gooobooobogoo
0 5140 1984 O 48-91
AT

‘A~

Simultaneous Computation of Functions,

Partial Derivatives and Estimates of Rounding Errors

—-——- Complexity and Practicality =----

ﬁ&mﬁ,%m#&{mﬁﬁﬁmﬁ,slv
RBEFEOBICELIADBEENKEZ 2
HEBCHRE T2 — HEE LAY

Masao IRI (University of Tokyo)

P8 EX EHERFILH¥H
Abstract

A practical approach is proposed to simultaneously computing a function, its
Partial derivatives with respect to all the variables, and an estimate of the
rounding error incurred in the computed value of the function. Theoretically,
it has a complexity at most a constant times as large as ﬁhat éf evaluating
the function alone, the constant being independent of the number of variables
of the function, and is an alternative graphical interpretation of W. Baur:
and V. Strassen's results with some generalizations. Practically, it is
stated in the form easily implementable as a computer program, so that it
enables us to automatically compute the derivatives if only the program for
compuﬁing the function is given. Remarks are added also on the cases of
several functions, of higher derivatives and of nonstraight-line programs

and on application to problems containing differential equations.

Introduction

The aim of this paper is multifold, but, in brief, it is to investigate
the theoretical and the practical results which we can extract from the
so-called computational graph for a fﬁnction or functions.

In the case of a single rational function, W. Baur and V. Strassen
proved a theorem [2] stating that the algebraic complexity of computing (i.e.,
total number of arithmetic operations needed to compute) the function of
several variables and its partial derivatives with reépect to all the vari-
ables is at most a constant (four, five, six or seven,-dependihg on
the manner of counting the number of operétions, but independent of
the number of variables) times as large as that of computing the function
alone. Their theorem, when applied to the determinant of a square matrix of
order n as a function of its n2 entries, implies the seemingly “surprising"

proposition that the computation of the determinant itself is already as

difficult as the computation of the determinant and the adjoint matrix, hence
as the computation of the determinant and the inverse matrix, since every
entry of the adjoint matrix is the partial derivative of the determinant with
respect to an entry of the matrix. This paper gives a more direct and more
elementary proof to the theorem and that with some refinements and for a more
general case where not only arithmetic operations but also any finitary
operations are admitted.

The proof is systematic constructive, so that it gives us a quite
practical method of calculating the partial derivatives of a function whose
computational procedure is given in the form of a computational graph or
something eguivalent. In fact, the method can be implemented in a computer
program [7]. Since we thus have a mechanical means by which to calculate the
derivatives from the given computational procedure of a function, when we

want to know the values of the partial derivatives of a fairly complicated

-

N
)

function, there is no need, in principle at least, any more to describe the

formulas for the derivatiwes, nor is "numerical differentiation" necessary

any more either.

Furthermore, it is seen that a reasonable bound for the rounding error
incurred in the final function &alue due to the finiteness of the precision
of computation is ready to obtain once the function and the derivatives have
been computed according to the procedure proposed in the following. This
will enable us to incorporate a kind of automatic rounding error analysis in
various fields of numerical computation.

The basic idea as well as the technique is not sophisticated at all, but
almost straightforward; ali that is needed is the "first theorem of graph
theory" concerning the degrees of vertices and the number of arcs of a graph,
and the analogy between the partial derivative of a function with respect to
one of its input variables and the shortest path from the vertex correspond-
ing to the variable to the vertex corresponding to the function on the
computational graph.

Since the problem to be considered here is the most fundamental in
calculus and the mathematical techniques used are the most elementary, the
results of this paper could readily be obtained by anybody who were so
motivated, s§ that this paper might well be regarded as a kind of tutorial
rather than an original contribution. In fact, some of the basic facts
mentioned in this paper are found scattered here and there in the existing
literature or have been talked about privately, although not completely
- [1, 101, Nevertheless, the author would like to emphasize the importance of
looking at the fundamental computational problem in calculus as such and to
penetrate into it as we shall do in the following.

As supplementary remarks, discussions are made on what will happen and

how to do with it when there are several functions, when the computational

51

procedure defining the function(s) contains recurrences and/obr conditional
branches, and when the same technique is applied to highef derivatives.

Also illustrated are, as examples of application of the same principle to
problems whose computational graphs are infinite, the problem of identifying
the parameters of a physical system whose behaviour is described by a system
of ordinary differential eugations;j and a computational approach to the two-

point boundary-value problemn.

1. Motivation and Informal Presentation of the Problem

It may widely be recognized that, in the expressions of derivatives of
functions, there appear many terms having factors similar to those appearing
in the expressions of the functions. For example, the simplest mathematical
model, the so—-called Ebers-Moll model; of the relation between the voltages
and the currents of a‘pnp—transistor, which is operating with the emitter

grounded, is a couple of equations shown in Fig. 1.1.

IC
Iy = —(1-0) I . [éxp(—q-VBE/k'T)‘ll
) —(1—0LR)-ICS- [exp(q- (VCE-VBE)/k-T)—l],
B
$;E VCE) IC = —uF-IES-[exp(—q-VBE/k-T)—ll
7L g lexp(qr (V =V /k-T)-1].

Fig. 1l.1. Ebers-Moll model for a pnp-transistor
IES' ICS: saturation currents for the emitter-base junction
and for the collector-base junction
o_.-.0_ : current transfer ratios.
V.., V, : voltages with the emitter as the datum node
T : temperature

g : electric charge of an electron

k : Boltzmann conStant

If we write down the derivatives of the base current IB with respect to all
the arguments appearing on the right-hand side of its expression, they will

look as follows.

SIB/BIES = —(l—aF)-[exp(—qVBE/kT)—l],
BIB/BICS = -(1-a.) - [exp(q(V o= BE)/kT) 11,
SIB/BaF = '[exp(—qVBE/kT)-l],

BIB/BaR = - lexp (q(V - Vg /KT 11,

BIB/BVBE = (q/kT)-(l—aF)‘IEs-exp(-qVBE/kT)

+(Q/KT) » (1-0.) + T o ~exp (q(V =V) /kT),
aIB/avCE = —(q/kT)-(1—aR)-ICS-exp(q(vcE BE)/kT), (1.1)
3IB/3T = (q/sz) [~ (1—&). IES BE exp(—qVBE/kT)
+(1-0) T o (Vop=Vpp) ~exp (A (V =V) /KT,
BIB/aq = (l/kT)'[(l—aF)'IES-VBE‘exp(—qVBE/kT)
~(1=0p) "Tog (Vop~Vgg) *eXP AV 5=V,) /KT T
9T/3k = (@/K’T)" [~ (1=a) *I -V, -exp(-qV,_/KT)
+(l-—(xR).ICS-(VCE—VBE)-exp(q(VCE BE)/kT)]

Thg derivatives of the collector current Ic will look quite similar. All the
terms on the right-hand sides of the expressions of (1.1) have a factor which
appears as a factor (or a supstantial part of it) of a term in the expression
of IB of Fig. 1l.1l. Therefore, when we want to compute IB, Ic and all their
derivatives, it is obviously inefficient to compute them according to the
expressions in Fig. 1.1 and eq. (1.1l), or the like.

