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Triplet Distribution Function of the Fluid with the Square Well

Potential
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BikAT # #H#E (Shigetoshi Katsura)

The triplet distribution function of the fluid with the
square well potential is calculated at the leading order of ¢ by
two methods: one is the method of generalized Foufier tramsform
combined with the addition theorem of Bessel functions, and
another is the geometrical metBod. The results are éompared
@ith those computed by the Monte Carlo and the molecular dynamics
simulations. Higher‘order calculation by our scheme seems to be

promissing.
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1. Introduction

The generic probability density that each of the distinct
volume elements dr,,dr,,...,dr situated at the positions
- 1 2 q

r1;r2,...,rq is occupied simultaneously by each of g molecules of

a uniform fluid, is denoted by n<q) n(1)=0 is

(2)

(r1,r2,ooo,rq):

the number density, n

function, and n(3)(r1,r2,r3) is the triplet distribution

(rl,r2) is the pair distribution

function. . In a simple liquid at equilibrium of given

temperature and density, the molecular distribution function

n(q)(q 2 2) is a function of the relative positions Ty and

determined by the intermolecular potential ¢(r). They can be .
measured by the X-ray or neutron diffraction, and calculated by

the.Monte Carlo [1] and the molecular dynamics [2] simulations.

2)

The pair and triplet distribution functions, n( (r )=

0%atr ) and n P (r 1, 120963

1%
(r12,r23;r31), are expressed by

(3,47

L -
_ _ o P (2)
g(rlz)—exp[ ﬂ¢(r12)+E=1 l!8£ (r12)], » (1.1)
9(3)(r r Fag )59, 0r, 7)Y {ras)agalrL, )
12' 23’ 31 2712792 23772 31

0 P (3) :
X exp[§=1 z!6i (rlz,r23,r31)], (1.2)

where

(2)

8,7 (ry)=[f Sy, drg = d/A\b , (1.3)

8520 (r = (2 g F gy F oAy S F o F oy g+ F o F

2 1334742 13'34 4214 13 3442 f

14 dr.dr

237drgdry,



= Q‘! ! szI<:l ISQ:L (1.4)
, |
ai )(r12,r23,r31 = [f,4F0aFa0dT, = J/j>\b ,  (1.5)
(3) _ E ] 1 1
6 (r Z,r 3.r31) = I<§2:
NN KR e

'fij: f(r ) expl- B¢(Ir —r 1)1-1.

énd

We call the exponential factor in (1.2) simply as the triﬁ]et
correlation function in the following. The zeroth approximation
of (1.2) where the factor expL 1 1is replaced by 1; is the
lsuperposition approximation, and it givés the virial coefficients
up to the third exactly. The fourth coefficient is given
exactly by taking account of the leading term in the triplet

correlation function, i.e., the first order term 8(3)

1
5(2) (2)

For the hard sphere fluids, §,%" and 8,"" were obtained by

Ni jboer and Van Hove [51. For the fluids with the square well

(2> (2>

potential, 61 and the first two terms of 82 were obtained by

(3)
Sy

for the hard sphere fluids was discussed by Abe [8], Rowlinson

McQuarrie [6] and the last by Katsura and Nishihara'E7].

[91, and Powell [101.

In a realistic simple fluids, the attraction plays
important role which is irrelevant in the hard sphefe system.
Since the overall properties of fluids do not depend on the

details of the shape of potential, we here consider the square
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well potential instead of the Lennafd—Jones one. The parameters
of the square well potentia{ are determined in such a way that
the Boyle temperature and the temperature gradient of the second
virial coefficient at the Boyle temperature coincide with fhose
galculatea for the Lennard-Jones system [11], and the triple and
tbe critical temperatures of the latter correspond to thr/e x
1.52 and ch/e >~ 2,83 in our model.

For the calculations of the molecular distribution function
and virial coeffcients, we must evaluate integrals of the type

fnfijn’drk,

for which in a case of cyclic indices as

«eoF, ,dr,dr

[f1oF2afgg 0+ Fieqdrydrye . dr

k?
the-method of Fourier transform is effective. The Fourier
transform method has been generalized by Katsura and applied to
evaluate complex clusters in the calculations for the fourth [12]
and the fifth [13,141 virial coefficients, and also to calculate
the distribution functions [71.

