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Paths and Edge—Connecivity in Graphs

7’( F& }'erC_T_ IA?I%] ﬁ ':Q 5— ( Haruko Okamura )
1. INTRODUCTION

We consider finite undirected graphs passibly with
multiple edges but without loops. Let G be a graph and let
V(G) and E(G) be the sets of vertices and edges of G
respectively. For two distinct vertices x and y, let Xéx,y)
be the maximal number of edge-disjoint paths between x and
y, and let %x.x)=m. For an integer k21, let r(G,k) be

(X CV(B) | For each x,y € X, Agtxry)2 k 3.
Let (3,,t,)sc00s(s,,t,) be pairs of vertices of G. When is

the following statement true ?

(1.1) There exist edge-disjoint paths F ,...,F such

that P. has ends s.,t, (1i<k).

Seymour [8] and Thomassen [9] characterised such graphs
when k=2, and Seymour [8] when 1{s,,.c.,3,st, s000,t)1=3.
For integers k> 1 and, n>2, set
g(k)=min‘(m I If G is m—edge-connected, then (1.1) holds),
A (kyn)=min (m | If I{s ,.00y3 4t ,00ept 1< N and
{8, 5000s8,5t seeast, YE[(Gym), then (1.1)

‘holds , , : >



I'F ‘{5|’ooo,5‘<’tl,.oo)tK}|$n and

ﬂ_q_(s.,t.)_Zm (1{i< k), then (1.1) holds
] ]

Alk,n)=min \ m

and set
7L'(k)='2_'(k,2k):?\_'(k,m) (m> 2k) and 2ALk)I= Alk,2k).

Then for each k2>1,
A (k,3)=Ak,3) and Ak)> A (k)> gtk)> k.

For n>4 and even integer k22,

2 (k) > Alk,n) > A (k,n)> k

g(k)>k and
k/2 represents the number of

(see Figure 1 in which

parallel edges).
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Figure 1.

Thomassen [?] gave following Conjecture 1, and we give

following Con jecture 2 slightly stronger than Conjecture 1.

CONJECTURE 1. For each integer k> 1,
g(k)={ k if k is odd

k+l if k is even .

CONJECTURE 2. For each integer k >1,
’}L(k)={ k if k is odd |

k+l if k is even .



It easily follows from Menger’s theorem that A(k)< 2k-1;
thué 2€1)=1 and A(2)=3. Cypher [1] proved A(4)< 6 and
A(S5) 7, and A(3)=3 was announced in [S5] and proved in L[41]
by the author. Enomoto and Saito [2] proved §(4)=5, and
independently Hirata, Kubota and Saito [31 proved
AL 2k-3 (k> 4).

Our main results are the following.

THEOREM 1. Suppose that R_ZZ is an infeger‘, G is‘ a
graph, (a,,ai}g TCV(G), ITIK3 and Te[(G,k). Then there

exists a path P between a, and a, such that Te[(G-E(P),k~-1).

THEOREM 2. Suppose that k>S5 is an odd integer, G is a
graph, {a;,a,,a3>C TC V(G), aiiﬁaj (1<£i<j<3, ITIKS and |
Te€](G,k). Then

(1) If 1TI<C 4, then there exists a path P between a, and
a, such that T&[(G-E(P),k-1).

(2) For m=2,3 if ITI< 4 and for m=3 if ITI=5, there
exist edge-disjoint paths P, between a, and a, and P,

between a, and a, such that Te["(G- .LzJ E(PT ), k—=2).
, =1

THEOREM 3. For each integer k2>1,
’/'\.(.k,3)=k and 7L(k,4)=l(k,5)={ k if k is odd

k+l if k is even.

In Theorem 2(2) if m=2 and ITI=5, tHen the concluson

does not a]Qays hon. Figure 2 gives a countrexample with

with k=7.



Figure 2.

When k is odd and Is ,.cceys,,t 5000t 2124, if for
some' 1_{i$ k, N
;Q#sf,t:)< k,
then (1.1) does not aiuays hold. . Figure 3 gives a

counterexample.
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Figure 3.

Notations and Difinitions. Let )(,YQV(G), FCE(G),
{x,¥2CV(G) and e E(G)., We often denote {x} by x and
(e by e. The subgraph of G induced by X is denoted by Kg
and the subgréph obtained from G by aeletiﬁg X (F) is
denoted by G-X (6-F). PX,Y) denotes the set of edges
with one end in X and the other in Y, and ‘Bq (X) denotes
3Q(X V(G) X). ;Qéx Y) denotes the maximal number of edge-

d15J01nt paths with one end in X and the other in Y. ‘BQIX)
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is called an n-cut if I’Bq_()()|=n and ()()Gr and <V(G)-X>q_ are
both connected. An n-cut - Bq,()() is called nontrivial if

[ X122 and |V(G)Y=X|2 2, trivial otherwise. dg(x) denotes
the degree of x and Ne'_(x) denotes the set of vertices
adjacent to x. We regard a path and a cycle as subgraphs of
G. A path P=PLx,y] denotes a path between x and y, and ‘For"
x",y’€ V(P), P(x",y") denotes a subpath of P between x’ and

4

y .
2, PROOF OF THEOREM 1

b, C )
For a vertex w¢é&V(G) and b,cENq.(u), we let G,, be the
graph (V(G),E(G)IYV e-{f,g)), where e is a new édg"e with endsx
b and ¢, f eaq.(w,b) and g G'B@(w,c). We require the

following lemmas.