Concerning this specific example, the IB and Ic in Fig. 1.1 might most

efficiently be computed according to the computational scheme of Scheme 1:1

with "intermediate variables", VCB' Eo, EE' EC' XE, Xe, YE’ YC' WE, WC’ AF’

53

v.,U0.,J3., 3 and J_ .. This scheme may either be written down

AR' E C C 1B 2B

explicitly by hand, or be automatically generated by a compiler from the
expressions in Fig. 1.1. The computational scheme of Scheme 1.1 can equiv-
alently (more precisely, in a little more general way) be expressed in

another form, i.e., in the form of a "computational graph" [1] of Fig. 1.2,

b Ve T Ver T Var
2 E0 =k x T

3 EE =—q*VBE
4 By TasxVy
5 X, =E /B
6 XC = EC / EO
7 YE = exp(XE)
8 YC = exp(xc)
o W, =Y -
10 W, =y, -1
1 A, =1-a
12 A, =1-0a
13 Ug = Igg * W
14 U, =TI %W
15 JC =—OLF*UE
16 3= Ay x U
17 JZB = -AR * UC
18 IC = JC + UC

19 I_=J_+J

B iB 2B

Scheme 1.1. A computational scheme for the expressions of I, and I_ in Fig. 1.
C

Fig. 1.2. The computational graph corresponding to Scheme 1.1,

and the elementary partial derivatives (attached to arcs)

where it is clearly seen how many operations of what kinds are needed to

t I I £ i f i t iab
compute the B and c or given values of input variables, uF, uR, IES’ ICS'

d, VBE’ VCF’ k and T. The computational graph is acyclic [3,5,6], so that it

55

determines a partial order on the vertex set. The order in which the inter-
mediate variables (and the final functions IB and IC) are computed in -
Scheme 1.1 is one of the total orders which are consistent with that partial
order.

It is possible to define, for each step of computation of an inter-
mediate variable (or final function) w in Scheme 1.1, i.e., for each vertex
corresponding to variable w with operation Yy in Fig. 1.2, the partial de-
rivatives of the w with respect to its operands. We shall call them the
"elementary partial derivatives". They are naturally attached to the incoming

arcs of the vertex corresponding to w in the computational graph. For instance

ow

if- w = P(u,v), then the elementary partial derivatives o wu and
%ﬂ = wv are attached to the arcs connecting the vertices for the variables
v

u and v to the.vertex for w . The elementary partial derivatives

for the computational scheme of Scheme 1.1, or for the computational graph of
Fig. 1.2, are shown beside arcs in the same figure. As is readily seen from
the chain rule for the derivatives of a composite function, the partial
derivative of a function, say IB, with respect to one of its variables, say
VBE 1s obtained by first calculating the product of the elementary partial
derivatives along each path from the vertex of the computational graph
corresponding to VBE to the vertex corresponding to IB and then taking the
sum of those products along all such paths. (This fact is remarked in many
text books and papers; see, e.g., [l].) Here it should be noted that this
sort of calculation is algebraically very similar to the calculation of the
shortest path, where the elementary partial derivatives in the former corre-
spond to the distances attached to arcs in the latter, the products to the
sums, and the sum to the minimum, respectively. Thus, the calculation of the

partial derivatives of IB with respect to all its input variables is

analogous to that of the shortest paths to a vertex of a directed graph from

56

many other vertices. 1In the shortest-path problem it is well known that, if
we want to find the shortest paths from many vertices to a single vertex, we

had better start from the latter vertex and proceed to the former vertices

instead of going from the former to the latter [4,6]}. This know-how of ours
in the shortest-path problem suggests us to make calculation of the partial
derivatives of IB not from the input variables to IB but from IB back
towards the input variables. This can actually be done by introducing aux-
iliary quantities attached to the vertices of the computational graph, i.e.,
the partial derivatives of IB with respect to the intermediate variables.

oI
. B
In fact, as is illustrated in Fig. 1.3, the partial derivative 5w of T

B

with respect to an intermediate (or input) variable w is equal to the sum
. BIB Bui
of the products o TS where ui's are the intermediate variables
i ou,

(or the final function) of which w is an operand, and _3;&JS are the

corresponding elementary partial derivatives. In practice, we may initially

oI oI
set B : = 0 for all u # I_., then start from 2 1 , and scan the
ou B BIB

computational graph from top to down as shown in Fig. 1.3 making the above-
described calculation step by step. That is equivalent to making the compu-
tation according to Scheme 1.2. It is here quite obvious that Scheme 1.2 may
be generated automatically, line by line, from Scheme 1.1. A similar scheme

will be constructed for the partial derivatives of Ic.

Thé relation between the number of basic operations needed for computing
a fundtion alone and the number of additional operations for computing all
its derivatives will intuitively be evident on the basis of the above'consid—
erations. Roughly speaking, the former number is equal to the number of
vertices of the computational graph, whereas the latter number is nearly equal
to the number of arcs (additicons and multiplications) if the computations of
elementary partial derivatives are ignored. As is seen from Fig. 1.2, we

need little additional computation for elementary partial derivatives once we

87

BIB/BIB

a1,/ L3S

oo Ye

‘ 31 ,/3u, 9I,/3U,
A
'a;tB/aAF TB/
3I_/ oW,
‘ o’ g . 3T/ OM,
. 1, /3Y, . 9T,/3Y
BIB/axE AT /3K,

91 /3B, BIL/9E, ‘ . 315/3%,

_f
Qo
i~
w
N
=
0
0

o) <5 O @) O D O O

I_/3v 9I_/3k 3L /3T
d1 /%0, I /B0, BT /BT BI/31 . 3I/3q 0L /3Vy, 3T/Veg /%% 9%/

Fig. 1.3. Partial derivatives of IB (defined on vertices

through bold-line arcs)

have computed the function. (Specifically, only three divisions were needed

in the case of the computational graph of Fig. 1.2.) Therefore, we can

conclude intuitively that the complexity of computing a function and that of

boroBry v = 8T 0V 4 B1 /v w1 s AT /8V = AT /0 + 9I,/8V x (-1)
2 BIy/3k := B3I /3k + 3I_/OE T 3I/8T = 3I,/3T + I /IE + k
3 BIB/aq = 3I,/3q + BIB/BEE*(—VBE); I _/3V, == aIB/avBE + BIB/BEE « (-q)
4 aIB/aq = axB/aq f aIB/aEC* A aIB/avCB:= BIB/BVCB + BIB/aEC * q
5 axB/aEE = BIB/BEE + BIB axE*(l/Eo); 8IB/3EO 1= aIB/aBO + BIB/BXE * (-XE/EO)
6 BIB/BEC 1= BIB/BEC + aIB/axc*(l/Eo); 8IB/aEO 1= BIB/BEO + BIB/BxC * (-xC/EO)
7 BIB/BXE 1= BIB/axE + aIB/aYE* Yo
8 SIB/BXC := aIB/BXC + aIB/aYC* YC
9 BIB/BYE 1= BIB/GYE + aIB/awE* 1
10 BIB/BYC := SIB/BYC + BIB/BWC* 1
11 BIB/BGF := BIB/BaF + BIB/BAF* (-1)

1]

12 BIB/aaR : BIB/aaR + BIB/BAR* (-1)

I

13 aIB/BIES: BIB/BIES+ BIB/BUE* wE; aIB/awE:= BIB/awE + aIB/auE * IES

14 aIB/aICS: aIB/aICS+ BIB/SUC* wc; BIB/awC:= BIB/awc + BIB/BUC « I

CSs

15

16 axB/aAF : BIB/BAF + BIB/BJle(—UE); BIB/auE : BIB/SUE + 3IB/8JlB*<—AF)

BIB/aUC + BIB/BJZB*(—AR)

17 BIB/SAR : BIB/BAR + BIB/BJZB*(—UC); BIB/BUC :

18

aIB/aJ2B + alB/aIB * 1

19 SIB/BJlgf 318/8J1B+ BIB/SIB* 1; BIB/BJZB:

il

BIB/BIB =1 BIB/aw =0 (w # IB)

Scheme 1.2. Computational scheme for the derivatives of IB

computing both the function and all its partial derivatives are of the order

of the "size" of the computational graph concerned, i.e., they are of the same

order.

