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1. Introduction and notation. In this paper we state several results and

somé problems concerning the K~free integers and some related sets of
integers. Our interest here is malnly about the Schnirelman densify of
these séts of integers, and where it is attained; and to estimate; where
possible, the difference between this density and the corresponding
asymptotic density of the set under consideration.

Let K be an integer >1 and QK the set of K—free.integers; that
is, integers not divisible by the Kth power of any prime. Note that unity
belongs to QK' We write QK(X) for the number of K-free integers not
exceeding x.

The K-free integers are generalized in several ways. For integers
r, K for which 1 < r < K, we have the (K,r)-integers extensively studied,
for example in ([7],[8],[10],[191,[20],[21],{22]) . By definition, a
(K,r)-integer is one whose Kth power—free part is aiso rth power free.

The set of such integers will be denoted by QK,r ; and the number of such
integers < x by QK,r(x)f

An inteéer is said to be semi K-free if no Kth power of any prime .

unitarily divides n [23]. ﬁK unitarily divides n precisely when n is



divisible by pK,_but not by pK+1 . The K-free integers as well as the

semi K-free integers are special cases of (K,r)—-free integers [11] defined
thus: for 1 < r <K { =, n is said to be (R,r)-free provided in the
prime—-power decomposition éf n,'the exponent‘ofievery prime is either <
r or > K. Let Q(K,r) be the set of all such integers. These are
extensively studied in [11, 12, 13].

We limit ourselves in this‘paper‘only to the sets QK; QK,r and
Q(K,r)’ and consider their Schnirelman and asymptotic densities.

Throughout what follows, [(s) denotes the Riemann zeta function. We
denote the asymptotic and Schnirelman desities of QK by DK and dK
respectively. Similar notation will be used for the corresponding

densities of the sets QK-r

]

and Q(K,r)' Thus we have

Q, (%)
D, = lim L
X >
and
Q,(n)
4, = inf K .
n>0

In view of the simple estimate

| - X 1/K
QK(X) ?;'(f(‘)‘* ox "),

we see that DK exists and equals E%Ej-. No such simple result exists for
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de . Obviously, dK‘S_DK for all K > 1.
Qur interest here is to give more information about aK and its

location relative to D_; and similarly for the Schnirelman densities

K
dK,r and d(K;r) of the sets QK;r and Q(K,r) respectively. We write

.4
Qe (x) Zfi7'+ Eg (x).

While the exact order of EK(x) is still not known, it is conjectured

that

> *e
E (%) = o(x )

for every positive e.

The beét result known'so far is due to Walfisz [24]):

1/k 8/ / /5

EK(x) = 0(x exp{—éK— 5(log x)3 5(log‘log x)—1 3]
where ¢ 1s an absolute constant.

If the truth of the Riemann hypothesis is assumed, better order
results can be obtained. For example, Montgomery and Vaughn [15] proved

in 1976 that

1

— +t¢ 7
EK(x) = O(xK+1 ) for every X > 2,

and every positive ¢, and
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Ez(x) =0(x )‘.

The last result has been improved by S.W. Graham [9] to

E,(x) = o(x25 ),

agaln assuming the truth of the Riemann hypothesis.
For our discussion of dK , it is the information about the changes
of sign of EK(x) that is useful, not its order results. We consider

this in the next section.

T

2. dK < DK and related results. As already stated, it follows from the

definition of dK and D that dK S-DK' The question arises whether

K
dK < DK for all K. In 1964, K. Rogers, [17] showed that

He also showed that d, 1s attained at (and only at) 176, that is,

S AL
176 2788 °

Tauberian theorem of Ingham, that for all integers K > 1, we have

2

In 1966, H.M. Stark [18] showed, by utilizing a

(2.1)  dy < D.



It should be noted that (2.1) implies that dK is attained for some value
(or values) of n.

