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1. Introduction

We cqnsider an n-dimensional diffusion process Yt that arises
in conjunction with large queueing systems such as networks of
queues, preemptive-resume queueing systems, etc.. Its state space
consists of the interior and boundaries of the parallelotope of
R" (i.e., 0% x; £ Ls, i=1,2,..an). On the interior of this state
space, Y, behaves like an ordinary n-dimentional diffusion
process (Brownian motion with drift). Whenever Y; reaches one of
the (n-1)-dimensional hyperplanes (fqr example, Xi=0) it remains
there for an exponentially distributed finite sojourn time and Yt
behaves this time as an (n=1)-dimentional diffusion process.
After this finite sojourn time, a jump in the direcfion of X5~
axis occurs to a point whose xi-coordinate is on the interior of
o, L;) according to some probability density. The process then
starts from scratch. The behavior of Yy on the lower dimentional
hyperptane is defined in the same way. The process thus defined
is a natural extension of one-dimensional elementary return
process [4].

Several works have been devoted to the diffusion
approximation to large queueing systems (mainly, to open queueing
networks). Kobayashi [10] wrote out the forward eduation for open
gueueing networks with the rough boundary condition that the
approximating process must be restricted to the nonnegative
orthant. Harrison [7] and Harrison and Reiman [8] showed the
precise boundary conditions for a tandem queue which the

reflected Brownian motion should obey. It was also shown that

their reflected Brownian motion satisfies the heavy traffic Limit
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theorem [21.

Although the heavy traffic Llimit theorem was proved for
the reflected Brownian motion, it has the disadvantage of failing
to model explicitly the probability of an empty queue [2]. With
this motivation Gelenbe [6] proposed a heuristic approach for
mddeting empty queue probabilities by applying one-dimensional
elementary return process. Our primary goal here is to extend his
work to multi-dimensional case and specifically, to derive the
stationary forward equations of the n-dimentional elementary
return process as a model of large queueing systems.~

In Section 2 and 3 we define the multi-dimensional elementary
return process and derive the corresponding stationary forward
‘equations. Using the result derived in Section 3, we then derive
in Section 4 the partial differential equations for open networks
of queues and the preemptive-resume queueing systems. Furthermore
the important remark for discretization of the proCess is
proposed. In Section 5, we discuss the mean of the queue length
of the pairs of communicating computers by analyzing the partial
differential equations derived in sectfon 4,

A general notation shall be used through the paper that the

infinitesimal volume elements of R"™ is denoted dx = dx1dx2.“dxn.

2. Definition of the process

We shall define a multi-dimensional elementary return process
Yy or Y(t), t20. The most general case shall be discussed where
the state space SN of the process is the parallelotope of RM

0<x; gL L: >0 (i=1,2,...n).

i’ i



Note that L; may be infinite. S consists of its interior and the
lower dimentional cells (boundaries). The number of the O-cells
(vertexes) of S™ is 2". Generally the number of the (n-k)-cells
of s" is 2k<f>, k=1,2,...n and sum to 3". We number these cells
through so that the (n-k)-cells are denoted C., (3 I;;jl 2j<§‘> +1
<iogy by 25<g‘>) for k>0 and Cp for k=0. Note that Cp
represents the interior of S". We write Cj >(P) C; when C; is

i

from R" to R"K which is the sub-space of R" parallel to the (n-

(not) a boundary of C;. Let 77 T be the natural projection map

k)-cell Ci» The index of the coordinate axis on ?Z’j(R”) which 1is
orthogonal to 77 T(R™ is denoted i*j if Cj > C;.
On the interior of S", Y, behaves as an n-dimensional

Brownian motion which has the (constant coefficient) forward

operator
n 82 n o
Lg = - - md =
0 Lyyroq 788 O 0% z,:m 5 0%
0

-where the covafiance rpatrix (v ¢¢/ ) is non-neg"ative definite.