59

The purpose of this paper is to more rigorously define the problem, to
carry out detailed analysis from the point of view of computational complexity,
and to discuss related problems and possible applications in numerical

mathematics.

2. Terminology and Notation

For a (directed) graph G(V,A) with vertex set V and arc set A , we
adopt a standard terminology and notation in graph theory [3,5,6]. Specifi-
. + -

cally, for an arc a ¢ A, 0 a (€V) 1is its initial vertex and 9 a the
+
terminal vertex; for a vertex v € V, 6 v is the .set of outgoing arcs from
S . . + + .
v, and § v the set of incoming arcs; d v = IG vl is the outdegree of
- - e + -t
vertex v , and d v = Ié v! its indegree; ' v =09 § v is the set of
+_

vertices adjacent in the positive direction to vertex v , and ['v =293 8 v

the set of adjacent vertices in the negative direction:

T + A \%
0" : AV (naturally extended to 9 : 2~ > 2) ,
+ A
8T v 2,
+ (2.1)

d :Vv->2zZ ,
+
+ A%
' : v->2 .
The following relations are the most fundamental in graph theory, sometimes

called the "First Theorem in Graph Theory" [5]:

6+u n 5+V =@, Sundvs= @ if u # v ; (2.2.1)
Us'v= Usv=a,; (2.2.2)
vev vev

Ja'v= Jdv=|a|; (2.2.3)
vev vev

J (a'v+dv) =o2|al . (2.2.4)
vev

A computational graph G(V,A) is an acyclic graph for which the follow-

60

ing concepts are defined. (The name of computational graph.is taken from [1].
The concept itself is a special case of the standard tool —— sometimes,
regarded as a generalization of "signal-flow graph" to the nonlinear case —

now widely used in system analysis [8,9].)

W oy l(eVK)
K

\

Fig. 2.1. A computational graph

The vertex set V is partitioned into three parts VX ’ VU and VK '

their elements being called, respectively, input variables, intermediate

variables and scalars (or constants). (Thus, we shall not distinguish in

61

nomenclature between "vertices" of a computational graph and the correspond-
ing "variables".) Some of the intermediate variables are specified as (final)
functions, for Which the computational graph affords the manner of computing
the values when the values are given to the input variables. (The values of
the scalars are assumed to be defined a priori.) The input variables and
scalars, and they only, have no incoming arcs:

Sv=g iff ve Ve UV . (2.3)

We shall denote the set of arcs outgoing from nonscalars by

a = U & (2.4)

14
U vev_uVv

X U

distinguishing those arcs from the arcs outgoing from scalars:

+
A =" §v. (2.5)
v€VK
Sometimes, we denote the input variables by xl,..., xn:
vy = { Xpreanr X 1, (2.6.1)
and the functions by fl,..., fm :
{ £rreeer £ } e Vi - (2.6.2)

We assume that a finite set of finitary operations Y is given as the

set of basic operations. ¥ is assumed to contain at least the four arithme-

tic operations, addition + , subtraction = , multiplication =* and
division / , all being binary operations, and the unary operation of
changing the sign. (However, since the operation of changing the sign is not
very essential in practical computation, we shall ignore it by merging it
with the preceding or succeeding operations to get, e.g., Y(u,v) = —(usv) ,
= -y/v , = -sin(u) , = log(-u) , etc., in the following.) The closure of V¥
with respect to legal compositions will be denoted by Y* . In particular,

*

Y is considered to contain "constants" and the "identity". We assume that

*
every partial derivative of any operation in ¥ belongs to ¥ . This is

]
b~

equivalent to assuming that ¥ is a set of operations such that W* is
closed under partial differentiation.

To each intermediate variable v (eVU) is attached a basic operation
Y = w(v) (€¥) , of which the number of operands is equal to d v , where it
is prescribed "which operand" corresponds to the initial vertex (eV) of
"which arc" of § v :

w:v. >Y,
© - (2.7)
Y =w(v) is (d v)-ary .

Since a computational graph is acyclic, a partial order is determined on

v={u,..., u, } as usual. Let (u., u

1 u,) be a permutation of

i M A

all the vertices such that, for no two ui, uj with 1< 3 , uj precedes

u, in that partial order, and let (v,,..., V.) be the sequence of inter-

1 k

mediate variables obtained from (ul,..., uz) by suppressing the input

variables and scalars. Then, .we have the computational scheme:

v, = ’ Joeooe

v = ’ PP
V2 Yy (g r Uyprees)

Vk i= wk(ukl’ ukzr---)

Scheme 2.1. Computational scheme

where Y, = w(v,), and u,, 1is a scalar (eV_) , an.input variable (eV_) .,
i i ij K DA ¢

or a Yh with h < i . There are in general several computational schemes

corresponding to one and the same computational graph, but they differ from

one another only in the order of arrangement of lines.

In the following, we shall abbreviate "addition(s)/subtraction(s)" to

63

"A", "multiplication(s)/division(s) by a scalar" to "S", "multiplication(s)
of a nonscalar by a nonscalar" to "M", "division(s) by a nonscalar" to "D",
and "other operation(s)" to "T". ("T" may be further classified into finer
classes if we want. Note that we ignore the operation of changing the sign,
merging it with a neighbouring operation, as has already been remarked.)
The operation count

V(G) = nA~A + nS-S + nM'M + nD-D + nT-T (2.8)
(read " nA‘ additions/subtractions, nS scalar multiplications/divisions,
nM essential multiplications, nD essential divisions and n other
operations;) for a computational graph is simply a quintuple (n. ., n_, n_,

A S M

5 . . .
n n_) (€Z+) of nonnegative integers, each counting the number of re-

D' T
spective operations to be performed in the computation specified by G (or

the corresponding computational schemes). -Let us introduce the mapping

5
Vi VZ (2.9)
such that
Wv) = 1A if w(v) is an addition or subtraction,

= 1-8 if w(v) is a multiplication or division by a scalar,
=1-M if w(v) 1is a multiplication of two nonscalars,
= 1-D if w(v) 1is a division by a nonscalar,

= 1.7 if w(v) is a nonarithmetic operation

for v € VU , and
v(v) =0
for v e VX U VK (cf. also Table 2.1). Then we Qéy write
V(G) =) V(V) . (2.10)
vev

To each arc a(eAU) whose initial vertex is not a scalar (i.e.,
8+areVXUVU) we attach an elementary partial derivative as follows. Take the

terminal vertex w = 0 a , which is an intermediate veriable (eVU) by virtue

64

of (2.3). Then, there is a basic operation ¢ = w(w) (cf. (2.7)) , and it
is prescribed to which of the dw operands of Y the initial vertex

+ .
u=29a of arc a corresponds. Let us assume that the corresponding
operand is the p-th. Thus, there is a step of computation

lesveecapecacs v

w=VP(... , u, ...) (2.11)
in the computational scheme. Therefore, after finishing this step of compu-
tation, we can determine the value d(a) of the partial derivative of
with respect to its p-th argument for the current values of the arguments.
(Note that, unless a has a parallel arc, we may write d(a) = —%g— .) We

shall call the values d(a) attached to the arcs of AU in the compu-

tational graph in this manner the elementary partial derivatives (see Fig.

