Powerposets

Takanori Adachi July 1983, No. C-52

Department of
Information Science
Tokyo Institute of
Technology
Ookayama, Meguro-ku,
Tokyo 152
JAPAN

C-52 Powerposets
by Takanori Adachi, July 1983.

Abstract. We introduce the notion of powerposets which is a natural generalization of that of powersets with inclusion as their partial ordering. We show that every powerposet is an algebraic semilattice and that every continuous poset can be directed-continuously embeddable into some powerposet. We also discuss the possibility of making powerposets into $\lambda\text{-models}$ as in the case of Plotkin-Scott's $P\omega$ theory.

O. Introduction

The domain $P\omega$ introduced by Dana Scott is a very simple and beautiful structure [9]. It provides a universal circumstance to develop theoretical computer science. Nevertheless, to many of computer scientists, $P\omega$ is too large to handle with in their everydays' work. So we want to select other (possibly partially ordered) set for ω . Powerposets are domains constructed in this way.

In section 1 we introduce the notions of lower ends and upper ends in slightly generalized forms of those usually defined.

Section 2 is devoted to review the fundamental concepts of the theories of continuous lattices and λ -calculus models.

The main results of this note are in section 3, including the theorem which says that every powerposet is an algebraic semilattice. As a corollary of this theorem, we can conclude that P_{ω} is an algebraic lattice as already mentioned by Scott. We also show that for every continuous poset there is an one-one map from it to some powerposet preserving directed sups.

Finally in section 4 we discuss the possibility of expanding a self-referential powerposet to a λ -calculus model.

1. Lower Ends and Upper Ends

Let $\pi=(\pi, \leq)$ and $\pi'=(\pi', \leq')$ be posets, a, b, c subsets of π , and x, y, z elements of π throughout this note.

Definition 1.1. (i) at
$$x = \{ y \in a \mid y \le x \}$$
. (ii) $t = \pi t$.

(iii)
$$a \downarrow b = \bigcup \{ a \downarrow x \mid x \in b \}.$$

(iv)
$$la = \pi la$$
.

(v) at
$$x = \{ y \in a \mid x \leq y \}$$
.

(vi)
$$\uparrow x = \pi \uparrow x$$
.

(vii)
$$a\uparrow b = \bigcup \{a\uparrow x \mid x \in b\}.$$

(viii)
$$\uparrow a = \pi \uparrow a$$
.

Proposition 1.2.

Proposition 1.3. If π is discrete (i.e. for every x and y in π x \leq y implies x = y), atb = ab = ab.

Proposition 1.4. (i) $a \downarrow \emptyset = \emptyset = a \uparrow \emptyset$.

- (ii) $a \in b$ implies $a \downarrow b = a = a \uparrow b$.
- (iii) $(\bigcup_{i \in I} a_i) \downarrow (\bigcup_{j \in J} b_j) = \bigcup_{i \in I} \bigcup_{j \in J} (a_i \downarrow b_j).$
- (iv) $\left(\bigcup_{i \in I} a_i\right) \uparrow \left(\bigcup_{j \in J} b_j\right) = \bigcup_{i \in I} \bigcup_{j \in J} \left(a_i \uparrow b_j\right).$
- (v) $(\bigcap_{i \in I} a_i) \downarrow b = \bigcap_{i \in I} (a_i \downarrow b).$
- (vi) $(\bigcap_{i \in I} a_i) \uparrow b = \bigcap_{i \in I} (a_i \uparrow b).$

Corollary 1.5. a c a' and b c b' imply

- (i) alb C a'lb',
- (ii) $a \uparrow b \subset a' \uparrow b'$.

Proposition 1.6. (i) alb c c implies alb C clb.

- (ii) atb c c implies atb c ctb.
- (iii) al(blc) c alc.
- (iv) at(btc) c atc.
- (v) at(atb) = atb = (atb)tb.
- (vi) $a\uparrow(a\uparrow b) = a\uparrow b = (a\uparrow b)\uparrow b$.

The proofs of these propositions are very easy, and so left to readers.

Definition 1.7. (i) a is called a <u>lower end</u> of b (notation: $a \le_L b$) when $b \nmid a = a$.