In this paper, the leading term of the triple correlation
Function, 6(§)(r12,r23,r31) for the fiuid with the square well
potential is evaluated and discussed. We discuss the analytical
method in the section 2 and the geometrical one in the section
3. The last section 4 is devqted to the discussion of the

numerical results and the comparison with the computer

simulations.
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2. Analytical method

Integrals involved in the expressions of 6;3), can be
calculated by the combination of the Fourier transform and the
addition theprem of Bessel functions. [7,12,13,141]. For the

square well potential, f(r) is given by

(1 W< <1,
fFry = 3 fzeffo1 (1P < s, (2.1)
0 (s < r).
.

The Fourier transform of f(r), 7(t) is given by
r(O=r(£)=(22) > 2[f(r)exp(-i t.D)dr (2.2)
=(1+£)7,(£)-Fs37 (b)), (2.27)

where To(t)kis the 7(t) with the hard sphere potential:

_Jdg0tt)

(t)=(2/n)1/2(cos t _ sin t) L.
t

2 £3

(2.3)

o
Substituting (2.2) into (1.5), we have

(3)

94

1=2m 3 2[5ttt TCR

tig 1 2)T(t

(rl,rz,r3 3)

X exp[i(tl.r1+t2.r2+t3.r3)]dt1dt2dt3

n - n

_ 1, .3, 2
=5;,, (1+6) (=) “1. (1, 1)), (2.4)

where
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(53372
Ly (Fpo Tp)=2m 7 21 (e D70 (e ) 70 (w (y+15))

1 72

X expEi(tl.r1+t2.r2)]dt1dt2. - (2.5)

The symbol Eluv means the summation over 8 cases where each of

the parameters A, 4, v takes the value 1 or s, and ni(nz) is the

' Let t2=—t2' and

we decompose r(y(t1~té)) with use of the addition theorem (A.1)

number of those equal to 1(9) for each of Il

and substitute (A.2) into (2.5), we have

o0 00 o 3 1 3/2

e 3 1 1 P,_:\9 -
L Fo T= B g B0 (B0 0 (5 +n) (5 +p) (5 +@)iP (=)

3 32040, 3/2, |
v W3,5,3/2en, 17240 A1) Vgso 3000, 1/00g (Kevary)

3/2 ' ’
X an (cos ¢t1—t2’)Pp(C°s ¢t1_r1)Pq(cos ¢t2'—r2)dﬂt1dgt2"
(2.6)

where ¢t1~t2' and ¢t2’—r2 are the included angles between tl and
té, and té and iy respectively, dﬁt=sin0td0td¢t, and

Cg/z(cos ¢) is the Gegenbauer polynomial which is expressed by
Legendre functions as in (A.3). With use of (A.4), the

integrals over the solid angles lead to the result as

3/2 |

2 1

(4dx) 6pq—§;ITn Pp(cos ¢r1_r2), n2pe0, ntp even,

G, otherwise.

(2.7)



111

Hence we have

20amy7372,78(, 4172

-1
Taw (Fpr1p)=-50Um) 172

® _n 3, .1
X ano Zp=0 (2+n)(2+p)

3/2 C 3/2 '
X Y3/2,3/240,1/24p 07071 Vg p 3 00 4 ks Bavery)

x Pp(cos wrl—rZ)’ ' ‘ (2.8)

where the summation ° for p runs only over integers with the

same parity with n, and

3/2
3/2,3/24n,1/2¢p  (@sbsc)

-3/2

o . .
=f0J3/2(at)J3/2+n(bt)J1/2+p(ct)t dt.  (2.9)

Substituting (A.5) into (2.9) and let s=it, we have

W

3/2 . (n+p)/2 -3/2 -1/2
3/2,3/2+n,1/2+p  (@rbsc)=i(-1) (20)™% “(abe)

'zl En+1 5P (1+m) ! (n+1+9)! (ptu)!
* ®m=0 *2=0 Zu=0 m!(1-m)T L (n+l-g)] ul (p-u) !

-2

-m

xa b c PI_%«HS 8—3 (23)_(Q+m+U)k
1 00

XE(_l)m+£+u es(a+b+c) +(_1)p+m+Q+1 es(a+b—c)

+(_1)n+m‘+u es(a-b+c) +t_l)n+m+p+1 es(a—b—c)].

