Reidemeister Torsion of a Homology Lens Space

Tsuyoshi Sakai(北太 酒井健)

In my talk, I announced a formula giving the Reidemeister torsion of a homology lens space obtained by Dehn surgery on a knot in the three sphere associated to the universal abelian covering. And we applied it to get a generalization of Fukuhara's result in [2] that is a generalization of the classification of lens spaces.

After that, I found that essentially same result is already obtained by Turaev[4] in a more general setting. Here I will give the precise statement of result. For a proof of Theorem 1, the reader can refer the paper of Turaev[4] or a self-contained treatment in [3].

Statement of Results

Let k be a knot in the three sphere S^3 . For coprime integers p>0 and q, let K=L(p,q;k) denote a 3-manifold obtained from S^3 by Dehn surgery on k with coefficient p/q. Then $H_1(K,Z)$ is isomorphic to the cyclic group of order p generated by a meridian loop of k. Let \widetilde{K} denote the universal abelian covering of K with the covering transformation group \mathbb{T} and let \mathbb{T} denote a generator of \mathbb{T} corresponding to the meridian loop of k. We assume that K is triangulated. Then the integral cellular chain group $C_q(\widetilde{K};Z)$ can be considered as a $Z\mathbb{T}$ -free module with the standard basis

١

determined by K which is well defined up to sign, and up to multiplication, by elements of \mathbb{T} .

Suppose a homomorphism h from \P to the field of complex numbers F is given that takes T into a p-th root of unity $\Upsilon(\mbox{$\updownarrow$}1)$. Using h, we can form the chain complex

$$C_* = F \otimes_{\mathbf{T}} C_* (\widetilde{K}; Z)$$

over F. Then C_q is a finite dimensional vector space over F with the standard basis determined by the basis for $C_q(K;Z)$ above(thus determined by K). For each q, let v_q denote the volume in C_q determined by this basis. Then

Theorem 1. Suppose that the Alexander polynomial of k is A(t). Then C_* is acyclic if and only if A(τ) \neq 0. Therefore, if A(τ) \neq 0, the Reidemeister torsion $\Delta_h(\widetilde{K})$ is defined as $\pm h(\mathbf{T})v_0v_1^{-1}v_2v_3^{-1}$ and is equal to $\pm h(\mathbf{T})A(\tau)(\tau^r-1)^{-1}(\tau-1)^{-1}$

where r is determined by the congruence $qr \equiv 1 \pmod{p}$.

The following generalizes Theorem 2 in Fukuhara [2], which he proved by using EA-matrix, an invariant for closed orientable 3-manifold defined by Fukuhara and Kanno [1].

Theorem 2. Let k and k' be knots in S^3 with trivial Alexander polynomials. Then L(p,q:k) is homeomorphic to L(p,q:k') only if $\pm qq' \equiv l \pmod{p}$ or $\pm q \equiv q' \pmod{p}$.

The classification of lens spaces is the case that k and k'

are trivial and Fukuhara's result is the case that k has the trivial Alexander polynomial and k' is trivial.

References

- (1) Fukuhara, S. and Kanno, J.: Extended Alexander matices of 3-manifolds. Preprint. Tsuda College. Tokyo, Japan(1983).
- [2] Fukuhara, S.: Homology Lens Spaces obtained by Dehn surgeries on knots. Preprint. Tsuda College. Tokyo, Japan(1983).
- (3) Sakai, T.: Reidemeister Torsion of a Homology Lens Space.

 To appear in Kobe Journal of Math.
- [4] Turaev, V.G.: Reidemeister torsion and the Alexander polynomial. Math. USSR Sbornik 30, (1976), 221-237.