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A few remarks on the factorization

of polynomials

By
Sin Hitotumatu

(Res. Inst. for Math. Sci., Kyoto Univ.)

0. Introduction

For long time, it has been considered that the factorizé—
tion of polynomials in computer algebra is a difficult task.
At least, in principle, if a polynomial of one variable with
integer coefficients is reducible in the rational field, then
its factors are all of integer coefficients and their poS—
sibilities are finite. 1Indeed, this procedure is effective
for quadratic polynomials, which is taught in the secondary
schools.,

However, such primitive procedure is not useful for
polynomials of higher degree, since the number of possibilities-
rapidly increases as the degree does.

Recent computer can factorize polyhomials much faster
than human's Work, using efficient procedures based on modulo
P arithmetic and Hensel's lemma (see e.g. [1]). However,
there still remain serious problems for complete automatic
factorizations by computer algebra. Here I shall gi§e a

few examples and remarks.
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1. Hensel's Lemma

Theorem 1 (Hensel's lemma). Assume that a polynomial

of one variable with integer coefficients

_ n n-1
P(x) = a x +a_ X tee-tagxta,, a # 0

is factorized to the product of'two relatively prime polyno-
mials Gl(x) and 'Hl(x) with respect to modulo p, where

p 1is a prime which does not divide the leading coefficient
a, - Then, for each integér m=2,3,... there exist relatively
‘prime polynomials Gm(x), Hm(x) (not necessarily unique)

with the following properties:

(1)  P(x) = G (x)-H (x) mod p™

(i) Gm(x) = Gl(x), Hm(x) = Hl(x) | mod p

Outline of the proof. Use induction in m. If such

Gm(x) and Hm(x) have been determined, we have by assump-

tion

= 0,
P(x) - 6 (x) - H (x) = p -R(x).
We can take suitable polynomials Um(x) and Vm(x) such that

R(x) mod p.

i

Um(x)-Gm(X)'+Vm(X)'Hm(X)

Then the polynomials

(x) = G, () +p™V (x), Hp o (x) = H (x) +p"0 (x)

Gm+1 m+1

- 2 -
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satisfies thé conditions for m+l. O

If the original polynomial P(x) is actually reducible
and Gl(x) and Hl(x) are the correct factors reduced in
modulo p, then we may arrive at the correct factors of P(x)
up to constant factors, after finite steps of iterations. |

As for the first factorization in modulo ©p, we know

Berlekamp's algorithm, see [2].

2. An extension to the polynomial of several variables.

For polynomlals of several variables, one can generalize

Hensei's lemma in the following manner. First we arrange
the given polynomial as a polynomial of one malin variable
X whose coefficients are polynomials of auxiliary variables
Yyseees Yg- We assume that the leading coefficient an(yl,’

.,,yg) does not vanish at yi¥---=y2=0. This assumption
gives no restriction in generality, at least in principle,
because if an(yl,...,yz) is not identically zero, there
must be constant values Cis-ne5 Cy with an(yl—cl,...,y—cz)
# 0. Hence we may change the variables Yyse-+s¥y by Y, =
Y1=Cqsecv> Y2=y2—cg as parallel displacement. However, in
the actual computation, this transformation may cause usually
serious explorsion of terms. Hence, we recommend several
abbreviated algorithms, as in [3].

Now we have the following generalization of Theorem 1.

Theorem 2. Under the assumptions as above, we assume
that P(x3;0) 1is -decomposed into a product‘of two mutually

prime factors Gl(x) and Hl(x). Then for each integer

-3 -
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m=2,3,..., there are polynomials Gm(xgy)i and Hm(x;y)
satisfying the following conditions:

(1) P(x3y) = G (x3y)-H (x3y) mod y"

(i) Gm(X;O) = Gl(x), Hm(x;O) = Hl(x).

Here A = B mod ym means that all coefficients in
A - B consist of polynomials in Yiseees ¥y with degree

at least m. In this notation, the first assumption P(x;0)

= Gl(X)’Hl(X) is equivalent to
_ 1
P(x3y) = G, (x)-H;(x) mod y

The proof is completely similar to that of theorem 1.

The following classical theorem 1s sometimes useful.

Theorem 3. A quadratic polynomial of two variables x

and y:
2 2
P(x,y) = ax~ + 2h xy + by~ + 2gx + 2fy + ¢
is decomposed into a product of two linear factors if and

only if the coefficient determinant

‘a h g
det hbft
g tfec
vanishes. If this condition is fulfilled, then we factorize

P(x,y) by the following procedure.

(1) First decompose the quadratic term into (Ax+By)(Dx+Ey).
(11) 1If these two factors are different, we solve the

linear equations: AF+DC=2g, BF+EC=2f in F and C.

- 4 -
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Then (Ax+By+C) (Dx+Ey+F) gives the factorization, where
CF=c 1s a check.

(1i') If A:B = D:E, then the original polynomial is
reduced to a quadratic polynomial in w=Ax+By, which is

readily factorized as a polynomial in w.
3. Examples.

Exp. 1. P(x) = 54x3 + 57x° + 28x + 15.

We take p=l1l. P(x) reduces to
—x3 + 2x2 - 5x + 4
which is easily factorized to
(—x+1) (x°-x+4) .
We have
P(x) - Gy (x)-H (x) = 11(5x3+5x°+3x+1),
and

5X3+5X2+3X+l = Gl(x)-(Sx+7)+Hl(X)-(5x+4) mod 11.