2.2). An elementary partial derivative may be calculated in any manner in
terms of the values of the intermediate variables involved in the computation
of (2.11). It is worth noting that little additional computation is nekded
to compute the elementary partial derivatives after the computation of the

functions is finished.

Fig. 2.2. Elementary partial derivatives

We shall denote by V(w) the operation count for computing all the
elementary partial derivatives d(a) attached to the arcs a € §wn AU from
the values of w and ui's when the computatipn of w= w(ul, u2,...) is
over. The operation count for the elementary partial decrivatives for all the

arcs of AU in the computational graph G 1is then defined as

65

(2.12)
U

In the following, we shall make use of another computation connected

with the elementary partial derivatives attached to the arcs 'a € Swna_,
ice.,

to compute d(a) x y's for any given value of y .
We denote by U#*(w)

the operation count for this computation and define

(2.13)
U .

Table 2.1 shows the operation counts 9Y(w) and VU*(w) for typical vertices

w , where the operation count for a division vertex indicated with an aster-

isk in the table is based on the folllowing algorithm (due to [2]):

z :=y/v,

ow _

3 *y (= (l/V)*Y)i= z ' (2.14)
gz *y (= —(W/V)*xy)i= -wxz .

As will be seen later, this algorithm corresponds to a tricky surgery (i.e.,

local modification) of the part of computational graph such as shown in Fig.
2.3.

Fig. 2.3. Surgery for a division

vertex

66

Table 2.1. Operation counts for typical vertices

(u, vevV. UV.;weV._;cece VK ; P e ¥; A= addition/subtraction,
X U

scalar multiplication/division, M = essential multiplication,

S =
D = essential division, T = other operations)
w = Y(u,v) Yy b, v () S U* ()
wW=uttyvy 1 *] 1A 0 0
W=u v v u 1M 0 2M
W=-u=xv -V -u 1M) 0 2M
W=u+% c c 1s 0 1s
w = u/v 1/v -w/Vv iD 2D 1M + 1D*
w = -u/v -1/v w/v 1D 2D 1M + 1D*
w = c/u -w/u 1D 1D 1M + 1D
w = exp(u) w iT 0 M
w.= log(u) 1/u 1T 1D iD
w = sin(u) cos (u) 1T 1T 1T + 1M
W = cos (u) -=sin (u) ' 1T 1T 1T + 1M
exp
w = *log(+u) the same as above
sin
cos
w=/u 1/(2u) 1T 1D + 1S 1D + 1S
w = |y sgn (u) 0 0 0
w = max(u,v) ifu>v ifu>v 1A 0 0
then 1 then 0
else 0 else 1
W = min{(u,v) ifu>v if u>v 1a 0 0
then 0 then 1
else 1 else O

67

3. Partial Derivatives and "Shortest Paths"

As is readily seen from the chain rule for the differentiation of a
of .
composite function, the partial derivative ij of the j—-th function fj

with respect to the i-th input variable xi can be expressed in terms of

elementary partial derivatives as
of.

ox

i
where (ayr @yreeer @y) is the sequence of arcs on a directed path from

) Nt - ot - _ ot
X to fj (i.e., X, =) aj s) a; = 9 ay reees 3 ap_1) ap

Here the analogy is evident between the formula (3.1) and the well-~-known

formula for the shortest distance:

d(fj, x,) = Min { d(ay) +da,) + ... + d(ap) 1, (3.2)

where d(fj, Xi) is the distance along the shortest directed path from X,

t £, in th raph G(V_uV
o 5 e grap (Xu g

structure as the computational graph we are considering but which has the
"arc-distance" function 4 : AU +~ R defined on the arc set AU instead of
the elementary partial derivatives, and where (,al 5

the range of taking the minimum in (3.2) is the same as in (3.1). The

difference between (3.1) and (3.2) thus consists only in that the product in

(3.1) is replaced by the sum in (3.2) and the sum in (3.1) by the minimum in

(3.2).

The algorithmic theory for the shortest-path problem has long been
studied in detail (see [4] for an earlier survey, which already contains
enough information for our present purpose). For an acyclic graph the

problem is rather easy to solve, the most primitive "potential method" or

"]1abel-correcting method" giving satisfactory results from the point of view

of computational efficiency. The only choice is in which direction we should

- Z d(ay) =* d(az) * ... X d(aﬁ) ' (3-1)

) aﬂ = fj) and the sum is taken over all the directed paths from xi to fj

' AU) which has essentially the same topological

y A geeey aK) as well as

-

68

proceed the labelling, "from the entrance x.l to the exit fj "or "from
the exit to the entrance". The first method is to label each vertex v with
the shortest distance d(v,xi) from the entrance X, to v. as its po-
tential, where we spread the labels from the entrance to other vertices by
scanning the graph in the breadth-first manner starting from the entrance.
The second method is to adopt the distance d(fj,v) to the exit lfj' from each
vertex v for the label of v , and to scan the graph in the breadth-first
manner starting from the exit, thus spreading the labels from the exit to
other vertices. It is a commonsense in the algorithmic theory for the
shortest-path problem that we can determine by means of one of the above two
methods not only the shortest path from a vertex (entrance) to another (exit)
but we can determine also either all the shortest paths from a single entrance
to many exits simultaneously by means of the first method or all the shortest
paths from many entrances to a single exit simultaneously by means of the
second method, and furthermore that, for the multi-entrance multi-exit
problem, there is no method definitely better than applying the first or the
second method repeatedly to each of the entrances or of the exits, respective-
ly. Hence, if there are less entrances than exits, we had better apply the
first method as many times as there are entrances, whereas, if there are more
entrances than exits, the repeated application of the second method to each
of the exits is recommendable.

Let us consider what will result if we translate these facts for the
shortest-path problem into our problem according to the analogy between the

two problems. First, we note that the shortest distance from a vertex u to -

. d :
another v is translated into the partial derivative BZ of v with

respect to u . (If there is no directed path from u to Vv , the distance

from u. to: v is taken to be infinite, and the partial cerivative gv to
u

be equal to zero.) Then, the method of determining the partial derivatives

63

of all the intermediate variables v (€VU) with respect to an input varia-

ble x. —— which we shall call Method 1

5 can be described as follows

(see also Fig. 3.1(a)), where (V., V. ,eeue, vk) is the permutation of V

1 2 U
in Scheme 2.1.
<Method 1> An array of size |V uv for ov 's (VEV uv_) is
XU axi XU
used for the working area.
1° Initialization :--
ov
|for all v E.vx U VU gg_ e 0 ;
i
Bxi
5%, =1 .
i
2° Iteration :=-
for h :=1 until k do
for all ae 8 v. nA_ do
ov ov
+ h h ou
:= 9 ; = + .
u‘ a ox ox, d(@) « 9x.
i
On the other hand, the method of determining the partial derivatives of a
function fj with respect to all the nonscalar variables v (EVXUVU) _—_
which we shall call Method 2 — is as follows (see also Fig. 3.1(b)), where

(Vl’ v2,..., vk) is the same as in Method 1.