(ii) a is called an <u>upper end</u> of b (notaion: a $\zeta_{\overline{U}}$ b) when b\(\frac{1}{4}\) a = a.

Lemma 1.8. (i) a is a lower end of b iff blacacb.

(ii) a is an upper end of b iff b\(\frac{1}{a}\) c a c b.

Proof. (i) If part: $a = a \downarrow a$ by 1.4(ii) c bla by 1.5(i).

Only if part: $a = b \cdot a \cdot c \cdot b$ by 1.2.

(ii) Similar to (i).

Proposition 1.9. If π is discrete, the following three statements are equivalent;

- (1) a is a lower end of b.
- (2) a is a subset of b.
- (3) a is an upper end of b.

Proof. By 1.3 and 1.8.

Proposition 1.10. (i) alb ζ_{l} a.

- (ii) a \leq_L b iff there exists a subset c of π such that $a = b \downarrow c$.
 - (iii) a†b ≤_U a.
- (iv) a $\leq_{\overline{v}}$ b iff there exists a subset c of π such that $a = b \uparrow c$.
- Proof. (i) By 1.6(v) al(alb) = alb.

(ii) Only if part: Immediate.

If part: By 1.6(v) bla = bl(blc) = blc = a.

- (iii) Similar to (i).
- (iv) Similar to (ii).

Theorem 1.11. Let a, b and b' be subsets of π with b' b' = a and b \cap b' = \emptyset . Then b \leq , a iff b' \leq_{π} a.

Proof. Since $b = a_0b$ calb ca and $b' = a_0b'$ catb' ca by 1.2, we have $a = b^0b'$ calb a^0b' calb a^0a' and a^0a' a

 $z \in b' \cap alx \subset b' \cap aly \subset b' \cap alb$ and $y \in b \cap afx \subset b \cap afb'$.

Thus, b' \cap alb = \emptyset or b \cap afb' = \emptyset imply alb \cap afb' = \emptyset .

Only if part: If $a \downarrow b = b$, then $b' \cap a \downarrow b = b' \cap b = \emptyset$.

Thus, $a \downarrow b \cap a \uparrow b' = \emptyset$. Hence $a \uparrow b' = a - a \downarrow b = a - b = b'$.

If part: If $a \uparrow b' = b'$, then $b \land a \uparrow b' = b \land b' = \emptyset$.

Thus, $a \downarrow b \cap a \uparrow b' = \emptyset$. Hence $a \downarrow b = a - a \uparrow b' = a - b' = b$.

Corollary 1.12. For $x \in a \subset \pi$,

- (i) x is maximal in a iff $\{x\} \leq_{U} a$ iff $a \{x\} \leq_{L} a$.
- (ii) x is minimal in a iff $\{x\} \leq_L a$ iff $a \{x\} \leq_U a$.

Proof. Immediate from 1.11.

2. Review

In this section we review the fundamental concepts of the theories of continuous lattices and λ -calculus models.

- Definition 2.1. (i) A subset d of π is called <u>directed</u> if every finite subset of d has an upper bound in d.
- (ii) We say that x is way below y (notation: x << y), if for every directed subset d of π the relation y \leq sup d always implies the existence of z of d with x \leq z.
 - (iii) $a \nmid x = \{ y \in a \mid y \leqslant x \}.$
 - (iv) $\mbox{$\psi$} x = \pi \mbox{$\psi$} x$.
 - (v) $a \nmid b = \bigcup \{a \mid x \mid x \in b \}.$

 - (vii) An element $x \in \pi$ is called <u>compact</u> if $x \leqslant x$.
 - (viii) $K(\pi) = \{ x \in \pi \mid x \text{ is compact } \}.$

Note that every directed set is nonempty.

Proposition 2.2. (i) $x \ll y$ implies $x \leq y$.

- (ii) $w \le x \leqslant y \le z$ implies $w \leqslant z$.
- (iii) $x = \sup \{ x_1, \ldots, x_n \}$ and $x_i \ll y$ for all $i = 1, \ldots, n$ imply $x \ll y$.
- Definition 2.3. (i) A poset π is called <u>up-complete</u> if every directed subset of π has a sup in π .
- (ii) [Markowski] An up-complete poset π is called <u>continuous</u> if for every x in π , $\frac{1}{4}x$ is directed and x = sup $\frac{1}{4}x$.
 - (iii) [Hoffman] An up-complete poset π is called <u>algebraic</u> if for every x in π , $K(\pi)\downarrow x$ is directed and $x = \sup (K(\pi)\downarrow x)$.