(2.10)

The principal integral in (2.10) is obtained by the residue

thedrem which leads to the formula (A.6), and we have

W ’2(a,b,c)==(-1)N*PI/2, (5 =372

3
3/2,3/2+n,1/2+p
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X (abc)“l/2 zmiO Zn+1 =P a™p

-4 -4 A=(2+m+u)
Fo=0 Zu=0 ¢ 2

(1+m) ! (R+1+) 1 (p+u)! 1
X ml(1-m)! 2 (n+t1-2) 1 Ul (p-u)! (2+m+g+u)! .

m+2+u 2+m+Q+u

x L (-1) sgn(atb+c) (a+b+c)

+(__1)|c>+m'+31+1 2+m+2+u

sgn(at+b—-c) (at+b-c)

(=M (abic) (a—bc)2TMiLtu

n+P+m+1 2+m+2+u 1

+(-1) sgn(a-b—-c) (a-b-c)

L

(2.11)

The expression (2.11) is evaluated up to n=8 by use of the
formula-manipulation computer language REDUCE [151. The leading

(3)

term 61 (a, b, ¢) is calculated in the case of s=2 by (2.4) with

(2.8) and (2.11),and will be discussed in the section 4.

3. Geometrical method

(3)

The leading term in the triplet correlation function, 31 .
for the hard sphere fluid has been calculated by the simple
geometrical argument [8,9,101. In this section, we show that it
can be calculated also for the square well potential by a purely
geometrical consideration. Let us consider the three spheres at
A, B and C with the radii ré, b and e respectively. Let a, b
and ¢ be the three sides of the triangle formed by A, B and C,
and V(a,b,cir_,r ,r_) (& 0) the volume of the common intersection

(3)

of these three spheres. Then 31 (a, b, ¢) is given by
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(3)

94

(a, b, ¢)

= ~(1+F)3V(a,b,c31,1,1)

+ (1+F)2FEV(a,b,c;1,1,s)+V(a,b,c;1,5,1)+V(a,b,c;s,1,1)]

- (1+F)F2[U(a,b,c;1,s;s)+V(a.b,c;s,1,s)+V(a,b,c;s,s,1)]

+ £3y(a,b,cis,s,s). (3.1)

The geometrical situations are classified in several cases
according to the values of Fat b kc’ a, b, c. In the
following interpretation the indices a, b and ¢ should bé changed
in cyclic way as a ?* b # ¢ - a»iF necessary. |

When three intersecting circles of the spheres A, B, C have

common two points P and P, V(a,b,c;ra,rb,rc)»is given by [103]

Ula,b,cir ,ri,r ) = 2V, — 2(Z +Z,+Z ) + 2(Y +Y, +Y ),
a’ b’ c t Ta c a c

b b

where Vt is the volume of the tetrahedron PABC, Za‘is the volume
of the sphere A enclosed by the solid angle at the point A of the
tetrahedron PABC, and Ya is the volume of the common part of
spheres B and C enclosed by the two faces of the tetrahedron PABC
which meét in BC (see Fig.1). These quantities are given as

follows;

Z =r3Ctan” L(r JO/4E_ )+tan” H(b/U/AE )+tan L (c/A/4E_)-r1/3,
a a , a ra b c
(3.3)

Y =Y -tan L(a AV4E /27, (3.4)
a a0 a _ .
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where

Q -(b2+c2—a2)(a2r§

oNn

2,2, 72 22
b

y+(a2-b2+c2) (b2rLer 2

OI\J

rgr ) (3.5)

2

>a©1/8 (3.6)

2,2 2.2 2.2 2 §+(b2+02_82_2r

E =L(a“+b " =c™)r +(a“"-b"+c )r
a _ b

m N

2 2

+(r2—b2+r2)c +(b“+r
a c

E  =[(r2+b2-p-?
ra a C

0N
o N

) —r —232)r§]/8 (3.7)

o

Y =(n/3)[2r3-3r (a2+r§ /204 (a2 y3/8a3. (3.8)

a0 b

ON TN -

2 2
Te +rb

Ol\)

Here, YaO is the volume of the common part of the spheres B and
C. In the expressions of Yarand Z,, tan~1(a¢ﬁ74Ea) is the angle
between the planes ABC and PBC. The branch of tan 1x is takeﬁ
in 0 < tan—lx < =.