£,
<Method 2> An array of size |VXUVU for §§j 's (veVXUVU) and a
set Q of size [VXUVU are used for the working area.
1° Initialization :--
ij
for all v e Ve U VU do 5v = 0 ;
ij :
sE - L (Q:={fj}) .

J

70

2° Iteration :

for h :=k until 1 step =1 do-
(if vy € QO then)
(g:=9-{v 1}
for all a € § v, 0 Ay do
+ ij ij of.
u:=9a; du -~ Tou +d(a) « v !
h
((Q :=0Q U {u}) .

(The set Q may not be used, so

parentheses may be omitted from

that the parts enclosed in

the above algorithm.)

In view of our knowledge concerning the shortest-path problem as stated

in the above, we shall adopt Method 2 in the following, assuming there are

usually not so many functions to compute as there are input variables.

Fig.

V(a) Method 1 and

#

(b)

3.1. Fundamental recurrence relation used in

(b) Method 2

71

4. Complexity of the Computation of the Partial Derivatives of a Function

In this

section we confine ourselves to the case of a single function.

Then the algorithm for computing the function and all its partial derivatives

is summarized as follows.

<Algorithm A>

Stage

Stage

Stage

The relation

1 :-- Compute the value of the function £ as well as the

values of the intermediate variables vy according to the

computational scheme, Scheme 2.1, of section 2.
2 :-- Compute the elementary partial derivatives d(a)'s

to attach to the arcs a € AU of the computational graph.
' . . . of of
3 :—-—- Compute the partial derivatives) 's and 's
vy ox,
of the function with respect to the intermediate variables and

the input variables by Method 2 of section 3.

of Stage 1 to Stage 3 is illustrated in Fig. 4.1 figuratively.

u
Stage 1 Stage 3
' 5f of 1
w = P(u,v) | du = du g* d
of _ Of of
. ov = dv * l,}V* ow
4 N :

Fig. 4.1. Relation between Stage 1 and Stage3 of Algorithm A’

As is seen from "iteration" step of Method 2, we may combine Stage 2 and

of

Stage 3 into one stage to compute df(a) ¥ 3 's for a € 5_vh n AU with
h
5*(vh) operations, thus obtaining the following algorithm.
<Algorithm B>
Stage 1 :-- The same as in Algorithm A.
. . . of of
Stage 2 & 3 :—- Compute the partial derivatives - 's and o 's
h i

by Method 2, computing elementary partial derivatives as they

become necessary.

The time complexity, i.e., the operation count of the algorithm is now
obvious. For Stage 1 it is equal to V(G) (cf. (2.10)), and for Stage 2 of
Algorithm A it is V(G) (cf. (2.12)). At Stage 3, one multiplication;is
required for each arc of AU , so that the total number of multiplicatiéhs
needed is equal to IAUI ; whereas the number of additions needed is less
than that of multiplications by one for each vertex of VXUVU ;, hence by
IVXUVUI in all, since the first addition for each such vertex in the ex-
pression of "Iteration" step of Method 2, being the addition to 0 , is not
to be counted in the operation count. Hence, the operation count for Stage 3
is

(lAUI - v uvl)+ |AU(-M . (4.1)
Thereforef the total operation count for Algorithm A is_

V(G) + V(G) + (|AU| - |vx| - IvU|)R + [AUI-M . (4.2)

For Algorithm B where Stages 2 and 3 are merged into the single stage,

Stage 2 & 3, the operation count for Stage 2 & 3 is

v @) + ([a] - fvyu vyl ea, (4.3)

so that the total operation count is

Ve + %@ + (|a] - v] - [v]

) A . (4.4)
U M

73

In order to go into more details, we have to make some assumptions on
the properties of basic operations. For the sake of simplicity, we first
count every basic operation with an equal weight, i.e., we introduce a kind
of "norm" of the operation count such as follows:

| ny*A + ngsS +n M+ D+n T |=n, +n,+n +n +n. . (4.5)
Then, we have by definition

[Viw)| = 1 for every w ¢ Vy - (4.86)
Furthermore, it will be plausible, in view of Table 2.1, to assume that

[Ow)|] £ dw and |V*w)| £ dw for every w € V. . (4.7)
(Obviously, these assumptions are practically too conservative.) It will
also be a realistic assumption that every basic operation is at most binary
and that there is no redundant vertex in the computational graph, i.e.,

- +
dwg 2 for every w € Vy, and dw 21 for every w eV - {£} . (4.8)

From (2.2.3) and (4.8), we have

[a] =) av+) avsg 2-|v,| (4.9)
vevXUVK vevU
and
agl = 1 dv=J av-) dvelal-|v]. (4.10)
veVXUVU vev veVK K
From (4.6) and (é.lO) we have
lvie)| = |vU| . (4.11)
From (4.7j, (2.12), (2.13), (2.3) and (2.2.3) we have
V@ | s)} av= Jdav-)} dav-=|a|, (4.12)
veV vev veV_UuVv
U X K
and, likewise,
9| < |a] . (4.13)

Let us denote the operation count for the computation of the function f
alone by L(f) and that for the simultaneous computation of £ and all its

derivatives by L(f, Vf) . Then we have from (4.11)

lLe)| = [ve]| = vl - (4.14)

For Algorithm A, we have from (4.1), (4.10), (4.11) and (4.12)

|L(£, VE)| = [v©@)]| + |V + (IAU] -]vx u VUI) + JAU[
S 1vy 1+ [l + 2o fag] = v, - Iv,
< 3-]a] - ;vxl - 2-|vKI < 3 |al . (4.15)
Furthermore, taking account of (4.9), we have
lL(g, vE)| < 64|le (4.16)
for Algorithm A. Thus we have the relation
[L(£)| < |L(£, VE)| £ 6-|n(f)| (4.17)

for Algorithm A under our assumptions.

For Algorithm B, we have from (4.3), (4.10), (4.11) and (4.13)

lL(£, VE)| = |v(@)]| + |9* (@)]| + IAU! -]vx u vU|
< vyl + Jal + o = |v | - |v]
< 2-|a| - le| - vl < 2-]a] (4.18)

and, taking account of (4.9),
|L(£, VE)]| < 4-[vU| . (4.19)
Thus we have the relation
|L(f)| < |L(E, VB | £ 4-|L(D)] (4.20)
for Algorithm B.
(4.17) or (4.20) can be read:
"If £ 1is computed with |L(f)| operations, then there is an

algorithm for simultaneously computing £ and all its partial

derivatives with at most 6-[L(f)] or 4'{L(f)[operations."

The space complexity for the simultaneous computation of a function and
all its derivatives is easy to estimate. We need IVI places for storing
the values of the input and the intermediate variables (and the constants) at

Stage 1, and, if we use Algorithm A,]AU| places for the values of the

elementary partial derivatives at Stage 2, and |VXUVU places for the

values of the partial derivatives gih and gi' at Stage 3. If we use
Algorithm B, we do not need ‘AU| places at Stage 2. In any case, we need
at most 2+|v] + |A| (g4-|V| under the assumption (4.8)), or 3-]V] , extra
places for computing the partial derivatives in addition to the function it-
self. (Note that we do not consider here the space for representing the
topological structure of the computational graph or the structure of the
computational scheme. _It is common both to the function and to the deriva-
tives.) Again, the space complexity is at most three or four times as large
as the number of vertices of the computational graph.