Hence we have

Gg(x) = Gl(x)+ll-(5x+4) = S5hx+45 = 9(6x+5)
Hy(x) = H (x)+11. (5x47) = x*+54x+81 = x°+27(2x+3).
.Now we see that 35 =243 = 2x11° 41 = 0 (mod 112), so that

3

2 .
9=3 and 27=3 are mutually reciprocal in mod 112.

Transfering the numerical factor 9 from G2 to H2, we have
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~

G,(x) = 6x+5, ﬁz(x) = 9x2+2x+3

2(
which are the correct factors of P(x). In this case, we

can avoid automatically the problem of distribution of the

leading coefficients.

3

Exp. 2. P(x,y) = xu-2x y-x2y2-2xy3

+yu
+ lezy + nyz - 3X2 - 3y2 + 1.

In fact, this is the determinant of the U4th order matrix

We arrange P(x,y) in a polynomial of x, say
xLl - 2yx3 + (- y2 + by - 3)x2 + (—‘2y3+ 4y2)x +\V(yu - 3y2 +1).
For y=0, it is |
xu—3x2+1 = (xz—x—l)(x2+x—l),
(see next section). We have
P(x,y)-—Gl(x) -Hl(x) = y(—2x3-+4x2) mod y2
where
—2x3 + 4x% = G (x) - (=3x+1) +H (x) - (x-1),

and hence

G2(x,y) = Gl(x) +y(x-1) = x2+xy—x—y—1,

-6 -
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Hz(x,y) = Hl(X) +y(=3x+1l) = x2—3xy + x+y - 1.
Then we have
_ .2 2 2
P(x,y) —Gg(x,y)-Hg(x,y) = y (2x"=-2yx+y -2)
where

2x2—2yx+y2-2

tl

2
G2(X,y)-+H2(X,y) mod y°©.
Hence we have

x2+xy+y2—x—y—l,

G3(x,y) = Gy (x,y) +y°

x2_3xy+y2+ x+y-1,

H3(X,y) = H2(X3y> +y2

which given the correct factors:of P(x,y). O
Here the second term ,H3(x,y) ‘is still reducible, if
we extend the coefficient fleld algebraically. Using Theorem -
3, we can féctorize it as follows: |
H3(X,y) = (TX-T—ly;—1)<T—1X-—Ty'+i),
-1

where 1 = (V/5+1)/2, 1 = (/5 -1)/2.

Alternative method. Since the original polynomial

P(x,y) is symmetric in x and y, we can rewrite it as
51:2 + (-652+4s+6)t + su - 352 +1,
if we put s=x+y and t=xy. This is easily factorized to
2

(5t—32—s+1)(t— s"+s+1)

which gives the same factors as above G3(x,y), Hg(x,y), up

to the signatures. U
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But remember that a aymmetric polynomial does not always

factorized into symmetric factors.

4, An unsuccessful example.

Exp. 3. P(x) = xu-3x2-+1.

This appears in the first step in Exp. 2. We take p=11.
The reason of this selection will be explained later. In

modulo 11, we have
2 2
P(x) = (x°=5)(x"+2) mod 11, (1)

where

P(X)-eGl(X)‘Hl(X) =11.1, 1 = 3(Gl-H1) modlll,
and hence
G2(x) = Gl(x)-ll.3 = x2-38,
(2)
Hy(x) = Hy(x) +11.3 = x° + 35.
2

Though this satisfies the condition in modulo 11 as

P(x) - G,(x) Hy(x) = 1331 = 11° = 0 mod 11°,

it is obvious that they are not correct factors of P(x).
Repeating the process, we always have a factorization
(x2-+am)(x2-am-3) in mod 11™ for each m, where a_ 1is

a constant satisfying
a (a_+3) = -1 mod 11",
m m

However, we never arrive at correct factors.

-8 -



The reason of this failure 1s evildent, as.we have
started from wrong factors. If we consider the original
polynomial P(x) as a qﬁadratic polynomial in Xg) the
discriminant is 3x3 -4 = 5. Since 11 1is the least prime
for which 5 is the quadratic residue, we have had (1) in
modulo 11.  But thié is not the ultimate factorization;

5 and -2 are again quadratic residues in modulo 11. The

ultimate factorization 1is
P(x) = (x-1)(x+8)(x-3)(x-3).
Here we make an "arrangement of factors" say
P(x) = [(x=1)(x+3)1[(x+4) (x-3)] = (x"-x-12) (x"+x-12).

Reducing the factors in modulo 11, we have the following

correct factors
P(x) = (x°~x-1)(x°+x-1).

In the factorizatlon of a quadratic polynomial in x2,

similar procedure 1s effective. But, actually we recommend

to iIntroduce the following elementary theorem in the facto-

rizatlion program.

Theorem 4. Under the assumption that the quadratic form

x° -bx+c 1is irreducible in the rational field, Xu—bX2+C

is reducible if and only if c=u2’(perfect square; u may
be negative) and b+2u=v2. If this is fulfilled, xu—bx2+c

is factorized to (X2—vx—u)(x2+vx—u).,

Example. x4-+x2f+l, Xu-+4, Xu-3X2'+9.
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