY , Wwe denote the full subcategory of FH consisting of

Y
the objects which are dominated (in FHY) by a fibered ANR.

Let £ : X+ Y Dbe a map. Then a FAY-eXpansion of f in
the category pro —FHY ([MS, p. 18]) is obtained as follows.

Take a closed embedding of X dinto an ANR M ([BP, p.49]) and

let L= uly xf_l(y) 3 Yy e Y} « YxM . Note that the projec-

tion p : f_l >~ Y corrésponds to f by the identification

X3 f_l 1 x > (f(x),x). Let {UA}A be an open neighborhood

e A
base of f_l in YxM . Then A 1s directed by the order

defined by X < A' iff U, o U For each X ¢ A, let

A X!

Dy UA +~ Y be the restriction of the projection p : ¥YxM » Y
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and 1. : X mrt e U the inclusion and for each x < x' , let

A

j“ X UA' c UX be the inclusion. We get an inverse system
>

p = {pk, [iAJf] A} in FAy (i.e., an object of pro‘-FAY)

p)\ Dpxl’

and a system 1 = {[i.] s A} + £ p of morphisms in FH

(i.e., a morphism of pro - FHly ) (see [MS, p.3]). For the sim-

plicity, we denote [1i, ] £ (i by 1, , i resp.

ATDy s A,N]px,pxy A AN
We can easily verify the following property of 1 : f » p

(1) If k : f > g is a morphism in Fy to a FAy -object
q , then there exist a A ¢ A and a morphism j, @ P, > a such

that k = j.1

AT
(1) If A e A and k, ,1, : p, » q are morphisms to a
- . ) = . . 3 ' ; 3
FAY object g and kxlx lklk , then there exists A' 2 A 1in
A such that kxlxx' = 1X1AA‘

In fact, by the definition of FAy , we may assume that g
is the projection from an open set U of YxM to Y ; where
M is an ANR. Then, (i) and (il) follows from the defining
property of ANR's ([Hul). By [MS, p.20, Theorem 1], (i) and (ii)
implies that 1 : f > p 1is a FAY-—expansion of f in pro -FHy,
thst is,

(111) popr egeh morphism k : f » g in pro -FH, to a
pro - FA, —object g , there exists a unique morphism J : p - q
in pro —FHY such that k = j.i .

We have Jjust proved the following.

Proposition 2.1. Every object of FHY has a FAY - expansion.

In other words, FAY is a dense subcategory of FHY ([MS,p.22]).

TR



Therefore, according to [MS, Chapter I, §2 3], we have a
shape category FShY and a shape functor S : FHY - FShY7 based

on (FHY, FA We call FShY the flber shape category over Y.

v)
The next proposition justifies our definition of FShY and its
proof is similar to that of [MS, Appendix 2, Theorem 1].

Let B be a compactum (compact metric space) and let Fshg

denote the full subcategory of FShB consisting of the maps

from compacta to B.

Proposition 2.2. 'Fshg is canonically isomorphic to the

fiber shape category Mg (or Ry ) given in [Ka;].

The following proposition is the literal translation of

[MS, p.27, Theorem 4, Corollary 2] to the fiber shape theory.

Proposition 2.3. Let f , g be objects of FHY

(i) If g 4is an object of FA then the function

Y 3
S : [f, g] ~ [f, g] is bijective. -
> By, > BlEsh,
( [f, g]FHY s [fi g]FShY are the sets of morphisms from f to
g in FHY , FShY , resp.)

(i1) If f , g are objects of FAY , then a morphism
¢ + £ »>g in FHY is an isomorphism in FHY iff S(¢) 1is an

isomorphism in FShY

Now we consider the movability in this shape category. Once
we gave the description of the fiber éhape theory in the term of

expanslions, we are automatically led to the notion of movability
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in the fiber shape theory (see [MS, Chapter II ,8 6,71])

We say an object p ={ Py iX,N ;3 A} of pro-—FHY i1s movable
if for each A € A, there exists N2 )X in A such that for
each A" =2 A' , there exists a morphism J : B+ 7 Dn in FHY :
such that jlx"j = 3,0 - A map f : X+ Y (or an object of
FH y ) is said to be movable if some (eq., any) FAY.—eXpansion
i:f»>p of £, p 1is movable.