In the case where we take only the four arithmetic operations for the
basic operations, it is possible to make more detailed analysis of complexity.
In fact, let

Vv(G) = nA-A + nS-S + nM'M + nD-D . (4.21)

Then it is seen from Table 2.1 that

U*(G) = n_-S + 2°n_-M + ‘M + n_-
V¥ (G) ng 2 ny, M (ng M nD D)

-8 + ‘n_ + ‘M + n_-D . .
ng S (2 nM nD) M nD D (4.22)

In order to evaluate the number of additions appearing in the second term of

(4.3), let us rewrite lAUI and IVXUVUIY in terms of N, s Do Dy and ny -

S
Since
= “von 4.23
nyl = 1 167w nny (4.23)
U
and
|6-w n AU £ 2 if w(w) 1is an addition/subtraction (the inequality

takes place when an operand is a scalar),
=1 if w(w) 1is a scalar multiplication/division,
=2 if w(w) 1is an essential multiplication,
£ 2 if w(w) 1is an essential division (the inequality

takes place when the numerator is a scalar),

76

we have
Al < 2n + + 2-n_ + 2- ; 4.24
[Ul S 2'ny + ng 2 Ny 2\nD ()
it is more trivially seen that
vV, u 2 = + + + . 4.25
I X VUl 2 |VU[ny, * g+t o ()

Combining (4.24) and (4.25), we have

|a_| - |Vx uv.| =n_+n_ +n_. (4.26)

U, Ul A M D

Summing (4.21), (4.22) and (4.26) all together, we have. the operation count
by Algorithm B in the case of the four arithmetic operations as follows:
L (f) = nA-A + nS~S + nM-M + nD'D , (4.27)
L(f, VE) £ (z-nA + n, + ny)*A + 2-ns-s + (3-nM + n,)M + 2'nyD .
(4.28)
This result for the special case refines and sharpens the upper bound for
L(f, VE) in [2]. where M .and D are not distinguished from each other so
that (3-nM + hD)M + 2-nD'D here is counted as 3-(ny + ny) -M/D there.
Moreover, it is easy to see from (4.24), (4.25), (4.26) that the right-hand
side of (4.28) can further be reduced by the sum of the following numbers:
the number of input variables, i.e.,]VX] ’
the number of additions/subtractions one of whose operands is a scalar

and

the number of divisions of a scalar by a nonscalar.

5. Estimation of Rounding Error

As a by-product of the algorithm for simultaneously computing a function
and all its partial derivatives whose complexity we analyzed in the preceding
section, we can get a rather good estimate of the rounding error incurred in
the value of the function by‘the computation, with no substantial extra
labour.

We shall denote by € the so-called "machine epsilon", which is the

maximum relative error occurring in the floating-point representation of a
real number on a fixed-length word of the computer memory. For a typical
familiar computer used with a typical compiler or interpreter, € is ordi-

. -5 . . . -13 . .
narily 16 (single-precision hexadecimal), 16 (double-precision

. -24 -56 . .

hexadecimal), 2 (single-precision binary), 2 (double-precision
binary), oxr one half of them.

For the generation and propagation of rounding errors, we adopt the
following model [11l]. Let Aw (to be called the rounding error in w) be
the difference of the value of the variable w obtained by the actual compu-
tation from the value which would be obtained if we made the infinite-~
precision computation. When we compute the value of an intermediate variable
w at a certain step of the computational scheme w = Y(u, v,...) , the round-

ing error Aw is assumed to be determined by

Aw = 6w + Z d(a) = Au . (5.1)

aecl w

+
(u=9 a)
(Usually, (5.1) is written in the form

Aw = 8w + Z wu.'* Aui , (5.1")
i i

which is valid unless the same intermediate variable u; occurs as arguments
of Y more than once.) Here, the second term on the right-hand side of
(5.1) is the term representing £he "propagation" of rounding error, whereas
the first term 6w represents the "generation" of rounding error gt this
step of computation. It is not very easy to decide how large 0w is, since
it depends on the machine (and even on the particular compiler) we use and on
the kind of operation Y . But, when we work with a "good" machine and a
"good" compiler, it might not be so unrealistic to assume that

|6w] < e-|w| . (5.2)

Then, simple elementary calculation will yield

78

Af = z of * Qv + Z gi * Ax , (5-3)
veVU erX

from which follows the inequality

gl < el § | g‘f, |« |v] 1+ ¥ l—g%l*ll\xl . (5.4)
VeV, xEVX

Since we have already got the values of the intermediate variables vV € VU

and of the partial derivatives

gf of the function with respect to them
V .
through the computation at Stages 1 to 3 (see section 4), it is straight-

forward to compute the sum of products of the first term on the right-hand

side of (5.4) and to multiply it by € , which stage of computation we shall
call Stage 4.
‘ of

,___l * lvl over all

Stage 4 :-- Compute the sum of products v

the intermediate variables v ¢ VU .

The operation count for this additional stage is obviously
- . . (5.5)
Clvgl = 1ha+ v |n, |
and we need no special working space for this stage.

Whether the second term on the right-hand side of (5.4) is meaningful or

.) a
not will depend on the circumstances in which we are laid. Sometimes we may

neglect that term setting Ax = 0 for all x € Vy r OF sometimes we should

take account of the effect of the errors already contained in the input

variables on the final function value. Whichever is the case, we can readily

N a f .
do anything we want to since we have enough information on . iS5 .

6. Practical Implications

i i i ives
It may be said that there have been two means in use when derivat '
. . . . :] erical
in addition to a function or functions, are necessary in practical num

computation. One is to differentiate the expression (or the computational

75

scheme) of the function as a "formula" either by hand or by some program
which is capable of formula manipulation. By this means, we ordinarily get
apparéntly redundant formulas (see the example in section 1) and, what is
‘worse, we have to write down as many expressions as there are input variables.
If we perform differentiation by hand, we are apt to make mistakes in manip-—
ulating formulas and in coding them. Even if we have access to a formula-
manipulating program, it is not without difficulty that we combine the result
from such a program with an ordinary program written in FORTRAN, say.

This is probably one of the reasons why the other means, i.e., "numerical
differentiation”, has often been used in practice. However, as is well known,
the simplest formula for numerical differentiation reduces the number of
significant digits, roughly speaking, to half. Furthermore, if there are n
input variables, we have to compute the values of the function for at least
n different sets of values of the input variables.

Thus, whichever means we may use, cumbersome formula manipulation or
inaccurate numerical differentiation, the amount of necessary computation
will increase with the number of input variables. |

In contrast, the method we have developed in this paper is more practical
than formula manipulation, gives more accurate results than numerical
differentiation, and is more efficient than either of them. Moreover, it is
easy to implement in a FORTRAN compiler or a preprocessor, which we are try-
ing to do including also the extension to the case discussed in section 8 [7].

Analysis of rounding errors in numerical computation has remained to be
a theoretical subject in spite of its practical importance, probably because
it is difficult to get a reasonable estimate for the bound for rounding errors
in parallel with computation of functions. ("Interval algebra" [12] is terri-
bly laborious and often gives uselessly too big error bounds.) It is now

possible, as we showed in section 5.

o
[ot

7. Remarks on the Case of Several Functions and on Higher Derivatives

It is possible immediately to extend the algorithm developed in section
4 and section 5 to the case where there are more than one function.

