REFINABLE MAPS AND SHAPE

By Hisao Kato (筑波义学数学系 加藤久男)

In [9], J. J. Kelley defined very important notion "property [K] and he proved that if X is a continuum which has property [K], then the hyperspace C(X) of subcontinua of X is contractible. In [/b], R. W. Wardle proved that every confluent map preserves property [K]. It is well-known that every refinable map is weakly confluent (see [1]), but simple examples show that weakly confluent maps do not preserve property [K]. In [/2, (16.38) Question], S. B. Nadler asked the following question; what kinds of mappings preserve property [K] ? We show that every refinable map preserves property [K]. In [1], J. Ford and J. W. Rogers proved that every refinable map onto a Peano continuum (locally connected) is monotone. In [/D], S. B. Nadler proved that if f: X > Y is a near-homeomorphism between compacta and Y has property [K], then f is confluent. Note that every near-homeomorphism is a refinable map but the converse is not true. We show that if $r: X \rightarrow Y$ is a refinable map between compacta and Y has property [K], then r is confluent. The condition that Y has property [K] cannot be omitted. We give a example in which refinable maps are not confluent. Also, we show that if $r: X \rightarrow Y$ is a refinable map between continua, then X is irreducible iff Y is irreducible. Moreover, in shape theory, we have the following: If $r: X \rightarrow Y$ is a refinable

map between compacta and Y is calm, then r is a shape equivalence. As a corollary, if r: $X \rightarrow Y$ is a refinable map between compacta and either X or Y is S^n -like $(n \ge 1)$, then r is a shape equivalence, where S^n denotes the n-sphere (cf. [3]). Several properties concerning refinable maps have been studied in ([1,2,3,4,5,6,7,B, etc.]).

The word compactum means a compact metric space. A connected compactum is called a continuum. If x and y are points of a metric space, d(x,y) denotes the distance from x to y. For any subsets A, B of a metric space, let $d(A,B) = \inf \{ d(a,b) | a \in A, \}$ $b \in B$. Also, let $d_H(A,B) = \max \left\{ \sup_{a \in A} d(a,B), \sup_{b \in B} d(b,A) \right\}$. $d_{_{
m H}}$ is called the Hausdorff metric (see [9], [2]). A compactum X is said to have property [K] (see $[\ref{g}]$) provided that given $\xi > 0$ there exists $\delta > 0$ such that if a, b $\in X$, d(a,b) $< \delta$, and A is a subcontinuum of X with a \in A, then there exists a subcontinuum B of X such that b \in B and d_H(A,B) < ξ . Note that every locally connected compactum has a property [K], but the converse is not true. A map $f: X \rightarrow Y$ between compacta is confluent (weakly confluent) if for every subcontinuum Q of Y each (at least one, respectively) component of the inverse image f⁻¹(Q) is mapped by f onto Q. A map r: X -> Y between compacta is refinable [/] if for every $\xi > 0$ there exists an onto map $f: X \rightarrow Y$ such that diam $f^{-1}(y) < \xi$ for each $y \in Y$ and $d(r, f) = \sup_{x \in Y} f(x) = \int_{-\infty}^{\infty} f(x) dx$ $\{d(r(x),f(x))|x \in X\} < \varepsilon$. By definitions, each refinable map is surjective, each near-homeomorphism is refinable and if there is a refinable map from a compactum X to a compactum Y, then X is Y-like (see [5] for the definition that X is Y-like). But any converse assertions of them are not true.

Theorem. Let $r: X \to Y$ be a refinable map between compacta. If X has property [K], then Y has the same property.

Corollary. If r: $X \to Y$ is a refinable map between continua and X has property [K], then the hyperspaces 2^{Y} and C(Y) are contractible.

Theorem. Let $r: X \rightarrow Y$ be a refinable map between compacta. If Y has property [K], then r is confluent.

Remark. In the statement of above theorem, we cannot omit the condition that Y has property [K]. In the plane R^2 , put

A =
$$\{(2,y) \mid -1 \le y \le 2\}$$
,
B = C1 $\{(x,\sin [2\pi/x]) \mid -1 \le x < 0\}$,
C = C1 $\{(x,\sin [2\pi/x]) \mid 0 < x \le 1\}$,
D = C1 $\{(x,\sin [2\pi/x-2]) \mid 1 \le x < 2\}$, and
E = $\{(0,y) \mid -1 \le y \le 2\}$.

Also, let $X=A \lor B \lor C \lor D$ and $Y=B \lor E$. Define a map r: $X \to Y$ by

$$r(p) = \begin{cases} (0,y) & \text{if } p=(2,y) \in A, \\ (0,\sin [2\pi/x]) & \text{if } p=(x,\sin [2\pi/x]) \in C, \\ (0,\sin [2\pi/x-2]) & \text{if } p=(x,\sin [2\pi/x-2]) \in D, \\ p & \text{if } p \in B. \end{cases}$$

Then it is easily seen that r is a refinable map, but not confluent.