Entirely elementary proofs of (2.1) were given by R.C. Orr [16] and
G.E. Hardy [11]. Orr also gave the values of ds; d4; ds; d6 and the
values of n where they are attained. In [6], we extended these by
tabulating the values of dK for all K € 75 and the corresponding valﬁes
of s where n is the value of n for which Q(nK)/nK =-'dK ; if there
exist more than one such nK, the largest such alone in tabulated.

Note that (2.1) follows if we show that EK(n) is negative for

atleast one value of n, say n = ng. This 1s because we then have

Qe (ng) 1 o
ng  T® T Eg (ng)
L
<TEy

so that dK < DK'
In fact, EK(n) changes sign infinitely many times (and so also the
corresponding error term E (n) for the set Q, ). This is an
< K,r v K,r
immediate corollary of the following useful proposition [1] which itself

follows easily from a well known theorem of Landau.

2.2, Proposition. Let o(s) = X anA;S have a finite absclssa of
n=1

absolute convergence. Supoose that all the singularities of ¢(s) on the

real axis are poles, and that ¢ has a non-real singularity. Let H be the



upper bound of the real parts of the non-real singularities of ¢, and let
Sg(x) be the sum of the residues of (Qéﬁl)xs at the real poles > h.

Then we have
0, . . h-e,
A(x) - 55(x) = Q.(x" O,

for every € > 0, where ,So(x) is the sum of the residues of (d>(s)/s)xS

at the real poles > h, and
0,y _ \u
Ax(x) Zkhﬁg &n?

the dash denoting that the last term has to be multiplied by 1/2 1if
X = A

n N

On taking ¢(s) = C(s)/C(ks), which is the generating function for
the K-free integers, and applying (2.2), we see that EK(X) changes sign
infinitely often, and in particular that EK(x) < 0 for infinitely many
x. This givesy dK <‘DK'

Since
(2.3) QCQ CToee T Cherrs

we have



As R.L. Duncan observed [4], the asymptotic and Schnirelman densities

interlace:

(2.5) de <D < &y <D

Further, a simple estimate glves

(2.6) D >1- | p ¥,
P prime

This is also due to Duncan [5] who also proved that dK+1 is closer to

DK+1 than to DK , and in fact,

K+~ K+, 1
D,,, - D K

3. Better bounds for dK and Ny Let ne denote any of the values of
Qe (m)

n where attains the value dK. In 1969, R.C. Orr [16] proved the

importantbresult that for K 2.5;
3.1) 55 <n <6
with the help of this result, P.H. Diananda and M.V. Subbarao [4] vastly

imporved the lower bound (2.6) for dK glven by Duncan by showing; among

others, that



(3.2) 4 >1- 2R _ X _ K,
and
X, K
(3.3)  for K25, 4 >1-2%-3F -5y (22
- - 653541

They also improved (3.1) by showing that the largest n, for any

K

given K satisfies
(3.4) ~6<n <6
L3 2 _nK .
Further, they proved the

3.5 Theorem. For K > 5, there is an n, so that

@) F|n or Kn, or
(i) 2Kan and between ng - 2% and n, there is a multiple of ¥

or SK.

It is with the help of the results (3.4) and (3.5) and the computer
that we could find the values of dK and n, for K < 75. These are
listed in [6], as stated earlier.

The values of s Q(nK), and dK; DK (each correct to ten decimal
places) are gilven iat the end of paper [4]. They show how rapidly dK

approaches Q,, while each > 1 as K » «: For instance,

K



D12 - d12 ~ .0000000004.

But in view of the result (3.2), one would be interested to know if

x_ 3-'K - S_K than to DK.

That this is indeed so is proved in [6]. Actually, more than this is -

dK is closer to 1 - 2

shown; namely,

- a-2"%37K 57Ky , K
Theorem =0(3) >0 as K » o,
_ DK - dK 3 , .