Stage 1 and Stage 2 are to be performed as they are described in
Algorithm A (at the beginning of section 4). Then, Stage 3 (as well as Stage
4 if we want it) 1is to be performed for each of the functions separately
with Method 2 (of section 3). It might be possible to devise an algorithm to
simultaneously compute the partial derivatives of all the functions more
efficiently than to compute them for individual functions séparately, but it
seems that we have not yet known such an algorithm which is applicable to the
general case (see [4] for analogous problems for the shortest paths). Even
if we compute them for each function separately, we have only to make compu-
tation of Stages 1 and 2 once for all. The extra operations needed for
computing for another function are at most |AU| multiplications and

IA - IVX U VU additions at Stage 3.

yl
If there are more functions than input variables, Method 1 (of section

3) might better be used than Method 2 at Stage 3. However, if we want to find

the estimate of rounding errors (Stage 4), Method 2 will still be recommendable.
We have so far considered the first derivatives, or the gradient, of a
function. It is in principle possible to apply the same technique to higher
derivatives.i For example, for the second derivatives, or the Hessian, of f ,
we may proceed as follows.
We can write down all the computations we have done at Stages 1 to 3 for
a function and its gradient in the form of a computational scheme or a compu-
tational graph. The computational graph representing the computations for
the function and the gradient by Algorithm A (of section 4) will consist of
three parts, like that shown in Fig. 7.1, which we shall call the "extended

computational graph".

Stage 3

Stage 2 £

of / o, (=1) 0%
J 1

Fig. 7.2. Computation of the Hessian on the extended

computational graph

£

The right half of the extended computational graph is the same as the
original computational graph for the function, which represents the compu-
tation at Stage 1. The left half has almost the same topology as the right
half but wi;h the orientation of the arcs reversed and with one additional
multiplication vertex in the middle of each arc. All the vertices corre-
spondihg to the intermediate variables, except that corresponding to f , in
the left half, are addition vertices, and they are the vertices representing

gi 's . In between the right half and

the (now intermediate) "variables"
the left half, there are as many additional vertices as the arcs of AU ‘in
the original computational graph, representing the "variables" d(a)'s (i.e.,
"elementary partial derivatives"). They are connected to the additional
multiplication vertices in the left half to represent, together with the left
half, the computation at Stage 3. The broken-line arcs connecting the
vertices of the right half to the vertices for the elementary partial
derivatives represent the computation of the latter from the input and inter-
mediate variables of the right half at Stage 2. Note that the cennection
representedAby the broken-line arcs is Mlocal", i.e., it is confined within

the variables which appear in one and the same step of computation at Stage 1.

Regarding this extended computational graph as the given computational

graph, we may apply Algorithm B (of section 4) starting from each —%&— -
2 i
vertex at the bottom of the left half, to get —5;§§§——‘s at the bottom of
i7"

the right half (see Fig. 7.2).
Since the extended computational graph is approximately three times as

2
large as the original, we can compute all the second derivatives "5%‘%;"
i773
for each fixed i in the time which is of the same order as we compute the
functioh itself. If there are n input variables, we can find all the n2

second derivatives in time O(n » F) , where F 1is the time complexity of

the computation of the function.

In Fig. 7.1, the elementary partialbderivatives for the arcs of the
extended computational graph are also shown, except for the broken-~line arcs
representing the computation of elementary partial derivatives. The structure
of the part consisting of the broken-line arcs is most chracteristic to the
extended computational graph. It is illustrated in Fig. 7.3 for each of the

typical basic operations.

<
]

exp (u)

£
]

w sin
cos (W

£
]

w = u/v

1/v —wW/V

£
n
£

w = max (u,v)

"Uu, /

b

4

Fig. 7.3. Part of the extended computational
graph for the elementary partial
derivatives of typical basic operations,

with the elementary (second) derivatives attached to arcs

84

As is seen from Fig. 7.3, this part is as simple in structure as, sometimes

even simpler than, the other part.

8. Remarks on Non-straight-line Computations

Throughout the preceding sections, we have taken it for granted that
a function, or functions, is defined in terms of a computational scheme or a
computational graph, i.e. a so-called "straight-line program". However,
the functions we have to deal with in practical situations are often defined
in terms of a program containing conditional branches such as IF- and DO-
statements (say, in FORTRAN). Even to such a case, we can apply the technique
developed in this paper. 1In fact, we may imagine of (possibly infinitely) many
computational graphs for all the possible combinations of conditions, and
suppose that one of them is realized for each particular set of input data.
It will also be a realistic assumption that, for "almost all" values of input
data, any sufficiently small perturbation‘of the values of input data does
not change the corresponding computational graph. Then, so long-as the
computational graph remains the same, we can apply our technique to find the
partial derivatives. Thus, the problem is to determine the computational
graph which is realized under the given condition. This is not possible a
priori, but can be done on the run time. We may log the "history" of compu-
tation we have actually done as we proceed the computation, to complete the
computational scheme realized under that particular condition. To that
computational scheme we may apply the procedures of Stages 2 and 3 (of section
4) to get the partial derivatives. By means of this approach we can sub-
stantially extend the area of application of our technique.

1f we apply the same technique to exceptional cases where the compu-
tational graph may change as the values of input data are subject to some

perturbation however small it may be, we shall obtain a directional derivative,

89

provided there is a perturbation which does not change the computational
gfaph.
In the case where every perturbation of the input data changes the

computational graph, no general strategy seems to work well.

9. Application to Systems of Ordinary Differential Equations

The technique we have studied in this paper may conceptually be applied
to the numerical problems containing ordinary differential equations if we
consider infinite graphs. To be specific, let us choose two examples from
among the problems often encountered in mathematical treatments of systems.

9.1. Identification of system parameters. Suppose we are given the

mathematical model of a real-world system in the form of a system of ordinary
differential equations in y'< (K=1,..., n)

dyK

dt

= £y, t;a) (K=1,..., n) (9.1)

containing a certain number of unknown parameters al (i=1,..., m) as
well as a set of observational data of the real system in the form of the
.A ~K . .
functions y (t) (k=1,..., n) of t on a time interval [a,b] , and
we are required to determine the values of the parameters al so as to
minimize a given objective functional of the form
b
I= (F(y(t); t) dt , . (9.2)
Ja .
where yK(t)'s are the solution of the initial-value problem of (9.1) with
the initial conditions
K ~K
y (a) =y (a) (k=1,..., n) . (9.3)

(For example, we take F(y; t) = w(t)~|y(t) - ?(t)l2 for the least-square

criterion with a weight function w(t) , where I-l is a certain norm.)