Let R be the poinf which lies on the intersecting circle of |
“the épheres B and C and is mosf distant from A, and'Fa be the

distance between A and R (Fig.2). Then

F2= [(r2-rZeb2-c?)24(ab%c2- (b24c?-a%) 211/ 2

+E4a2r§-(a2+r§—r 2

523122 1 na®.

1 (3.9)

When three intersecting circles of the spheres A, B, C have
no common points of intersections V(a,b,c;ra,rb,rc) is classified |

by the indicators Ia and La'

I_=CsonClr -r_|-a)+11/2, : (310 \

2
L -Esgn(Fa

mr\)

Y+11/2. (3.11)

' The expression of V(a,b,cjr 2'"b' e ) is c]éssified in term
of the aboue notations in Table 1 and Fig.3. When roSre= rc=1. 

our results agree whith those given by Powell -[107].

-10-
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4. Discussion

The ana]ytical method to ca]culate’8;3)(r12,r23,r31) leads

to the expression (2.4) where IX#v(rl’r2) is given as the
infinite series (2.8). Each term in (2.8) is given in a compact
form as in (2.11) which is easily calculated algebraically. The
analytical method may be easily generalized to calculate the

higher order terms 3;3)

(222). The geometrical method shown
in the section 3, on the other hand, leads to the closed
expression (3.1) and can be ca]cu]atedvin a straightforwaﬁd way
accoding to the classification shown in Table 1.

In this section we first show the numerical results of

;3)(r12,r23,r31)'by our tgo,methods for several configurations

3
of three particles, and secondly compare them with the results
obtained by the Monte Carlo and the molecular dynamics
simulations as is stated in the introduction. | We take the
square well potential parameter s in (2.1) arbitraéi]y as s = 2
for the calculations throughout the fo]]owing.

In Fig.4, the convergence of fhe series (2.8) of the
analytical method is shown qu the case of equilateral triplets,
i.e., 3;3)(r,k,r) with kT/¢ = 2.0, Cohparjng with the ggact,

result by the geometrical method, we have found that the series

(2.8) can be truncated at n = 8 to give almost exact resuTts-as
shqun in Fig.4. This is true also for 3;?)(r12,r23.r31).0f more

general configurations of the triplets, and seems to promise a
success of our analytical method discussed in the section 2 to be
applied to the higher order terms 3;3)( L 22,

In the following the numerical analysis of

-11~
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6;3)(r12,r23,r31) is shown for arbitrarily fixed values of-r12‘

and kT/¢ with varying r23-and rgqq &8s the contour lines on the
first quadrant of the XY plane where the particles 1 and 2 are

fixed at (0,r,,/2) and (0,—r12/2) respectively as shown, in

12
Fig.5. In the following figures the dashed circle ardund the

cross on the Y axis shows the diameter of the hard sphere

repulsion around the particle, and inside the circle

9(3)(r12,r23,r31) vanishes identically. As i1s shown 1n the rows

1 (rqprpzergg)

vanishes outside the outmost dashed curve in each of Figs.4é and

_E1] and [5] of Table 1, the leading term 3(3)

7.
In Fig.6 we show 3(3)(r r r~.) at kT/¢ = 1.6 for r =,
‘ 9. 1 12°723°"31 ’ 12 =
1.0, 1.6, 2.6 and 3.0, and at kT/¢ = 5.0 in Fig.?7 for ryo = 1.0,
1.6, 2.6 and 3.0. With these results and further analysis at
intermediate temperatures, the overall features of variation of
6;32r12,r23,r31) with the configuration of the triplet can be
summarized as shown in Fig.8. At lower temperature (kT/¢ S 2)
for smaller values of r12(r12 S 2.5), local minimum and maximum
appear on the X axis, i.e., with isosceles configurations of the
triplet. While a negative region appears near the Y axis
corner, 1.e., with almost linear configurations (Fig.8(a)). As
ryio increases (2.5 § ryo $ 3.0), the minimum point is shifted to
the oringin, i.e., to the midpoint between the particles 1 and 2 -
while the maximum changes into a saddle point (Fig.8(b)). And
for ryo Z 3.0 the negative region near the Y axis corner vanishes

(Fig.8(c)).