Iwamura and Markowski's result says that we can replace "directed set" by "nonempty chain" in 2.3(i) [5, 7].

Markowski also suggests the thesis that "continuous posets" are the proper setting for an abstract theory of computation

[8].

The following two theorems are due to Markowski.

Theorem 2.4. [Interpolation Theorem] Let π be a continuous poset, x << y in π , and d a directed subset of π with $y \le \sup d$. Then there exists $z \in d$ such that x << z.

Theorem 2.5. Every algebraic poset is continuous.

Definition 2.6. (i) A <u>semilattice</u> is a poset in which every nonempty finite subset has an inf.

- (ii) A complete semilattice is an up-complete poset in which every nonempty subset has an inf.
- (iii) An <u>arithmetic semilattice</u> is an algebraic semilattice π in which $K(\pi)$ is a semilattice.

Note that every complete semilattice π has the least element inf π_{\star}

Definition 2.7. (i) A <u>lattice</u> is a semilattice in which every nonempty finite subset has a sup.

(ii) A lattice is called <u>complete</u> if every subset has an inf and a sup.

Theorem 2.8. Every complete semilattice with a greatest element is a complete lattice.

Next we state some concepts of the theory of λ -calculus models.

Definition 2.9. Let (X, .) be a system with a binary operator . on a set X, called an applicative structure.

- (i) (X, \cdot) is called <u>combinatory complete</u> when there are two elements k and s in X such that kxy = x and sxyz = xz(yz) for all x, y, z $\in X$.
- (ii) A function $f: X \to X$ is called <u>representable</u> if there is an element $x \in X$ such that for every $y \in X$ f(y) = xy.
- (iii) $[X \rightarrow X]$ denotes the set of all representable functions on X.

The notion of λ -models is introduced by Barendregt in order to investigate λ -calculus models formally.

The following theorem is due to Barendregt [2].

Theorem 2.10. Let (X, \cdot) be combinatory complete and define the map $F: X \to [X \to X]$ by F(x)(y) = xy. Then (X, \cdot) can be expanded to a λ -model iff there exists a $G: [X \to X] \to X$ such that:

- (1) $F \circ G = 1_{[X \to X]};$
- (2) $G \cdot F \in [X \rightarrow X]$.

Readers may refer to [4] and [1, 2] for further information on these structures.

Powerposets

Theorem 3.1. Two relations \leq_L and \leq_U are partial order relations on $P\pi$.

Proof. We only prove for the relation \leq_{L} ; The other case is analogous.

Reflexivity: a \leq_{L} a by 1.4(ii).

Antisymmetricity: $a \le_L b$ and $b \le_L a$ imply $a \subset b$ and $b \subset a$ by 1.8(i). Thus, a = b.

Transitivity: Assume that a \leq_{L} b \leq_{L} c. Then by 1.5(i) cta c ctb = b. Thus, by 1.6(i) cta c bta = a. On the other hand a c c. Hence by 1.8(i) a \leq_{L} c.

According to the above theorem we call these structures $(P_{\pi}, \leq_{_{\!\!1}})$ and $(P_{\pi}, \leq_{_{\!\!0}})$ powerposets.

Corollary 3.2. Let π be a discrete poset. Then $(P\pi, \leq_L) = (P\pi, \leq_U) = (P\pi, \leq)$.

Proof. By 1.9.

Proposition 3.3. Let $\varphi: \pi \to \pi'$ be a monotonic function. Then the map $\varphi^{-1}: P_{\pi}' \to P_{\pi}$ is also monotonic with respect to each ordering ζ_1 and ζ_{π} .

Proof. Suppose that P_{π} is partially ordered by ζ_{\downarrow} . Then it is trivial that $\mathcal{G}^{-1}(a) \subset \mathcal{G}^{-1}(b)$ if a ζ_{\downarrow} b in P_{π} . So it suffices to show that $\mathcal{G}^{-1}(b) \downarrow \mathcal{G}^{-1}(a) \subset \mathcal{G}^{-1}(a)$ by 1.8.