Whenever Y. reaches an (n-T-cell C;, (1< i <2 (?)) at time tq,
it stays there for a finite sojourn time T; and behaves as an (n-
1)-dimensional Brownian motion with the (constant coefficient)
forward operator

: a2 -
L* = i 2 i
1 29‘;5'#1'*0 %V"‘f‘ 0% 0% ny six0F O'g

where the covariance matrix (v}g!/ ) is non-negative definite. If
Yy r‘eaches on an (n-2)-cell Cj <Cj at t1+T1-,_1't stays there for
an finite sojourn time time Tj and behaves as an (n-2)-

dimensional Brownian motion which has the (constant coefficient)
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forward operator

L*.- = VJ . - mJ
) ,5,;#1‘20, jxi 4 95 D% D'g g #ix0, jxi  PO'B

with the nonnegative definite covariance matrix (v%iﬁ,). The
behavior of Yi and the forward operator on the lower dimensional
cells are defined in the same way except for the O-cells
(vertexes). If one of the O-cells is reached then Y; stays there
for an exponentially distributed finite sojourn time. The fin{te
sojoufn time Tk on Ck 0 syk < 37-1) is exponentially distributed
if any boundary cell C; of € Gi.e., C; < Ck) is not reached. As
soon as the exponential sojourn time Lapses before hitting the
boundaries, a jump in the direction of xk*m—axis occurs to the
interijor of Cm from Cy»r (Cm > Ck) according to some probability
denity function over 0 < xp,n < Lygpe

LetA.km be the positive constant which represents the rate
at which jumps occur to a point on the interior of Cm from Ck'

(Cm > Ck). Then

Prob{_Tk > t| any Ci < Ck is not reached}
o3 s dia)
where the summation in the exponential function is taken over
aLL m such that Cm > Ck' For our purpose, let the density
function for the jump be the Dirac delta function g{xk*m-M(k,m)}
in which M(k,m) is defined as follows: let
&D) sgntk,m) = { 1 Xgap = 0 for x & ¢

| -1 if Xgrm = Lgxm for xe C
then

Mck,m) = %[1+sgn(k,m)] + %[1-sgn(k,m)](Lk*m_1L
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After the jump, the process starts from scratch. The process \
thus defined is the Markov process because there are no point

with memory.

3. Stationary forward equation

Let fhe alternative representation of the process be
Yt = (k,xk,
where k represents the index of the cell on which\fhé process
sojourns and Xk =7Zk(Y). We assume the procéﬁs has the transition

probability dnsity defined by
pd 7,y A y)
¥ prob {(k, x5 =Gy, yigay! | wxbg=ax }

in which A yj represents the small volume element on Cj. We
decide pgj(xi,yj) represents the transition probability if Cj is
a O-cell.

Let xk=7ka. Let ij, k=0,ue..,37-1 be the set of continuous
functions fk: nfk(ck)?R1 that are twice continuously

differentiable in xk k

except at z" whose component X5 of R" ,if
contained ,is 1 or L;-1 for some i. Let fk(xk) & Y, be the

density function on Ck that satisfies '
PN
k=0

For the density function fk' we define the transition operator by

fk(xk) dxk =1 .

) e
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S ) £, xK) pkIxk, 2y axk
k Jarke,

where f = (fg,..a,f ) and zle 7zJ'cj. Then

*

@ A" = Lim

t> ot t

where I represents the unit operator on YWoX ¥ X ... x73n_1. The
stationary forward equation of the process can be represented in

the form

(3) (A*f); =0, i=0,1,..,3"-1 .
It will be convenient to define the differential operators

_ . ofi(xh , _
J1¢ Ef.i(.)] = - % 2 V;;S z—m- | + m;‘ fi(x1)
¢’ ,

and

WK [F,00T = Lim Jhwi [F501
Xkxi?N(k, 1)
where N(k,i)=(1/2)L1~- sgn(k,i) ] Lixir i=1,eee,3"-1, and ¢, é°
represent indexes of the components of xi and the summation is
taken over all such indexes. The following theorem gives the
concrete form of the equation (3). We shall maintain all of the

notation established earlier.

Theorem 1. Assume that Yt has a stationary density function

£, 5%, k=0,1,...,3"=1. Then it is the solution of the
k

5
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equations

2n
* i .
-Lg T =§: 1 A 50f5 " §xi40~MGL0) )
1=

'L: fk(xk) =Z : { -sgn(k,m)Hmk[fm(x’")]
m Sete C_ > Ck

K ' s
- km fk(X ) } +' 2 A’ka](x])J(x]*k-M(J'k))
] Sata Ck > CJ

1< kg 3M-2"-1m)

_ mk m _
0= 2 -sgn(k,m)H [fm(x )J A km fk
3"-2" < k¢ 31

with boundary conditions

Lim £, (x% = Lim £, (% =0
X 20 Xg *L¢

where x is the component of xk, 0< k< 31,

#

Remark. If all L; are finite and there are no absorbing states,
Yy is positive recurrent and has a stationary density.