(3)
1

rqo is similar to those in Fig.8 although the difference between

At higher temperature (kT/¢ =~ 5) the variation of & with -

-12-
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maiimum and minimum becomes smaller. It'is interesting to see

some sort of correspondence.betueen Figs.6 éhd 7¢ the features of
3

contour lines in (a), (b) and (c) of Fig.6 are roughly similar to

those in (b), (c) and (d) of Fig.7?, respectively. In the Timit

of T 2 o 8;3) becomes negative inside the nonzerovregion and the

contour lines seems somewhat like a shallow elliptic bowl.

The variation of 6;3)

(r12,r23,r31) with the configuration
of the triplet as is shown in Fig.6, 7 and 8 can be considered to
show a qualitative feature of the leading term in the triplet

correlation function in a classical simple liquid with an

ordinary interaction potential such as the Lennard-Jones one:

$(r) = 4ul(o/r) 2= (orr)07. (4.1)

If we assume a law of corresponding states at the Boyle
temperature at a given number density ¢, the parameters u and ¢

in (4.1) can be related to ¢ and the radius (= 1) in (2.1) as

kT/u = 0.459kT/¢,  po° = 1.3180, | (4.2

and therefore the triple and the critical tempertures of the
Lennardeones liquid correspond to thr/e ~ 1.52 and kTC/e ~ 2,83
in our model. The results shown in Fig.6 correspond to a state
near Ttr and those in Fig.7 well abowve TC.

Reveche and Mountain [1] reported elaborate calculations of
the triplet crrelation function of the Lennared-Jones liquid by
the Monte Carlo simulation for several states avove the triple

3 - 0.850 and

point. Among their results, Fig.3(b) of [1]1 at pe¢
kT/u = 0.719 with rio = 1.525¢ can be assumed to correspond to a

state at kT/¢ = 1.57 with rip = 1.67 in our model. Ue show the

~-13-~
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logarithm of the result by Raveché and Mountain in Fig.? which
Shou]d be compared with Fig.6(b). The overall feature of
contour lines in Fig.9 is qualitatively simlar to those in
Fig.6(b) exéept their heights and the appearance of egfra

maxima. The difference reflects the ignorance of the higher

(3)
2

dynamics simulation of the Lennard-Jones system (argon) near Ttr

(3)

order terms & (2 2 2) in Fig.6(b). We have done the molecular

and calculated g (r12,r23.r31) for several conflguratlons of
the triplet. With the results for the isosceles triplets, i.e.,.

9(3)(s,r,r) (s,fixed), we compare the change of 653)(r

12723731
along the x axis in Fig.10,. The general agreement is again
obtalined except at smaller r.

We consider that our two methods and the results as shown
in Fig.6, 7 and 8 are usefpl to showua general feature of the
leading term in the triplet correlation function, i.e., for
9(3?(r12,r23,r31)/[g(rlz)g(r23)g(r31)] of a simple liquid.

In Van Baal and Kikuchi’s theory of liquids [161, the

evaluation of cluster integrales where f-bonds are replaced by

h-bonds such as
T(rypiragirgy) = Jhir 5)h(r, Ohirg,)dr, 4.3)

.where
Ch(r) = glr) - 1

1s necessary, and their scheme involuving the iteration with such

terms as (4.3) requires much computer time. The knowledge of
3;3) serves as a first approximation of (4.3) and gives an

insight into the problem.

-14-
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It has been reported that in supercooled and rapidly
quenched states of simple liquids the three particle distribution
function bears quite a different feature from that in the states

above the triple point to reflet very strong triplet crrelations

at extremely low temperature [173. We have calculated 3;3) of
our model at lower temperature such as kT/¢ = 0.5, i.e. kT/u =

0.23, which can be compared with the results by the molecular
dynamics simulation of the rapidly quenched states of the

Lennard—-Jones liquid. Details will be reported eleswhere [18].

The authers acknowledge helpful discussions with Professor

S. Inawashiro and Professor R. Kikuchi.

Appendix Some useful formulae

J (t,) J (t,)
| 32 w 93/24nt1? I3/04n(t2) 3,2
1ot -ty)=—2">"?r3/2)8 % n e C Plcos iy 4o
t t
1 2
(A.1)
J (tr)
exp(it. =201 %5 % Grp)iP 1»/? 75 Polcos ¢y ). (A.2)
, r)
3" 2(cos 9)='"_ (2u+1)P (cos &), (A.3)
n u=0 u .

where the summation &7 for u runs only over integers with the

same parity with n.