Now let $x \in \mathcal{G}^{-1}(b) \downarrow \mathcal{G}^{-1}(a)$. Then $x \in \mathcal{G}^{-1}(b)$ and there is $y \in \mathcal{G}^{-1}(a)$ with $x \leq y$. Hence $\mathcal{G}(x) \in b$, $\mathcal{G}(y) \in a$ and $\mathcal{G}(x) \leq \mathcal{G}(y)$ in π' because $\mathcal{G}(a)$ is monotonic. Thus, $\mathcal{G}(a)$ is $\mathcal{G}(a)$. Therefore $\mathcal{G}^{-1}(b) \downarrow \mathcal{G}^{-1}(a) \in \mathcal{G}^{-1}(a)$.

The proof for the ordering ζ_{Π} is similar.

Definition 3.4. (i) <u>Poset</u> denotes the category of all posets with all monotonic functions as arrows.

(ii) The contravariant functor $P_L: \underline{Poset} \to \underline{Poset}$ is defined by

$$P_{L}: \varphi \downarrow \qquad \qquad \uparrow \varphi^{-1}$$

$$\pi' \longmapsto (P\pi, \leq_{L})$$

$$\uparrow \varphi^{-1}$$

$$(P\pi', \leq_{L}').$$

(iii) The contravariant functor $P_U: \underline{Poset} \to \underline{Poset}$ is defined by

$$P_{\overline{U}}: \varphi \downarrow \qquad \qquad \uparrow \varphi^{-1}$$

$$\pi' \longmapsto (P\pi', \leq_{\overline{U}}).$$

Note that the above functors are well-defined by 3.3.

Theorem 3.5. For every poset π $P_{\overline{U}}(\pi) = P_L(\pi^{of})$ where π^{of} is an opposite poset, considering π as a category.

Proof. Immediate because $a \uparrow_{\pi} b = a \downarrow_{\pi^{op}} b$ for all $a, b \in P\pi$.

By the above theorem we can assume that every powerposet is of the form $P_L(\pi) = (P\pi, \mathcal{L})$ without loss of generality. So in the rest of this note we concentrate on this form, and write $P\pi = (P\pi, \mathcal{L})$ instead of writing $P_L(\pi) = (P\pi, \mathcal{L})$.

Lemma 3.6. Let S be a subset of P_{π} that has an upper bound in P_{π} . Then S has a sup in P_{π} and sup S = US.

Proof. Let t be an upper bound for S in P π and s = US. Then for every a in S, sta = (US)ta = U{bta | b \in S} by 1.4(iii). Now for any b in S, since a, b \leq t, bta \subset tta = a by 1.5(i). Hence sta \subset U{a} = a \subset s. Therefore by 1.8(i) a \leq s, i.e. s is an upper bound for S. Next suppose that u is a given upper bound for S. Then uts = ut(US) = U{uta | a \in S} by 1.4(iii). Here uta = a since a \leq u. Thus, uts = U{a | a \in S} = s. Therefore

s ≤ u.

Theorem 3.7. A powerposet $P\pi$ is a complete semilattice.

Proof. Let D be a directed subset of $P\pi$, and d = UD. Then for every a in D, $d \downarrow a = (UD) \downarrow a = U \{ b \downarrow a \mid b \in D \}$ by 1.4(iii). Here for any b of D, there exists c in D such that a, b \leq c since D is directed. Then for such c, $b \downarrow a \subset c \downarrow a = a$. Thus, $d \downarrow a \subset U \{ a \} = a \subset d$. Hence by 1.8(i) a \leq d. Therefore by 3.6 d = sup D, i.e. $P\pi$ is up-complete.

Next let S be a nonempty subset of $P\pi$, and let T be the set of all lower bounds for S. Then since S is nonempty, there is an element s of S, and s is an upper bound for T. Thus, by 3.6 T has a sup in $P\pi$. On the other hand, for every a of S since T \leq a, we have sup T \leq a. Therefore sup T \in T. Hence sup T = inf S.

Corollary 3.8. If π is discrete, $P\pi$ is a complete lattice.

Proof. Since $P\pi$ has the greatest element $\pi \in P\pi$, $P\pi$ is a complete lattice by 3.7 and 2.8.

