goooboooogn
0 5100 1984 0 169-176

169
Exact Solutions of Navier-Stokes Equation and Vorticity Dynamics

Tsutomu KAMBE (A¢-57 )
Kyushu University, Dept. of Appl. Sci.

1. INTRODUCTION

Motion of vort{city in a viscous incompressible fluid in three-dimen-
sional space may be decomposed into three fundamental elements: convecton,
stretching and viscous diffusion. The governing equation of the vorticity
w is given by

w, t (V7)w = (- V)V +vVw (1)

where ® = rot v, v(x,t) is the incompressible velocity field ( div v=0)
ahd v the kinematic viscosity. The three elements of motion mentioned
first correspond to the three terms except the first cdt , respectively.

Here we consider motion of shear vorticity superimposed on a straining
motion whose velocity Ve is represented by (ax, by, cz) in the Cartesian
coordinate system (x,y,z). The form of the shear layer is assumed to be
rectilinear (§2) or axisymmetric (83). Although their geometrical forms
are simple, it is remarkable that exact solutions of their motion are given
for arbitrary initial profiles (Kambe 1983 a, b, c). These solutions for
the initial value problem show cascade of the Fourier components to higher
wave numbers.

In a particular case of uniform strain in which the parameters a, b and

. ¢ are assumed to be constant and satisfy a particular relation, a steady
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state is approached from an arbitrary initial state. In the axisymmetric
case this steady state corresponds to the steady solution found by Burgers
(1948). The solution of a diffusing axisymmetric vortex given by Oseen
(1911) without the external strain field is also included in the general
solution given below.

Bellamy-Knights (1970) presented exact solutions of viscous vortex
motion with the method of similarity solution which include also both of

‘the Burgers' and Oseen's vortex as particular cases.

2. SOLUTION IN CARTESIAN COORbINATES

2.1 General expression.of the solution

Consider a shear layer in a straining field (ax, by, cz) in Cartesian
coordinate systém, and suppose that the velocity v= (u,v,w) is given by
u=a(t)x, v=b(t)y+V(x,t) and w=?c(t)z where a, b and c are given functions
of time t only. The continuity condition demands the relation

| a(t) + b(t) + c(t) = 0.
The vorticity ® has only z-component:
= (0, 0, w), a)(x;t)= AV/ax.

The vorticity equation (1) reduces to

This represents the motion of the shear vorticity w(x,t) under the combined
action of viscous diffusion (va&X), stretching (cw) and convective straining

(axwx). Using the new variables defined by
t
E=Amx, ww=[Awat, w=Z-, y
& 3
A(t)=exr[~foa(t’>dt']) c)= wlo[w*fotcct')att’], ; )
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instead of x, t and w, we can transform the equation (2) into the diffusion

equation (Kambe 1983 a,b),
We = ¥ Wy (4)

(Axisymmetric case is considered by Lundgren (1982)).
For a general initial condition of the form w(t=0)=wo(x), the

solution of (4) is written as, using w= C(t)W,

_ ¢t (Ax-x)y -,
)= e Ll T[4, e

where C(t) represents the effect of vortex stretching.

2.2 ‘Steady straining flow

Suppose that the parameters a, b and c are constant. We assume
further that a is negative and write

a=-X =00)"St<<0)) c=7= const, & >0.

Then we have

‘ / 2af
peet) c=e’ T (€71

Substituting these expressions into (5) and taking an asymptotic limit as

t tends to infinity, we find the asymptotic expression,

' /
w(z,t)-.-.ﬁ_;_ MF((/—oc)t—%z) [f w,(x) d!
¢
+ Lo “tf X W (X )dx+0(e"'°‘ )]
where 1
= (’//0‘)2 | 8)

has dimension of length.
Let us consider the special case of a=y and b=0. This is the

case where the straining flow is inthe plane perpendicular to the direction
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of the shear velocity (0,V,0). Then the leading term of the asymptotic
expression (7) becomes independent of time t and the second correction
term decays like exp[ -ot]. Thus it is found that a single steady shear
layer develops from an arbitrary initial distfibutjon of vorticity wm.(x).

By using the initial net amount of vorticity

f_: W, (%) dx’

)

the steady shear layer is represented by

, 2 2
) -x%/20 (9)
VaT L XP[ / ] .

However if the initial distribution is composed of same amount of opposite

vorticities, the integral T' vanishes and the expression (7) takes the form

o
TE_:TIL? e x wr["xz/uz] Lx'”‘(”')d”'. (10)
This shear layer disappears in due course of time Tike exp[ -at]. This
is interpreted és cancellation of vorticities. The non-cancelling case
(9) represents amalgamation of vorticity fluctuations. The solution of
the form o «exp[-x>/222] Tike (9) is known as a steady solution satisfying

the equaiton (2) without first term Wy and with -a=c=const (b=0)
(Townsend (1951) and Batchelor (1967)).