Corollary. If $r: X \rightarrow Y$ is a refinable map between compacta and X has property [K], then r is confluent.

It is well-known that the condition that the hyperspaces 2^{X} and C(X) of a continuum X is contractible does not imply that X has property [K]. Hence, the following question is raised.

Question. Let $r: X \to Y$ be a refinable map between continua. If the hyperspaces 2^X and C(X) are contractible, are the hyperspaces contractible?

Recall that a continuum X is irreducible if there exist two points p, $q \in X$ such that no proper subcontinuum of X contains p and q. A continuum is hereditarily decomposable (hereditarily indecomposable) if for any non-degenerate subcontinuum A of X, there exists (there does not exist) a decomposition of A into two proper subcontinua A_1 and A_2 of A such that $A = A_1 \cap A_2$. A continuum T is a triod if there are three subcontinua A, B and C of T such that $A = A_1 \cap A_2$.

Theorem. Let $r: X \rightarrow Y$ be a refinable map between continua. Then X is irreducible if f(Y) is irreducible.

part is a proper subcontinuum of each of them. A continuum is

atriodic if X fails to contain a triod ([2]).

To prove the above theorem, we need the following characterization of irreducible continua.

Theorem (R. H. Sorgenfrey [/5]). A necessary and sufficient condition that X is irreducible is that if X is the essential sum of three proper subcontinua, then some pair fails to intersect.

Proposition. Let $r: X \rightarrow Y$ be a refinable map between compacta. If either X or Y is a Cantor set, then r is a near-homeomorphism, i.e., X and Y are Cantor sets.

Proposition. Let $r: X \rightarrow Y$ be a refinable map between continua. Then

- (1) if X is hereditarily decomposable, then Y is also,
- (2) X is hereditarily indecomposable iff Y is also, and
- (3) X is atriodic iff Y is also.

Corollary. Let $r: X \to Y$ be a refinable map between continua. If either X or Y is the pseudo-arc, then r is a near-homeomorphism, i.e., X and Y are pseudo-arcs.

A compactum X is calm if whenever $X \le M \in ANR$, there is a neighborhood V of X in M such that for any neighborhood U of X in M there is a neighborhood W of X in M, W \subset U such that if f, g: Y \rightarrow W are maps with $f \simeq g$ in V, then $f \simeq g$ in U for all Y \in ANR.

Theorem. If $r: X \nearrow Y$ is a refinable map between compacta and Y is calm, then r is a shape equivalence, i.e., sh(X)=sh(Y).

Corollary. If $r: X \rightarrow Y$ is a refinable map between compacta and Y is an FANR, then r is a shape equivalence (see [3]).

Corollary. If r: $X \to Y$ is a refinable map between compacta and Y is an $AANR_N$, then r is a shape equivalence.

Remark. In the statements of above results, we cannot replace "calm" by "movable". Also, we cannot replace "AANR_N" by "AANR_C" (see [\forall]).

As a corollary, we have

Corollary. If $r: X \to Y$ is a refinable map between compacta and if either X or Y is S^n -like $(n \ge 1)$, then r is a shape equivalence, where S^n denotes the n-sphere.

Question. Does every refinable map preserve calmness ($\mbox{\sc Fanr, Aanr}_N)$?

References

[1] J. Ford and J. W. Rogers, Refinable maps, Colloq. Math. 39 (1978), 263-269. [2] J. Ford and G. Kozlowski, Refinable maps on ANR's, Top. and appl. 11 (1980), 247-263. [3] H. Kato, Refinable maps in the theory of shape, Fund. Math. 113 (1981), 119-129. [4] _____, Refinable maps onto locally n-connected compacta, Tsukuba J. Math. 4 (1980), 83-87. [5] _____, A note on refinable maps and quasi-homeomorphic compacta, Proc. Japan Acad. 58 (1982), 69-71. [6] , A note on infinite-dimension under refinable maps, Proc. Amer. Math. Soc. 88 (1983), 177-180. [7] _____, A remark on refinable maps and calmness, Proc. Amer. Math. Soc. (to appear). [8] _____, Concerning a property of J. L. Kelley and refinable maps, preprint. [9] J. L. Kelley, Hyperspaces of a continuum, Trans. Amer. Math. Soc. 52 (1942), 22-36. [10] S. B. Nadler, Concerning completeness of the space of confluent mappings, Houston J. Math. 2 (1976), 561-580. [11] _____, Confluent images of the sinusoidal curve, to appear in Houston J. Math. [12] _____, Hyperspaces of sets, Marcel De Ker, 1978.

[13] P. R. Patten, Refinable maps and generalized absolute nei-

ghborhood retracts, Top. and its appl. 14 (1982), 183-188.

- [14] J. Segal, Refinable maps on 2-manifolds, Top. Proc. 2 (1977) 261-263.
- [15] R. H. Sorgenfrey, Concerning continua irreducuble about n points, Amer. J. Math. 68 (1946), 667-671.
- [16] R. W. Wardle, On a property of J. L. Kelley, Houston J.
 Math. 3 (1977), 291 299.