Proof. Let define
* _ * - 9
(atf)i = (Tt f)i fi(x )

for any ;& jﬂ, (i=0,.“,3n-1). We need to show the concrete

form of the equation
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) tim L} ,=0.

t-0t ¢t
Since the transition probability densities pkiedk,z0), k3, C;
¥,£ C) vanish with higher order than ptﬂ(xk,zi), €; >< ¢ as

t»0, we have

5)  (af H;EhH = 2 S TR, o
K Sata C.| > Ck T Ck
+ [ S o o piiad, 2 axd - fi(zi)]
ey

2

S ) £, 0K pKTxk, 2Ty axk,
k sata Ck > C.' /4 Ck

+ £ (1) , (for small t>0)

where E(t)/t=0,(t?0). In the integrand of the first term of 3,

the transition probability density is given by
pki(xk,ii)

S K ptk(xk’zk){"—exp(—l K3 t)} 5{”kzi_zk' Zk*i_M(k’i)} d=K
Y/ .
k

+ 0

Hence the first term in the right hand side of (5) multiplied by
1/t as t-0 becomes
) ) .
6) z lk., fk(x ) g(xk*.] - M(k,'l))-
k s.t. C1>Ck
Let q;(xi,zi) be the transition probability density of the
Brownian motion -on C; (with the forward operator L*i); Then

piicxi,z) = exp- 2 L0 ajexl,zh
k sata € >C:
k%1

w
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Thus the second term in the right hand side of (5) can be written
as follows:

"

[ S.7ri fo) gl e,z dxd - fih) ]exp(— > s 1)
C-
1

X 1]

+ f-(zi) exp(- > A—i' t) -1 .
1 . ]
. ] Sata CJ>C1

Letting t20 in (7) multiplied by 1/t, we obtain

* 9 . _ , i
] Sa.t. Cj C1-
Let
9 s, = _ £, K pRik, 21y dxkdzl
t k k t
i sat. € >C; Y C, ¢ e |

i

= fk(xk) ) pti(xk,zi) dz] dxk,
ke A
k i

i s.t, Ck>c1

the last equality resulting by interchanging orders of
integration. Since the transition density functions pkj(xk,zj),
(k=j, Cj>,<Ck) vanish with higher order than pki(xk,zi), (Ck>,

<C;) as t-0, we have

| S . opkiak, 2ty d2f
isete (> C; JCH

=1 -g p'ék(xk,zk) dzk - Z
7Tkc |

S 3 ptj(xk,zj) dzj
k j Sata C]> Ck 7[3(:]

+ £ ) » (for small t>0),

Jo.
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where Llim E(t)/t=0. Thus
t+0

10 s, =§ f,.(25) dzk - g S £ O pkkxk, 2% dxkazk
7T ke, ke,

1 . . .
- S ) fk(xk) S . th(xk,zJ) dxd dxK
TTEC, 3 Seta €50 ch ,
+ £ (), (for small t),

where € (t)/t=0, (t»0). Using the same discussion as before, the
first two terms and the last term in the right hand side of (10)

multiplied by 1/t as t?0 become

S ) [— Lk f )+ 2 Ay fix ] dxk
ﬂ' Ck ‘ ] Sat. CJ>Ck

and
- S P L 6 ak, -0
7z'kck J St Cj> Ck

respectively. Thus

lim S/t = g R MO R
t20 7T Ck

~or in the alternative expression,

Aan = S div JKLf, ()T dxk.

where div = (a/ggx¢ ). Applying the well known divergence

theorem to (11), we obtain

J1
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(12)  lim S /t = :E; S . =sgnGi, k) HRILRT dzT .
20 i8Tt. > ¢ Yy -

On the other hand from the first equation of (9) multiplied by
1/t as t*0, we have

13 Lim Si/t
t»0

S . lim ] S i (6 pkicxk,zT) dxkdzi
i Set. C>.Cy J7r'Cy t0 ¢ Cy :

Comparing (12) with (13), we have
(14) - sgnGi, k) HKILf ]

= Lim (1/t) £ () pkixk, 21y axk,

for C> C;. From 4), (6), 8), and (14) we obtain the forward
equations in the theorem. Note that since the n—-cell and the 0-
cells have no upper cells and Llower cells respectively, we can

obtain the equations putting the related functions to be O.