The converse of this corollary also holds.

Proposition 3.9. If $P\pi$ is a complete lattice, π is discrete.

Proof. By 3.6, $\sup P\pi = {}^{\bigcup}P\pi = \pi$. Thus, for every a of $P\pi$, a $\leq \pi$. Now assume that $x \leq y$ in π . Then $x \in \{y = \pi \} \{y \} = \{y \}$ since $\{y \} \leq \pi$. Hence x = y. Therefore π is discrete.

Definition 3.10. (i) $B_a = \{ a \mid f \mid f \text{ is a finite subset of a } \}$. (ii) $B = U \{ B_a \mid a \in P\pi \}$.

Proposition 3.11. (i) Ba is directed.

(ii)
$$a = \sup B_a$$
.

Proof. (i) Let F be a finite subset of B_a . Then since $F \subset B_a \le a$ by 1.10(i), there exists sup $F = \bigcup F \in P\pi$ by 3.6. Now let $F = \{ a \downarrow f_1, \ldots, a \downarrow f_n \}$. Then sup $F = a \downarrow (\bigcup \{ f_1, \ldots, f_n \}) \in B_a$ by 1.4(iii). Thus, B_a is directed.

(ii) Since $B_a \le a$ by 1.10(i), $\sup B_a = \bigcup B_a = a \downarrow (\bigcup \{ f \mid f \text{ is finite subset of } a \})$ $= a \downarrow a = a$ by 1.4(iii) and (ii).

Proposition 3.12. a << b iff there exists a finite subset f of b with a \leq b \downarrow f.

Proof. If part: Let D be a directed subset of $P\pi$ with $b \le \sup D$. Then for every $x \in f$, since $x \in f \subset b \subset \sup D = UD$, there is $d_x \in D$ such that $x \in d_x$. Thus, for such d_x bidy $c \in D$ such that $c \in d_x$. Thus, for such $c \in D$ such that $c \in d_x$. Thus, for such $c \in D$ such that $c \in d_x$. Moreover $c \in D$ since $c \in D$ sup D. Therefore bix $c \in D$ sup D by 1.10(i). Hence bix $c \in D$.

Now, since D is directed and f is finite, $\{d_X \mid x \in f\}$ has an upper bound d in D.

Then $dl(blf) = U\{dl(blx) \mid x \in f\}$ = $U\{blx \mid x \in f\} = blf \text{ since } blx \le d_x \le d$.

Hence b↓f ≤ d. Therefore by the assumption a ≤ d.

Only if part: By 3.11(ii) b \leq sup B_b. Thus, by the assumption and 3.11(i) there is a finite subset f of b such that a \leq b \downarrow f.

Proposition 3.13. (i) $B_a = K(P\pi) \downarrow_{P\pi} a$. (ii) $B = K(P\pi)$.

Proof. (i) For every alf \in B_q with a finite subset f of a, alf \le a by 1.10(i). Moreover alf = (alf)lf by 1.6(v). Thus, by 3.12 alf << alf, i.e. alf is compact. Hence alf \in K(P π)l $_{P}\pi$ a. Conversely, for every b \in K(P π)l $_{P}\pi$ a b << b \le a. Then by 3.12 there is a finite f \subset b with b \le blf \le b. Thus, b = blf. Now since b \le a, we have alf \subset alb = b. Thus, by 1.6(i) blf \subset alf \subset blf. Therefore b = blf = alf \in B_a.

(ii) Immediate from (i).

Theorem 3.14. A powerposet P_{π} is an algebraic semilattice.

Proof. By 3.7, 3.11 and 3.13(i).

Proposition 3.15. If π is discrete, $P\pi$ is an arithmetic lattice.

Proof. That $P\pi$ is an algebraic lattice is clear from 3.8 and 3.14. So we must show that $K(P\pi)$ is a similattice. But by 3.13(ii) $K(P\pi) = \{ f \mid f \text{ is a finite subset of } \pi \}$. Hence every nonempty finite subset $F \subset K(P\pi)$ has an inf $\cap F$ in $K(P\pi)$.

The following example says that $\mbox{\mbox{$P$}\pi}$ is not always an arithmetic semilattice.