~-15-~
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[P (cos ¥4y _45P (cos by1_137d0y = 8, (87/(2u+1DOP (cos by _y3).

(A.4)
_ . .r-n-1 |

Jn+1/2(2) = (2rz) 172 [ e'?s 2 0 1 (ntr)! .

" rl(n-r)!(2z)

S _.yr—n-1 |
te 1zzr20 (—-1) (n+r).r 1. (A.S)

rl(n-r)!{(2z)
pli® 1 o o) ds = san(ami 2 )
—ie g exP(sa s = sgnla)mi =957 - (A.6

S

~-16-
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Table 1. The value of V(a,b,c;ra, rs rcj. Other cases
which are obtained by cyclic permutations of indices are omitted.
The numbers [11 to [9] correspond to the configurations of three

spheres shown in Fig.3.

a>rb+rc
or
b > +r C13 0
c  a
or
c>ra+rb |
a(rb+rc ‘.Q 20 C21] 2Vt—2(Za+Zb+ ZC)+2(Ya+Yb+YC)
and
blr +r L-=1 Ty
c a a_, _ {31 Y
and Lb_[‘c_O a0
clr_+r '
a b L =0
Q<O I =1 =I =0 a _ 3
a b c Lsz =1 £41 Yb0+YCO dnra/S
C .
L =L,=L =1|]| 51 o
‘ ‘ a b "¢
Ia=1 61 »kYbo (rb>rc)
Ib—Ic—O YCO (rb<rc)
I =0 [71 4zrd/3 (2r <r +r_+a)
a a a b ¢
Ib=IC=1 ; £81 YaO (2ra>rb+rc+a)
Arr3/3
I =1, =1 =1 £91 m
a b “c e y
r =min(r_,r_,r_) |
m a'' b’ c

-18~-
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Figure captions

Fig.1 Geometry of intersections of three spheres centered at
A, B, and C. The intersecting volumes Vt’ Za and Ya are given

in (3.2), (3.3) and (3.4), respectively.
Fig.2 rThe distance Fa used in the indicator La’

Fig.3 Classification of intersection of three spheres. The

numbers [1] to [9] correspond to each of the rows in Table 1.

Fig.4 The convergence of (2.8) in the analytic method for
diazr,r,r) at kT/¢ = 2.0. Solid line: geometrical method
(exact), and Dotted lines: analytical method trancated at n = N

in (2.8).

Fig.5 Schematic of the geometry in Figs.6 and 7. The
distance riop is fixed arbitarily and the dashed circles around

the crosses denote the hard cores of the particles 1 and 2.

. (3) : . _ . — .
Fig.é 31 (flz,r23,r31) at kT/¢ = 1.6, (a): ryo = 1.0, (b):
ryo = 1.6, (c): rip = 2.6, (d):r12 = 3.0. 3;3) vanishes outside
the outmost dashed curve (see Table 1 [11, [51).

Fig.7 8832, i) at kT/e = 5.0, (a)t r,n = 1.0, (b):

e 1 12’ 23’ 31 e * 12 *e *
o = 1.6, (c): rio = 2.6, (d): rio = 3.0.

Fig.8 General features of 6;3) with varying rio at lower
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temperature. M and m denqte the locations of local maximum and
minimum, respectivly, and S the saddle point. 3;3) is negative
in the shaded region. (a): smaller Fip» (b): intermediate‘rlz,

(c): larger Fyoe

Fig.9 0—11og{g(3)(r12,r23,r31)/Eg(r12)g(r23)g(r31)]) for the
Lennard-Jones liquid at 003 = 0.850 and kT/u = 0.719 with rys =
1.525¢ [173. 3;3)’is negative in the shaded region.

Fig.10 Comparison of the isosceles 3;3)(S,P,P) at a fixed
value of s = 1,19 with 9_1]og(g(3>(s,r,r)/g(s)[g(r)]z} of

Lennard-Jones liquid obtained by the molecular dynamics
simulation: kT/¢ = 1.58, ¢ = 0.64. The value of s corresponds

to the position of the first peak of g(r).
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Fig.5
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