Finally, since the boundaries act as absorbing boundaries for the

A, JSa

diffusion process on Cyr (k=0,“.,3”-1) until the next jump
occurs, we obtain the boundary condition in the theorem. This

completes the proof.

, X
T FO—T-O—
O,(.f) ‘{/‘/ 0:(1') ‘0"2.
5( SB.
Fxc;. 1.7 . )\/ﬁ

g2



4. Approximation for some queueing processes
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We consider in this section some examples of queues which can

be modeled with the two-dimensional elementary return process.

Although we restrict our attention to the two—-dimensional case

for simplicity, most of techniques we use will be extended to

higher dimensions.

From Theorem 1, the partial differential equations of the

<

two-dimensional elementary return process on R2 is written as

follows;

15)

where f3

and

~Ji(x3_i) = mifi - %—v

x190

(a/ax3_1-) Ji(x3_1-) = Lim —J?(x) -

+

2
1:

+ A31f3 §(X3_1-1) ’, (1=1,2)

0 = Lim ‘JZ(X1) + Lim ‘J1(X2) - (,131 + 132) f3 ’

x1*0 xz*O

Lim fD(X1,X2) =0, (i=1,2)

X_i"O

Lim filxg_:) =0, (i=1,2)
X_i')o

is the probability mass at the origin,

2 Hf
Ueoy = 0¢ 0 0
Weo = ndf, %% v, —
. 1= o%j
0= udh |
i af‘i

3 *3-i

’

(i=1,2).

A i0f; (x3-)



We determine the coefficients of (15) based on the fact that
the diffusion process approximates the number in queue as soon as
the number in queue moves from zero to one.

Example 1. First we consider the tandem queues of Figure 1
which {s composed of two single server stations arranged in
tandem. Custmers arrive at station 1 according to a renewal
process whose interarrival times have mean 1/1 and variance Sae
Having completed service there, they proceed to station 2, and
after completing service at station 2 they leave the system. Each
station has a single server, and service times at station i,
(i=1,2) are i.i.d. with mean 1/ ; and variance §;. Let Q;(t)
denote the number of customers in statjon i at time t, and let
Q(t)=(Q1(t),Q2(t)). The coefficients of (15) ére determined as
follows.

(i) As soon as a busy period (Q1(t)>0, Qz(t)>0) starts, the
process Q(t) approximately behaves as the ordinary two-
dimensional diffusion process with the coefficients determined by

"centraL-Limt-theorem"-typé argument [10]1. Thus from C101

/1 ‘ﬂ1

il G
M= M2
3 3 3
0 (/1 Satu 1354 ~H 334 )
Hisy  Mispem3sy/

(i1)  On the half-line @4=000), @x>0(=0), Q,x(t) (Qq(t)) behaves
approximately as the one-dimensional diffusion process with
infinitesimal mean m1=-llz (m2=2,-/11) and infinitesimal variance

v1=ll% 82(v25g13sa+;l?31). The sojourn time on this half=line



behaves approximately as the Markovian arrival with the rate A ¢
M)« Thus we set 1 9p=1 and Ap=Mq-

(iii) At the origin Q1=0, @>=0, @4(t) approximately behaves as
the Markovian arrival with rate A . Thus we can set A 32=] -
Since there is no arrival at station 2 when Q1=0, we set /131 =0.
Example 2. The second example is the pairs of identical
computers in reciprocal communication (see Figure 2). This model
was discussed by Foshini [5] under the heavy traffic condition.
He solved the mean queue length applying the two-dimensional
reflected diffusion process [8]. We will also discuss the mean
queue length of this model in the next section.