By our construction of a FAY.—expansion of f , the mova-

bility of f 1is reduced to the following simple form.

Proposition 2.4. Let f : X =Y be a map and M an ANR

which contains X as a closed subset. Then f 1is movable iff
1

for each neighborhood U of f in Yx M , there exists a
neighborhood V of f_l in U such that for each neighborhood
W of £ % in V , there exists a homotopy ¢ : V x[0,1] =+ U

such that ¢, = id, ¢1 (W) ¢ V , pd)t =p (05 t<1) , where

p : ¥YxM »Y dis the projection.

In Proposition 2.4, if we can take ¢ so that ¢t|f—l = id

(0<t<1), then we say f 1is strongly movable. It is easily

verified that this definition depends only on f and is inde-
pendent of the choice of M

We give some examples.

Example 2.5. Let f : X+ Y Dbe a proper onto map. If ¢
satisfies one of the following conditions, then f 1is strongly

movable.



(1) f 1is a hereditary shape equivalence.

(ii) f is an approximate fibration.

(ii1) £ is a bundle map with a FANR fiber and Y 1is locally
compact.

(iv) £ 1is completely movable and dimY < o

As for (i),(ii) and (iv) , see 8 3, 4. (dii) is reduced to
the case of a trivial bundle by Proposition 2.6 (see below) and

this case is obvious since every compact FANR is strongly movable

([Dy, HH]).

The next proposition is a fiber version of the sum theorem

for FANR's (or strongly movable compacta).

Proposition 2.6. Let f : X > Y Dbe a proper onto map. If

each y « Y admits a néighborhood Uy in Y such that
fla.-1 : f_l(U ) » U is strongly movable, then f is
f (Uy) y v

strongly movable.

83. DMovability, hereditary shape equivalences and shape
fibrations.

In this section, we study the relation between the mova-
bility and hereditary shape equivalences (HSE's) or shape fiblra-
tions.

First we are concerned with CE -maps and HSE's. A CE -map
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is a proper onto map whose fibers have the trivial shape and a

HSE is a proper onto map such that for each closed subset B of

Y , f]f-l(g) :'f—l(B) +~ B 1is a.shape equivalence. For the

detail, we refer to [An, Ko]. 1In particular, [An] gives a char-

acterization of HSE's in a relation theoretic term.

Theorem 3.1. ([An, Theorem 4.5]) A proper onto map

f : X>Y d4is a HSE iff for some'(eq., any) closed embedding of

X 1into an ANR M , the relation £ & : Y » M is slice trivial,
i.e., for each neighborhood U of f_l in YxM , there exist
a neighborhood V of £t in U ,amap g : Y > M and a

homotopy ¢ : Vx[0,1]7 > U such that g c U , ¢o = 1d , ¢, (V)
=g, p¢t =p (0<t<l). (g 1is identified with the graph of g

in YxM and p:YxM > Y is the projection.)

An éasy homotopy construction based on Theorem 3.1 shows
that every HSE 1s strongly movable. Furthermore, for CE -maps,

we have the converse.
Theorem 3.2. A CE -map is a HSE iff it is movable.

Note that a cell-like shape fibration (see below) is not
necessarily a HSE (see [MR,, Remark 5]).

We turn our attention to the shape fibrations, for which
we refer to [Ma, MR;,»,3, RJ.

Let f:X > Y be a proper map and M , N Dbe ANR's which

contains X , Y as a closed set resp. Let p : NxM > N denote

-8 -



1

the projection. Note that X & f~ is closed in the ANR N x M

By [Ma, §47 and [MR,, Proposition 2, Theorem 2], we have,

Proposition 3.3. The map f is a shape fibration iff

(¥) for each neighborhood U of" 1 in N xwM , there
exist a neighborhood V of f_l in U and a neighborhood Y,
of Y in N such that if g : 2 >V , H: Zx[0,1] » Yo are
maps with pg = Hy , then there exists a map G : Zx[0,1]1 > U

with Gy =g , pG = H

A space 7 is said to be an approximate ANR (AANR) ([Ma,
§2]) if for each open cover U of 7 , there exist an ANR ' P
and maps 72 3P %7 such that ri and idZ are U -near (i.e.,

each 2z ¢ Z admits a U e U with ri(z), z e U ).