Example 3.16. Let $\pi = \omega \cup \{ \#, \$ \} (\omega = \{ 0, 1, 2, \dots \})$ in which every order relation is of the form $n \le \#$ or $n \le \$$ for some n of ω . Then by 3.13(ii)

 $K(P\pi) = \{ a \mid a \text{ is a finite subset of } \omega \}$ $U \{ a \mid \# \in a \in \pi \} \cup \{ a \mid \$ \in a \in \pi \},$

and $\downarrow \#$ and $\downarrow \$$ are both compact in $P\pi$. But the set of all lower bounds for $\{ \downarrow \#, \downarrow \$ \}$ in $K(P\pi)$ is

 $\{a \mid a \text{ is a finite subset of } \omega \},$

and clearly this set has no maximum element. Therefore $K(P_{\pi})$ is not a semilattice.

Proposition 3.17. A function $\Psi: P\pi \to P\pi'$ is continuous (w.r.t. the Scott topology induced by ζ) iff it is monotonic and for every $a \in P\pi$ $\Psi(a) = \bigcup \{ \Psi(e) \mid e \in B_a \}$.

Proof. Only if part: Immediate because

 $\varphi(a) = \sup \{ \varphi(e) \mid e \in B_a \} = \bigcup \{ \varphi(e) \mid e \in B_a \} \text{ by 3.6.}$

If part: For every $e \in B_a$ we have $\Upsilon(e) \leq \Upsilon(a)$ since Υ is monotonic and $e \leq a$. Thus, the set $\{ \Upsilon(e) \mid e \in B_a \}$ is upper bounded and its sup is $\bigcup \{ \Upsilon(e) \mid e \in B_a \}$ by 3.6. Hence $\Upsilon(a) = \sup \{ \Upsilon(e) \mid e \in B_a \}$.

Corollary 3.18. Let $\varphi: \pi \to \pi'$ be a monotonic function. Then the map $P\varphi: P\pi' \to P\pi$ is continuous w.r.t. the Scott topology.

Proof. Since $\varphi^{-1}(\bigcup_{i=1}^{U}a_{i})=\bigcup_{i=1}^{U}\varphi^{-1}(a_{i})$, it is immediate by 3.3 and 3.17.

In the rest of this section we shall show that every continuous poset can be directed-continuously embeddable into its powerposet.

Definition 3.19. For a poset π the function $\mathcal{E}_{\pi}:\pi\to P\pi$ is defined by $\mathcal{E}_{\pi}(x)=\mbox{$\rlap{$\downarrow$}$} x$.

Lemma 3.20. The function ξ_{π} is monotonic.

Proof. For x and y in π with $x \le y$, $x \in y$ by 2.2(ii). Moreover for $z \in (x) \setminus (x)$, there is $x \in x$ with $x \le x$. Thus,

 $z \le t \le x$, which implies $z \in \mbox{$\frac{1}{2}$} x$. Therefore $(\mbox{$\frac{1}{2}$} y) \mbox{$\frac{1}{2}$} (\mbox{$\frac{1}{2}$} x) \subset \mbox{$\frac{1}{2}$} x$. Hence by 1.8(i) $\epsilon_{\pi}(x) = \mbox{$\frac{1}{2}$} x \le \mbox{$\frac{1}{2}$} y = \epsilon_{\pi}(y)$.

Theorem 3.21. For a continuous poset π , ξ_{π} is a one to one function preserving directed sups.

Proof. Assume that $\xi_{\pi}(x) = \xi_{\pi}(y)$ for some x, $y \in \pi$. Then $x = \sup \mbox{$\downarrow$} x = \sup \xi_{\pi}(x) = \sup \xi_{\pi}(y) = \sup \mbox{\downarrow} y = y$ since π is continuous. Hence ξ_{π} is one to one.