2.3 Cascade of Fourier components

The Fourier spectrum of the vorticity (5) is given by

e o 3 ) J

@(k,t)= A) A(t))y’q" A (t)

(11)

where(ﬁo(ko) is the initial spectrum. This expression states that the

straining field Vg produces transfer of the initial spectrum component

A

W, (ko) to a higher wave number k=k,A(t) with the magnitude of the component
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being diminished by the viscosity. The viscous cutoff wave number kd =
A/(Z\)T) defined from the argument of the exponential function, is given

by the asymptotic relation d= 1/1 as t-w,

2.4 Two-dimensional problem

If ¢ is set equal to zero (hence C=1 and a+b=0), the above expres-
sions except (9) and (10) reduce to those of two-dimensional problem.
(Kraichnan (1974) shows a solution of the same equation (2) with c=0
governing the convection of a passive scalar.) Assuming further that a is
a negative constant -a as above and using the relation k/A(t) =k, in (11),

we find that the argument in the exponential function takes the form,

J kaz ~ __xé_éz_ ezo(t = L MP[Zo((t-— ﬁan)] (,2)

where Rk==u/vk3 = (kd/ko)2 is the Reynolds number of the eddy of length
scale 1/ko,. Thus it is found that the component of the scale 1/k, has
a critical time of (In Rk)/Za for the viscous cutoff, i.e. the critical

time is proportional to In R =21n (kd/ko).

3. SOLUTION IN AXISYMMETRY

3.1 General expression of the solution

We find a similar solution in an axisymmetric distribution. Suppose

that the vé]ocity is represented by

= (-«F, Yy 243)  o=e(@) [ (3)
in the cylindrical coordinate system (r, &, z). This corresponds to
assuming a=b=-o0 for the straining field in the previous section. The
vorticity is given by

= rot ¥ = (0,0, W), w=-r:5;-_(rv'9)
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Then the vorticity equation (1) reduces to

. ' |
a)t—otrw,, =2,o<a)+2/',;("wr),- . (14)

Defining the new variables,
t .2, /
¢ = Abr, 'z:=f°A(t)abt ,
, t )
2 _ ’
W = w/A(t), A(f)—UXP[fo“(t)MI)
as before, we can transform the equation (14) into

Wt=yé>(fwf)g y =V(WEZ+WM)) (15)

where £=Ax and n=Ay are the Cartesian coordinates. This is the
diffusion equation of axisymmetry in two-dimensional space.

For an arbitrary axisymmetric initial condition of the form

Wl,c=0=cu' = &, (r)

t=o

the solution is written as

i ty= 220 [ o () opl- 2L g,

4mVT

3.2 Initial condition of the form of §-function

For the initial condition of a vortex filament,
w, =T §=) 354

we find the solution:

[ A g [ >

t)=
Wi t) 4 VT 4vT

(17)

(i) @ =0 (no external straining). In this case we have A=1, T=1t

and P=r. The solution (17) is reduced to the expression of the
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diffusing vortex filament,

I’ |
wint) =0 ‘WF[ 4-Vt ] : (18)

Thiswas first given by Oseen (1911).

(ii) o = const (>0, constant straining). Substituting the relations,

A=, p=re® =Ll (e&*-1) n

)

we find the solution

o T
WO = revime ) Y -3 2VW ]

—->aéf=-,c-£—: axp[-ri/al] (£ e0)

where

[V

%a= (2v /o)

It is found that a steady state is approached in the limit t+e~, The
steady solution Wy can be found directly from the equation (14) with

putting dw/3t = 0. For the equation (14) can then be integrated once as

oL 2 dw
— reaw y == = eo t
by T ar ns

This leads to the same expression as Wgts which was first shown by

Burgers (1948) (see also Batchelor (1967) ) withputting the const to zero.

3.3 Arbitrary initial profile wo(x)

Assuming a=const (> 0) and substituting the expressions (19) into (16),

_ -ut,_+ 2%
mﬂ W) [(z fe )+(Y-1e )J]di,dy.

2Y /) p=2Wt \2
=(1-¢7)

we find

w(r t) =

T2my()-€

This tends to the asymptotic expression,as t->,

~r3/g? bo ]
wint= Lo 678 [ ) e

2
o
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P 2T (706 [ (r1- 2208 - P +0(€%)]

25
Therefore if oo
[ = { w(s)2x3ds %0,
then we have
: ! ~r¥/e;
f‘:: w(k t)= L I e ,

Thus it is found that a steady vortex of an effective core size la is
formed in the final state. This is the Burgers' vortex Wy However if

I'=0, the vortex disappears exponentially like exp(-2at).
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