Proposition 3.4. TIf the space Y 1is an AANR, then the map

f is a shape fibration iff
(¥*) for each neighborhood U of’ FL iy x M , there

exists a neighborhood V of £71 in U suen that if g : Z » V
H: Z x{O,l] >~ Y 'aré'maps with pg = H, , then there exists a

map G : Zx[0,1] »U with G, = g , pG = H

The next pfopoéition shows that the movability implies the

approximate homotopy lifting property (AHLP) (¥) , (¥¥),

Proposition 3.5. (i) If f 1s movable then (*¥) holds.

(1) If f , M , N satisfies the following condition (#),

then (¥*) holds:



(#) For each neighborhood U of f % in NxM , there
exists a neighborhood V of f_l in U. such that for each
neighborhood W of T , there exist a neighborhood Y,

of Y in N and a homotopy ¢ : (Vn (Ye xM))x[0,1] > U such

that ¢, = id, 6. (Vn (Yy xM)) ¢ W , P, =D (0t <1).

If the map f 1is movable and Y (eg., X) is separable, then

we can prove that (#) holds. Therefore we have

Theorem 3.6. Let f : X > Y be a proper onto movable map.

If Y 1is separable or an AANR then f 1s a shape fibration.

An approximate fibration ([CDJ]) is Jjust a shape fibration

between ANR's ([MR;, Corollary 11]). If the map f : X >~ Y 1is

an approximate fibration, then by taking an approximate regular

1ift of a local equiconnecting function ([Du, p.334]) of the

ANR Y , one can easily show that £ is strongly movable.

Proposition 3.7. A proper onto map between ANR's is an

approximate fibration iff it is movable.
Remark 3.8. By Theorem 3.1, it is easily verified that

every HSE satlisfies the condition (#) of Proposition 3.5 ( ).

Therefor every HSE is a shape fibration ([R, Theorem 9]).
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§4, Local movability and its uniformization.

In this section, we will discuss the local movabilities.
The notions of complete movability and k -movability ([CDJ]) have
the following generalization.

Let £ : X » Y be a proper onto map and M an ANR which

contains X as a closed subset. We say f 1is complete movable
1
(

if for each y ¢ Y and each neighborhood U of f ~(y) , there
exists a neighborhood V of f_l(y) in U such that for each
fiber f_l(z) in V and each neighborhood W of f_l(z) in.
V , there exists a homotopy ¢ : Vx[0,1] > U with ¢y = 1id ,

$1(V) ¢ W and ¢ = id (0<t <1l). This property is inde-

eleL(z)
pendent of the choice of M. We say f 1s k -movable if for
each y ¢ Y and each neighborhood U, of f Y(y) in M, there
exist neighborhoods U = V. of f 1(y) in U, such that for
each fiber f_l(z) c V and each X « f_l(z) , the projection
homomorphism ﬁi(f_l(z),x)'—*> Wi(U,X) is an isomorphism
for 0<1<k-1 and an epimorphism for 1 = k onto the image of
the inclusion induced homomorphism ﬂi(V,X>———> ﬁi(U,X).

As for the shape group T, , see [CD, MS3].

Proposition 4.1. (i) Any (proper onto) strongly movable
maps and CE -maps are completely mé?able.

(ii) Each fiber 6f a completely movable map is a FANR (or
strongly movable).

(iii) ([CD, Proposition 3.6]) Every completely movable map

is k -movable for each k =0.
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As for the AHLP, we have the following. The proof is the

same as that of [CD].

Proposition 4.2. (i) ([CD, Theorem 3.3]) Every n -

movable map f : X » Y .is an n - shape fibration, that is, f

has the AHLP for cells [0,1]F (0<i<n) (see [MRs, §5]).
(ii) ([cD, Proposition 3.6]) Every completely movable map f

is a weak shape fibration, that is, f 1s an n - shape fibration

for each n=>=0 (see [MR;, §67) .-

In [MR,, Example 6] , it is shown that the Taylor's CE -map
is not a shape fibration. Therefore in general, the complete
movability does ggg‘imply the AHLP for all spaces. However,
note that in this example, the range is infinite dimensional.