The mean rate and the variance of exogenous interarrivals of
jobs are denoted by A and S, respectively. Service times at each
station are i.i.d. with mean 1/M# and variance S . Having
completed service at each station, jobs proceed to other computer
for services with probability % and with probability 1-% jobs
leaves the system. Using the same discussion in Example 1, the

parameters of this model become as follows;

O=nd= 1-x a-7>

vl =8, = a3s, +u3s ¢y =¥y 42
Vis = vy, = -2”387

12 = V21

m =md =1 -H

vt = v8 = 1 3s, + e 3s

A0 = A0 =AYV M

and



We have discussed thus far only the queueing network models.
The multi-dimensional elementary return process is applicable to
another kind of queueing systems as described in the next
example.

Example 3. Consider the preemptive-resume gueueing systems
which handle two types of customers. In this system, one type of
customers is given a preemptive priority over the other type and
served by a single server. Each customers arrive at the queue
according to a renewaL process whose interafrival times have mean
1/Ai and variance ai, i=1 for high priority class and i=2 for
low priority class. The service times for class i are j.i.d. with

mean 1/ Y. and variance S;. The same discussion as before yields

m0 = (11;:1)

v -
( 0 /1382
nl ==y
1 3
vi=Ada 98
m= A, -

Az=419=4,
and

A 2049 -

31
Notice that since the changes in the number of the class 1
customers is completely independent of the class 2'customers, the

covariance between these two classes is zero.
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Finally we remark the discretization of the density. A direct

method (see [61) is given by setting

P€0,0) = f3
'I .

PG ,0) = S fq(x) dx , >0
i-1 :
j

P0,j3) = S fo(x) dx , 3>0
ji=1

and

i j )
P(i, ) S g S folx,y) dx dy , 1,90
-

ji-1

‘where P(i,j) is the approximate stétisticat-equalibrium
probability thaf‘Q1=i andyQ2=j customers éimuLfaneousLy exist in
the queue. This discretizafion, however has the disadvantage of
faiLing to model the probability that‘one customer exists in the
queue.This disadvantage>is caused by the jump that reduces the
occupation time of the section between Xi=0 and 1, i=1,2.

‘The alternative method of discretization which overcomes this

disadvantage is given by

P0,0) = fg
PGL0) = Kefq(i) , 930
P@0,i) = Kxfa(i) , >0
and
P('I,]) = K0f0(1,_]) , 'i,j>0
where '
0 o0
Ky = S f0) dx/ X ()
0 i=1
oo 0
0 i=1
and

L
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0o oo oo
Ko = S S fg(x,y) dx dy/ -}: fgli, i) .
0 0 i,i=1

This method is based on the concept of local occupation time. The
jump does not have the effect any more to reduce the probability

of one customer in each queue.
5 Formulas for mean

In this section we discuss the formulas for the equalibrium
mean of the symmetric pairs of communicating computers. From
Example 2 of section 4, the partial differential equations with

the boundary conditions are rewritten as follows:

2 2 2
1 fo 9% o “fg ofc  afg
(16) ] A 5 + B + A 5 -C — - —_—
O x§ Oxq 9% o%5 S X S x>
== B Jo =D = Bflx) Jlxqg = D
2% _afi
AD h 0 o5 v E = ohg () - Vg * L g S0
a X.i 8 X.i
(i=1,2)
fD(X1,D) = fo(O,XZ) =0
£1€0) = £5(0) = 0
where
Hy_j(x;) = lim -2 — -1a + cfp
x3-10 3 %4 3 X3-i
f.
K; = Lim —% D éi—l + Ef; , i=1,2)
X140 aX.'
and where

A=A3s,+ mis+ HYA-Y + Y )
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B=-2u38Y
C=2A -px0-7)
D=2 35, +4 s
E=A - M

A= A+vH

and 3 , Sqgr M, S ’ /7/ which are established in Example 2 are
maintained.

Let define the Laplace transformation

co 00 .
S fo(x1,x2) exp(-s1x1— 52x2) dx4q dx2

La(S4,S5) = S
0*°1-°2 0

0
o}
Li(sz_3) = S 0 fixz_3) exp(=sz_sx3_5) dxz_;
(i=1,2)
and
oo
Fils3_5) = S 0 H; (x3_;) exp(-sz_sxz_3;) dxz_; .
Gi=1,2)
Taking the two-dimensional Laplace transformation of (16), we
have
19 L %-As% + Bsqspy + %—As% = Csq = Lsp 1 Lg(sq,sp)
+ Fe(sp) + F2(515
==-/0 L1(sp) expl=sq) = B Ly(sq) exp(-sy) .