Now let d be a directed subset of π with $z = \sup d$. Then by 3.20 $\epsilon_{\pi}(d) = \left\{ \begin{array}{c} \epsilon_{\pi}(x) \mid x \in d \end{array} \right\} \leq \epsilon_{\pi}(z)$. Hence by 3.6 $\sup \epsilon_{\pi}(d)$ exists in $P\pi$ and $\sup \epsilon_{\pi}(d) \leq \epsilon_{\pi}(z)$. On the other hand, for any $x \in \epsilon_{\pi}(z) = \mbox{\downarrow} z \mbox{\times} << z = \sup d$. Thus, by 2.4 there is $y \in d$ such that x << y. Hence $x \in \mbox{$\downarrow$} y = \epsilon_{\pi}(y) \leq \sup \epsilon_{\pi}(d)$. Therefore $\epsilon_{\pi}(z) \in \sup \epsilon_{\pi}(d)$. So we can conclude that $\sup \epsilon_{\pi}(d) = \epsilon_{\pi}(\sup d)$.

4. Powerposets as Lambda Calculus Models

In this section our interests is on the posets with coding functions of their compact elements. We will show that such a poset can be made into a λ -model in a natural way iff it is discrete.

Definition 4.1. A poset $\pi=(\pi, \, \leq)$ is called <u>self-referential</u> when it is equipped with the two partial functions $p:\pi\to K(P\pi)$ and $q:\pi\to\pi$ that satisfy:

[SR] For every $e \in K(P\pi)$ and $y \in \pi$ there exists $x \in \pi$ such that p(x) = e and q(x) = y.

All the posets appeared in this section are self-referential. We will write "p(x) = e" or " $q(x) \in a$ " instead of

writing "p(x) is defined and p(x) = e" or "q(x) is defined and $q(x) \in a$ ", and so on.

Definition 4.2. (i) For a, b \in P_{π}, a.b \in P_{π} is defined by a.b = { q(x) | x \in a and p(x) \leq b }.

We write ab and abc for a.b and (a.b).c, respectively.

- (ii) For $a \in P\pi$, a function fun(a): $P\pi \to P\pi$ is defined by fun(a)(b) = ab, i.e. fun(a) is the function represented by a.
- (iii) For a function $\varphi : P\pi \to P\pi$, graph $(\varphi) \in P\pi$ is defined by graph $(\varphi) = \{ x \mid q(x) \in \mathcal{Y}(p(x)) \}$.

Note that the binary operator . on a powerposet difined above is exactly correspoding to that of a Plotkin-Scott-algebra (PSE-algebra, in view of Engeler's approach) [3, 6, 9]. So we have the following theorem:

Theorem 4.3. If π is discrete, $(P_{\pi}, .)$ can be expanded to a λ -model.

Proof. Since $(P\pi, .)$ is a PSE-algebra, it is a well-known result.

Proposition 4.4. For a, b \in P π ,

- (i) $ab = U \{ ae \mid e \in B_b \}$.
- (ii) $\left(\bigcup_{i \in I} a_i\right)b = \bigcup_{i \in I} (a_ib)$.

Proof. (i) First we show that ae cab for all $e \in B_b$. Let $y \in ae$. Then there exists x in a such that $p(x) \le e$ and q(x) = y. But since $e \le b$, we have $p(x) \le b$. Hence $y \in ab$.

Conversely for every $y \in ab$, there exists $x \in a$ such that $p(x) \le b$ and q(x) = y. Then $y \in a(p(x))$.

Therefore ab = $U\{ae \mid e \in B_b\}$.

(ii) Immediate.

Proposition 4.5. For a function $\varphi : P\pi \to P\pi$ and a $\in P\pi$, (fun \circ graph) $(\varphi)(a) = \bigcup \{ \varphi(e) \mid e \in B_a \}$.

Proof. (fun • graph)(φ)(a) = graph(φ)a = { q(x) | x ∈ graph(φ) and p(x) \leq a } = { q(x) | q(x) ∈ φ (p(x)) and p(x) \leq a } = { y | (\exists e ∈ B_a) y ∈ φ (e) } by [SR] = \bigcup { φ (e) | e ∈ B_a }.

Theorem 4.6. For a function $\varphi: P_{\pi} \to P_{\pi}$, the following three statements are equivalent:

- (1) \(\mathcal{Y} \) is representable.
- (2) For every $a \in P_{\pi}$, $\varphi(a) = \bigcup \{ \varphi(e) \mid e \in B_a \}$.
- (3) $\varphi = (\text{fun } \cdot \text{graph})(\varphi)$.

Proof. (1) => (2): Let $\varphi = \text{fun}(b)$.