4. A conjecture concerning dK and ny . Theorem 3.5 shows that the
largest n where dK is attained, besides 1y1ng in the interval

[%-6K,6K) must satisfy one of the following possibilities:

(4.1) n, = a miltiple of X following a multiple of 3% that

follows a multiple of SK as shown below

a+m-3K
s ¥ oK
K | X
(4.2) n =a multiple of 3. This may follow a multiple of 2~ or
5. |
. K . K
(4.3) n, =a multiple of 2 following a multiple of 5 .
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(4.4) n, = a multiple of SK. This may follow a multiple of ZK or

3K,

Thus, there are atmost ZK + (%JK values for ﬁK, of which %{g&K
arise from the situation (3.1), 2K from (3.2) .%{gﬁK from (3.3) and
(3.4).

Using the values of dK for K £ 75, that we have in [6], we find
thaﬁ n satisfies the situation described’in (3.1) with m = 0 in the
éase K =5 and all K in the range 13 <K <75, |

Hence we are led to make the following

4.5 Conjecture. For all sufficiently large K, we have dK = QK(nO)/n0

for some integer ho which is the first multiplé of ZK following the

first multiple of 3K that follows some multiple of SK"in [%-GK,6K).

e

5. The Schnirelman denisites dK r and d(K,r) . We consider this only very

3
briefly. Utilizing the geneating function Eﬁ%%%£§§l for the (X,r)-
’

integers, we showed in [20] that for 1 < r <K,

(5.1) & r <% "I -

This can also be obtained from the fact that the associated error function
EK r(x) changes sign infinitely often — a consequence of Theorem 2.2.
bl . .

For an entirely elementary proof, see [14].

| 0



Corresponding to (2.2) we can prove that for all 0 < r < K, we have

-r =T ~r, . 1 1,,-r, ~4, .-r K

(5.2) dy > LRY(1-2 -3 -5 7)) = {1 - 22 43 745 HF

The details of proof will appear elsewhere [21]. It can also be shown
[11] that with the possible exception of the case when r = 2; K =3, we

have for 2 { r <K { =,

- K. -
a <D = I(l-p “+p ).
&) © ) T T

It is also possible to show ([11]) that for 3 <r< K < ®, both the

densities dk f’ and d are attained somewhere'on the interval
. "

(K,x) | ,
[Zr,Sr) (see [11]). This can be improved for speciai values of K. Also
for most values of K and r (except for (K;r) = (2,3)), we have

dK =d and are achieved at the same point. As samples, we mention
»T (X,r) ,

only three results:

. r r
K, 15" -9
(5.3) If 20 < =",

3 4+ 5T

then
= = 2% .
nK,r n(K,r) >
r r r
(5.4 1e Bt B
3"+ 5 3"+ 5



then
r S o
n(K,r) = 2" and nK,r e [2,6).
(5.5) 1 3% < 2K ¢ 3T + 27
then

n e [37,67).

K,r  "(K,T)
For proofs of these and for other results, we refer to [11], which also
glves extensive tables of nK,r and n(K,r)' For other results

concerning dK Ve refer to [3].

6. Some open problems

(I). Let ¢ be a fixed number > 2 and let P, < P, < «.. Dbe the

, .
sequence of consecutive primes greater than c¢. Let S(pl, pg,...) denote
the set of integers no one of which is divisible by any p§ for a fixed

1
K > 2. Then its asymptotic density is 1I (1- _f)'
) pi>c pi

Is its Schnirelman density less than its asymptotic density?
What happens if Py < P, < ... 1is any sequence of primes > c, not

necessarily consecutive?
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(II) Are there infinitely many integers K for which the cofresponding
Schnirelman density dK is attained at more than one point . What is

the asymptotic density of the set of K for which n, is unique?

(III) Analogous to the interlacing property of DK and dK given in

’apd DK,r; and »d

(2.5); do there exist results for dK r
. ’

&)’ "x,0)"
(IV) We stated in (2.5) that

D -d >00

K+1 K+1

What about the second and higher differences?

13
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