In fact, if we require the finite dimensionality of ranges, then

we have

Theorem 4.3. Let f : X > Y' be a completely movable map.

If dimY < «» then f 1s strongly movable.

-The proof of Theorem 4.3 is based on the homotopy construc-

tion concerning the sum of strongly movable compacta, combined

'with the usual argument on the nerves of covers. Furthermore,
we can prove directly that the condition (#) in Proposition 3.5
(i1) holds. Therefore we have a local condition for maps to be

shape fibrations.
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Theorem 4.4, Every completely movable map with a finite

dimensional range is a shape fibration.

Next we consider the estimated complete movability. It
turns out that this notion Jjoins with the Strongly regularity
([Ad, F)).

Let f : X >Y Dbe a proper onto mapvand d a metric on X.

The map f i1s said to be strongly regular with respect to d

([Ad]) if for each y ¢ Y and € > 0 , there exists a neighbor-

hood W of y in Y such that for each 2z ¢ W there exist

€ —maps ¢ : f_l(y) - f—l(z) , Yo f_l(z) > f_l(y) such that

¢y and idf—l(z) ~are e —homotopic. (This means that d(x,¢(x))

c < e (x e f_l(y)) , dlx',p(x")) < e (X' ¢ f—l(z)) and there

exists a homotopy H : £ 1 (z) x[0,1] » £ 1(z) such that H, =

0, Hy = 1dp-1.,) and diamH(x'x[0,1])< e (x' « £ ez)y )
The estimated complete movability is defined as follows.

Let M Dbe an ANR containing X as a closed subsét and . p Dbe

a metric on M. We say f 1s completely movable in M with

estimation with respect to
_1(

if for each y ¢ Y , each neigh-

‘borhood U of f and € > 0 , there exists a neigh-

y) in

borhood V of f—l(y) in such that for each fiber f—l(z)

= d = O

c V and each neighborhood of f_l(z) in V , there exists
an € -homotopy ¢ : Vx[0,1] - U with ¢, = id, ¢,(V) < W and
¢tlf-1(z) =1id (0<t<1).

The next lemma joins the above two notions.

Lemma 4.5. Under the above notations, the following condi-
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tions are equivalent.

(i) £ is strongly regular with respect to p|X and each
fiber of f 1is an ANR.

(1) For each y ¢ Y and ¢ > 0 , there exists a neigh-
borhood V of £ 1(y) in M such that for each fiber £ *(z)
c V , there exists an ¢ -retraction r : V - f_l(z)

(iii) f 1s completely movable in M with estimation with
respect to p and each fiber of f 1s an ANR.

By the estimated version of the proof of Theorem 4.3, we

have the following result, which was partially proved in [F,

Proposition 3.1].

‘Theorem 4.6. .Suppose f:X -~ Y 1is a proper onto map and
dim¥Y < o , Then the following are equivalent.

(i) £ dis strongly regular with respect to some (eq., any)
metric on X and each fiber of f 1is an ANR.

(ii) f is a fibered ANR over Y (see §2).

This gives another proof of the following fact which was

proved in [F, Theorem 1], using the Michael's selection theorem

([M1i]), under the assumption of separability and completeness

for domains.

Corollary 4.7. If f£:X - Y 1is a strongly regular map with

ANR fibers and dim¥Y < « , then f 1s a Hurewicz fibration.

In fact, by Theorem 4.6, the map f 1s (strongly) movable,
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hence f has the AHLP (¥) (see Proposition 3.4, 3.5 (i) ) and
again by Theorem 4.6, the AHLP of f turns out the homotopy
lifting property (HLP) of f |

We conclude this séction with a question. By Theorem 3.2,
one can regard Theorem 4.3 as a generalization of the results in
[An] (at least for the case of finite dimensional ranges) in
another direction. In [An, Kol, it is shown that if f‘: X » Y
is a CE-map and Y 1is countable dimensional, then f 1is a HSE.

However we have no answer to the following question.

Question 4.8. Are Theorems 4.3, 4.4, L.6 and Corollary 4.7

still true even if Y is countable dimensional?
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