Then $\Psi(a) = ba$ and $\Psi(e) = be$. Thus, (2) holds by 4.4(i).

(2) => (3): By 4.5, for any a of $P\pi$ (fun • graph)(φ)(a) = $U\{ \varphi(e) \mid e \in B_a \} = \varphi(a)$.

Thus, $(\text{fun } \circ \text{graph})(\varphi) = \varphi$.

 $(3) \Rightarrow (1)$: Trivial.

Corollary 4.7. Every continous function from $P\pi$ to $P\pi$ (w.r.t. the Scott topology induced by ζ) is representable.

Proof. By 3.17 and 4.6.

Proposition 4.8. The function graph • fun is representable.

Proof. For all $a \in P_{\pi}$, $(graph \circ fun)(a)$ $= \{ x \mid q(x) \in a(p(x)) \}$ $= \{ x \mid q(x) \in U \{ e(p(x)) \mid e \in B_{q} \} \} \text{ by 4.4(ii)}$ $= U \{ \{ x \mid q(x) \in e(p(x)) \} \mid e \in B_{q} \}$ $= U \{ (graph \circ fun)(e) \mid e \in B_{q} \}.$

Therefore by 4.6 graph • fun is representable.

Theorem 4.9. A powerposet $(P\pi, .)$ can be expanded to a λ -model iff it is combinatory complete.

Proof. Only if part: Trivial.

If part: By 4.6, 4.8 and 2.10.

Proposition 4.10. There exists $k \in P\pi$ such that for every $a, b \in P\pi$ kab = a.

Proof. Let $k = \{x \mid q(q(x)) \in p(x) \}$. Then $ka = \{q(x) \mid q(q(x)) \in p(x) \text{ and } p(x) \le a \}$ $= \{y \mid (^{\frac{1}{2}}e \in K(P_{\pi})) \ q(y) \in e \text{ and } e \le a \} \text{ by [SR]}$ $= \{y \mid q(y) \in a \}.$ and $kab = \{q(y) \mid q(y) \in a \text{ and } p(y) \le b \} = a \text{ again by [SR]}.$

Although we had the above proposition, there is a self-referential poset whose powerposet is not combinatory complete. Moreover we can show that the converse of Theorem 4.3 is also valid.

Theorem 4.11. If a powerposet $(P_{\pi}, .)$ is combinatory complete, π is discrete.

Proof. By 4.6, for any a, b, c_1 , $c_2 \in P\pi$ $c_1 \le c_2$ implies $a(bc_1) \in a(bc_2)$ since the function $\lambda c.a(bc)$ is representable.

Now suppose that π is not discrete. Then $\pi \in P\pi$ is not a maximum element by 2.8. Hence there exists a compact element e_1 such that $e_1 \nleq \pi$. Let $e_2 = \pi \downarrow e_1$. Then we have

 $e_2 \in K(P\pi)$, $e_2 \le \pi$, $e_1 \subset e_2$, $e_1 \le e_2$ and $e_2 \le e_1$.

By [SR] there are x_1 and x_2 such that

$$p(x_1) = e_1, p(x_2) = e_2 \text{ and } q(x_1) \neq q(x_2).$$

Put a = $\{x_1, x_2\}$,

b = { x | p(x) =
$$\emptyset$$
 and q(x) \in e₁ }

U { x | p(x) = e₁ and q(x) \in e₂ },

 $c_1 = \emptyset$ and $c_2 = e_1$.

Then $a(bc_1) = ae_1 = \{q(x_1)\}$

and $a(bc_2) = a(e_1 \cup e_2) = ae_2 = \{q(x_2)\}.$

Hence $a(bc_1) \not = a(bc_2)$ while $c_1 \leq c_2$.

But this is a contradiction. Therefore π is discrete.

Corollary 4.12. A powerposet $(P_{\pi}, .)$ can be expanded to a λ -model iff π is discrete.

Proof. By 4.3 and 4.11.

Acknowledgments

The author would like to thank Professor Kojiro Kobayashi for his helpful comments and also thank Mr. Hirofumi Yokouchi for fruitful discussions in many occasions.

References

[1] H. Barendregt, The Lambda Calculus: Its Syntax and Semantics, (North-Holland, Amsterdam, 1981).