86

To determine the values of ul's , the standard method will be to start

's , ta numerically solve

from some appropriately chosen initial guess of ot
the system of ordinary differential eugations (9.1) under the initial con-

ditions (9.3), to compute the value of I as well as the values of its

oI

. . . i .
derivatives 's with respect to o 's , to "improve" the values of
90,

i .
0 's using the values of I and

T 's , and to repeat the same until
30
convergence is attained.
ol

i
o0,
In order to find the continuum counterpart of our technique, we resort to a

Here we face the problem of simultaneously computing I and 's.
kind of heuristics, i.e., the discretization of the problem followed by the
re-continuization. Thus, we first replace the differential equations (9.1)
and the integral (9.2) by any discrete approximation scheme, say, by the
Euler formula
K K K

y (t2+l) =Yy (tz) + h-f (y(tz), tﬁ;a) (£=0,1,..., N-1) (9.4)

and by the rectangle formula
N
I=h- } Flylty; tp) , (9.5)
£=1 '

respectively, where

toep “tpth £L=0,1,..., N1), h= (b-a)/N . (9.6)
Unless we are given explicit expressions of £%'s as functions of t ’ yK's
and a''s , we have to regard £'s themselves as (ntm+l)-ary basic oper-

: . K, i ~K . :
ations with y 's , o ’s and t as operands. We may regard y (a)'s in
the initial conditions as scalars in this context.

It is interesting to see that the algorithm of section 4, when applied
to the computational graph thus constructed, makes a discrete approximation

to the continuous problem of findihg GK(t)'s » for t e [a,b], satisfying

the system of differential equations

=-1 ¢ - of O (K=1,000, n) (9.7)

ByK

and the initial (or, more precisely, the terminal) conditions
Ge(P) =0 (K=1,..., 1), - (9.8)

and then calculating the integrals

b
a N .
?i =J Y G - af.' at (i=1,..., m) (9.9)
o a K=1 dat

The complexity of numerically solving (9.7), (9.8) and computing (9.9)
by discretizing the interval [a,b] 1into N meshes is

0(n?-N). for the solution of (9.7) and (9.8)
and

O0(m-n-N) for the integration of (9.9).

I .
This approach to the computation of 3 —'s should be compared with the

dat

standard approach which first solves the m perturbation equations of (9.1):

dnK n K K
i of A of :
==] iU eri (K=1,..., n) (9.10)
A=1 9y aa
with the initial conditions
K
ni(a) =0 (Kk=1,..., n) . (9.11)

for i=1,..., m , and then calculates the m integrals

l,eee, m) . (9.12)

5I Jb T aF

K .
T e TN de (i

a0 a k=1 9y
With the séme discretization as the above, the complexity of the latter
approach will be
0(m-n2-N) for the solution of (9.10) and (9.11)
and
O0(mn-N)} for the integration of (9.12)

The essential difference between the two approaches consists in that we

have to solve m systems of ordinary differential equations by the latter

approach whereas we have only to solve a single system by the former.
It may be of some interest to note that GK(t) can be interpreted as
the Lagrange multipliers. for the problem of minimizing (9.2) under the

constraints (9.1) and (9.3) in the traditional framework of theory of ordinary

differential equations.

9.2. Solving the two-point boundary-value problem by the shooting method

with primitive descent. The two-point boundary-value problem we shall consider

is constituted from the system of ordinary differential equations

dyK K
T £ (y, t) (k=1,..., n) (9.13)
for t € (a,b) and the boundary conditions

v @) = o for k ek (e{l,...,n}), (9.14)
V) = g° for kK ek, (c{1,..., n}), (9.15)

where K, and K, are subsets of {1,..., n} such that

lKl[+ |k, | =n . (9.16)

The shooting method for solving this two-point boundary-value problem
converts the problem into the initial-value problem with the same system of
differential equations (9.13) and the initial conditions (9.14) and

yK(a) = uK for ke { 1,..., n } - Kl (9.17)

K
) unknown parameters o (K e { 1,..., nl} -K),

with m =n - IK 1

1| 2|

and requires to determine the values of the m unknown parameters in such a

way that

<12 (9.18)

I=Fy®m) = §J | vm-8

KeK
2

.. . K
becomes minimum (desirably, zero), where vy (b)'s are the values at t = b

of the solution of the initial-value problem (9.13), (9.14), (9.17).
oI
K

o

's for ke {1,..., n}-K . Entirely in

Here again, we need 1

89

the same manner as we did for the problem in section 9.1, we are led to the
"single" system of ordinary differential equations
daG n A
K

of
= - 2 G .
dt = A ayK

(K=1,..., n) (9.19)

for t € (a,b) with the initial (or, more precisely, the terminal) conditions
oF

~ K

dy (b)

for K € K. , (9.20)

GK(b) 2

0 for ke {1,...,n}-%x_, (9.21)

GK(b) 2

from'the solution of which’we can readily get
oI

oo

=G (a) for ke{l,..., n}-K . (9.22)

K 1

. 2 .
The complexity of the solution of (9.19), (9.20), (9.21) is O(n -N) if
we discretize the interval [a,b] into N meshes, This is in contrast with
the complexity O m-n2-N Y + 0O m2) of the standard approach where we first
solve the m system of perturbation equations
K
dnk n 3fK u

= J] —— . (K=1,..., n) (9.23)
at H=1 Byu A

. with the initial conditions

K
n,(@a) =0 for K#A,
A 7 (9.24)
ni(a) =1 for K= 2A
for A e { l,..:, n}t - K *(i.e., for each unknown parameter ax), and then
calculate.
oI z oF K
— = ~—— - n, (b) (Are{1,..., n}-x). (9.25)
da KK, <y A 1

'Here again, GK(t) may be interpreted as the Lagrange multipliers.

30

Acknowledgements

Personal conversation with Professor Volker Strassen which the author
could have when he visited Japan, as well as subsequent personal communi- .
cation with him, greatly stimulated the author's ideés in this paper, for
which the author is deeply grateful to him. The author thanks also Dr. K.
Muroﬁa of the University of Tsukuba for his valuable comments, Mr. N. Iwata;
one of the author's graduate students, for his collaboration .in implementing
the’ideas as a computer program, and Mr. T. Araki, a younger colleague of the

author's, for reading the manuscript and suggesting improvements.

References
[1] F. L. Bauer: Computational graphs and rounding errors. SIAM Journal on

Numerical Analysis, Vol.ll (1974), pp.87-96.

[2] W. Baur and V. Strassen: The complexity of partial derivatives (extendéd
version, January 1982). Unpublished note.

[3] C. Berge: Graphes et Hypergraphes. Dunod, Paris, 1970.

[4] S. E. Dreyfus: An appraisal of some shortest-path algorithms. Operations
Research, Vol.17 (1969), pp.395-421.
[5] F. Harary: Graph Theory. Addison-Wesley, Reading. 1969.

[6] M. Iri: Network Flow, Transportation and Scheduling — Theory and

Algorithms. Academic Press, New York, 1969.

[7] M. Iri and N. Iwata: Automatic computation of partial deriVatives. {in
preparation)

[8] M. Iri, J. Tsunekawa and K. Murota: Graph-theoretic approach to large-
scale systems of equations — Structural solvability and block-

triangularization (in Japanese). Transactions of Information Processing

Sdéiety of Japan, Vol.23 (1982), pp.88-95. (English translation available

from the authors)

31

[9] K. Murota: Structural Solvability and Controllability of Systems.

Doctor's dissertation at the Department of Mathematical Engineering and
Instrumentation Physics, Faculty of Engineering, University of Tokyo,
April 1983,

[10] M. Jerrum: private note (August 1982). Personally communicated by V.
Strassen to the author, December 1983.

[11)} J; H. Wilkinson: Error analysis of floating-point computation. Numerische

Mathematik, Bd.2 (1960), pp.319-340.

[12] R. E. Moore: Interval Analysis. Prentice~Hall, Inc., New Jersey, 1966.