Furthermore Laplace transformation of (17) and use of (18) yield

[ ]
- 2
20) Fi(33-i) = E% BS3—i - CS3_i - /3 ] Li(s3’i)

- A‘f3(1 - exp(-s3z_3;)) .

Let the power series expansion for Lj, Lj, i=1,2 be

LD(S1,52) = 60 + 8131 + 6152 + 823182 t aane.

1?
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and

Lz(S) = L1(S) = bo + b1S Fteuaas .
Substitute (20) into (19) and the power series expansion for LO,'
L1, Lo into the equation thus derived to get the coefficients of

the s%, sqSp, and sq. Then we obtain

%—Aao - Ca1' + % Dbo - Eb1 -+ A, f3/2 = "2@ bo

@M1
Bag - 2Caq = 2 8 by
and
(22) -Cag - Ebg - A fz3 = Bby .

Notice that

o

O
ao Lo(O,G) = S S 0 fo(X»],Xz) dX‘l/ dX2

0

co .

and thus

23) aD + Zbo + f3 =1 ..

Let the stationary probability that the process sojourns on
x;=0,1=1,2 be

4) 1= P =by + fs.

Then we have from (22), (23), and (24)

25) A2 -P)r+cpP =bgc+ A -E~-B).

The right hand side of (25) vanishes and we obtain

(26) P=d Ka-7) .

This coincides the traffic intensity at each queue [2]. Although

our approach is heuristic, we have had the precise modeling of

20
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empty queue probability as well as the one-dimensional case [é].
Notice that the mean ELxq1=ELlx>] is given by

(e e)

ELx4] =
SR

(@]
X1 [ S 0f0(X1,X2) dXZ + f2(X1) ] dX1

Ly - L
0 2
=--a—- (D,D)-—a

o $1 8%

0 = —31 - b1 -

We have thus proved the following result.
Theorem 2. Suppose that the equations (16), (17), and (18) have
astationary solution. Then the mean ELx;] satisfies
-1

@7  Elx;]l = ———— LB -0{ARR+m ~1) + (D + B )

2RcC - 2CE

-P-m +Amf -(ELBL-BORPL+m-1 1
where m represents the probability mass at the origin.

Theorem 2 states that if the steady state probability of
empty queues is known, then the approximate mean queue length can
be given by (27). Since the approximatjon is made assuming the
Markovian arrival at the empty queues, it is reasonable selection
to set
28) m=-p2 ,
the equality being due to Jackson network resutt.

Assuming (28), we have

@9 Elx;1 = LY P2U-Y-TVH2s) FP YA -PHP
+ PQ2Ps, + M29) + L1 - P)?
“PLPDPL +Y ) + 2USYA - X1 =Y}/
2(Y + DU=-p =Y
For uncoupled M/G/1 system, from the Pollaczek-Khinchin formula

the mean queue length is

2/



2
Pl P+ ucs) 3
21 = £)
while (29) becomes
1+P2 P+ M2s
2 21 =P }

Elx;1= P f

This appears to be a better approximation than

P+ M2
2(1-P)

which is the result of Foschini [5] derived by means of the two-

dimensonal reflected diffusion process approximation [71].

6 Concluding remarks

Computing the density f of our basic diffefentiaL»equation
(15) appears to be difficult problem. The most simple form
solution can be derijved as a product form. It .will be easy to

show that if (and only if) the covariance coefficients v?j, it j

are zero and V?i = v3_1, m? = m3—1, (i=1,2), Ao = A 40= 132/

A1 = A-ZO = 2,31, then there exists the separable exponential form

solution:
_ A3-i (%
= fzexp(Gz_;x;) —== exp(=Gz_;x) F(x) dx
v 0
and
fo(x) ==4AL———— f3exp(G1x1+sz2)7TS 1exp(-G-x) F(x) dx
v1v2 i=v0 !

where G; = 2mizyi and

-1, 0<x<1
F(x) = {

o, x > 1

This solution, however, does not give any additional useful
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information on the stationary distribution. Although it is
difficult to find out even the special solution of (15, it
seems worth-while to attach this probtem for the purpose of its

practical utilization.
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