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On Convergence of Some Infinite Products

Takeshi Kano ( Okayama Univ.)

51, 1In [2] Hardy showed among other things that if a +0 and

a¥ = tw
n

I~ 8

n=0

for all integers k >1, then the infinite product

o

’ (,1 ta eQTrine)
=0 n

(1)

diverges for all ©6e€@Q.
He then réised the problem to settle the case of convergente.

It wés‘soon after answered (partially) by Littlewood [4], who proved

that (1) converges for all algebraic irrational values of 8 if

an~&0 .

First we remark that his argument in fact yields the following

more general assertion.

Theorem 1. Let an->0 be of bounded variation, i.e.

[ee}

nzolan—anﬂt <t

Then (1) converges for all 64¢ @, with the possible exception of

Liouville numbers.



Furthermore, the following result is implicit in his proof.

Theorem 2. For any an'*O of bounded variation there exist

Liouville numbers 6 such that (1) converges.

It seems however still unknown whether there exists a Liou-
ville number © such that (1) diverges, e.g. when a V0.
Does (1) converge for all 64§ if a ¥0°7?

§2. We consider the real products

(2) I | 1-+an<3os2ﬂne)

[+ 7]

(3)

| (1 +a_sin2mme),
:O n.

Bo—]

where a, is not necessarily of bounded variation. First we note

the following simple fact.
Theorem 3. If (1) diverges to 0, so do both (2) and (3), too.

This is immediate from the obvious lemma below.

Lemma. Let {zn} (n=1,2,...,N) be a sequence of complex numbers.

Then

Proof.



Next we show

Theorem 4. If

a? <+ow,

(4) K
0

le~18

n

then all of (1) - (3) converge for almost all 6.

Proof. Since (4) implies lan! <1, we have

. N . N
log(1-+ane2ﬂlne) = ) a ¢2mind o( ) a?).
O n= =

Il 12

n

According to Carleson's L?- theorem [5], it follows that

? 2mind
a e
n=0 n

converges for almost all 6 if (4) holds. Hence (4) implies

the almost convergence of

Y log(1 +anezﬂlne).

n=0

§3. Let us now suppose an-+0 to be of bounded variation.
Then the situation in (R2) and (3) is quite different from that

in (1). .



Theorem 5. Let ;an-*O be of bounded variation. Thén, if (4)
holds, both of (2) and (3) converge for all 6€(0,1).

If on the contrary
(5) Zazz+°°’

then both of (2) and (3) diverge to 0 for all 6¢€ (0,1).

Proof. If (4) holds, the procedure of proof is the same as in
Theorem 4. Indeed, it suffices to note the fact that if an+0 is

of bounded variation, then

(6) I a_ S 2mne

converges for all 6¢€(0,1) (cf.[1] Chap.I, §30).

Suppose (5) holds, and lan|< 1. Since for xe€e (-1,1)

1

x-log(1+x) > sz,
we have
N . N 1 N
(7) Y a_cos2m® - )} log(1+a_cos2mnb) > — § a 2cos?2mnb
n=0 " n=0 n n=0 "

1 N “ N )
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= 3 E a’+ 3 Z a ?cos 4mné .

We observe that
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Olan+an+1I 'Ian"an+1| Ejznzolén“anﬂl < Fe
and hence both of ) an0032ﬂn6 and ZzﬁfCOSAWnG converge for
all 6€(0,1), ©¢1/2. Therefore it follows from (7) that (2)
diverges to 0 for all 6¢€(0,1), 6 #1/2. Also the case 6=1/2

is obvious from (7).

Corollary.

diverge for all 6,

1+ §in.2ﬂn6)

( converge for all 6 .
=L v/n logn g

1

Our argument in the preceding theorem also shows the following

metric result, where a, is not assumed to be of bounded variation.

Theorem 6. If (6) converges almost everywhere to an integrable
function which is not in L 2, then (2) and (3) diverge to 0

almost everywhere.

We only remark for the proof that (5) implies

20 a (597 2mno) = +o
n:

for almost all 6 (cf.[3] Chap.XIV).
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