LEMMA 2.1 (Mader [4]). Suppose that w is a non-—
separating vertex of a graph G with dg(w)2 4 and with
qu.(u)l.ZZ. Then there exist b,ce Nq_(u) such that for each
x,y € V(G)-w,

w

A Ers,c(x,y)=;).q_(x,y).

Now we prove Theorem 1 by induction on IE(G)!. We may
assume that alfaz and ITI=3. If G has a nontrivial k-
cutPg(X) (XCV(G)) separating T, then let H (K) be the
graph obtained from G by contructing V(G)-X (X) to a new

vertex u (v). Set TH=(XnT‘)-U u and TK’=(T-—‘-X)u v, We ﬁay



let ITn XI=2. By induction for H and (Tn X)Yu instead of
for G and T, the result holds. Thus the result follows.
Hence we may assume that each edge is incident to a vertex
of T.

Case 1. There exists x e V(G)-T.

If dg(x)>4, then by Lemma 2.1 there exists b,ce¢ Nq_(x)
such that for each y,z ¢ V(G)-x,

1920 (y,2)=Ag(y,z).

By induction the result holds in Gy. Thus wemay assume
that dg(x)=3 and clearly that Ng(x)=T. Now the path
PCaq,82] with E(P)COG(x) is a required path.

Case 2. V(G)=T,

The result easily follows.

3. PROOF OF THEOREM 2.

We call a graph G is elemental 'Fof Vi CV(G) if
V(G)=V1UVp, V1N V2=P and for each xeV,, dg(x)=3,
ING(x) =3 and Ng(x)CVy. We call a graph G is
elemental for V1 CV(G) and an integer k>1 if G is
elemental for Vi and for each xeVi,dg(x)=k. For
integers p>0 and 9> 0, we call a graph G is G(p,q) if G ié
elemental for some V1={x1,x2,x3> CV(G), IV(G)-VqI=q
and Pgixj,xj)I=p (1£i< j<3 ). Let G be an elemenal
graph for V4 CV(G). We call a subgraph S an elemental star
if V(S)YC Ve, IV(S)I=2 and |E(S)I=1, or if for some
x € V(G)-Vq, V(S)=Ng(x)U x and E(S)=0g5(x).



We require the following lemmas.

LEMMA 3.1 (Okamura [7]). Suppose that k24 is an
integer, G is a graph, {s,t>C TC V(G) and T€[ (G,k). Then
(1) For each non-separating edge e incident to s, there
exists a path P between s and t passing through e such that
Te[ (G-E(P),k-2) and {s,t}éf’(G-E(P),k—l).
(2) For each vertex a of T-(s,t} with fewer degree than
2k and for each edge f incident to a, there exists a path P
between s and t not passing through a such that
Te(G-E(P),k-2), (s,t,ad€[ (G-E(P),k-1),
and .
(s,a) or (t,ad€[ (G-E(P)-f, k-1).
(3) For each non—séparating edges e and e’ incident to
s, there exists a cycle C passing through e and e’ such thét

T €[ (G-E(C),k-2).

LEMMA 3.2 (Okamura [7]). Suppose that nz4 is aﬁ integer
and k>3 is an odd integer. If for each odd integer 1< m< k,
A (myn)=m,
then

Alk,n)=k  and A(k+1l,n)=k+2 ,

LEMMA 3 .3. Suppose that k23 is an integer, G is an
elemental graph for TCV(G) and k, Téf’(G,k), G has no
nontrivial k-cut separating T, and that $4,52,5S3 are

elemental stars of G. If V(S1)n V(S2)N V(83)=}25, then



co

Ter(e—f)‘ E(S;),k-2).
=
Proof. Assume that XCV(G), | X|IV(G)-X] and X
separates T. Set G'=G—9E(Si'). If IXi=1, then let X=(x}.
" Since dg’ (x)2>dg(x)-2=k-2, we have 10" (X)I2 |.<—2.' If
IX12 2, then 1D g(X)I2k+l, and so | 3dg’(X) 12 k-2. Now

Lemma 3.3 is proved.

LEMMA 3.4, Suppose that k>2 is an integer, G is an
elemental graph for T={x1,x2,x3,%42 V(G) and lk,
IT1=4 and T€[7(G,k). Then

(1) One of the following holds.

(1) 0gix1,x2)+ B, Bg(xi,’xg)#¢ , or for some
y € V(G)-T, Ng(yl)={xq1,x2,%x32.

(ii) k is even, 19 g(x2,x3)1=k/2, and

I{y € V(G)=T | Ng(y)={xj,x1sxq3>1=k/2 (i=2,3),

(2) One of the following holds.

(i) For each 1 i< j{k, G has an elemental star S
containing x; and xj.

(ii‘) k is even and G is the graph obtained from four
cycle by replacing each edge by k/2 parallel edges.

(3) If G has no nontrivial k-cut separating T, then

(i) Dgix1,x2)E® or G has two elemental stars
containing x{ and x2.

(ii) One of the following holds.

(a) G has edge-disjoint paths Pq[xq,x2] and

P2Ex1,$<3] such that for i=2 or 4,



{x;,x3X€[ (G- ;@. E(P;),k-1) and T€[] (G- :9 E(P;),k-2).

(b) For each e€39(x3)—’ag(x3,>§2), G has ‘\
edge—disjoint paths P1[xq,x2] and P2Lxq,x3] such
that ee E(P2) and Ter(G—'E)' E(P;),k=2).

Proof. For 1£i,j{ 4, set
pi,j=1’a[3<xi,xj)|.

Ri=Cy e V(G)-T | Ngly)=T-x;J,
ri=|RiI.’

(1) Assume pq,2=p1,3=r4=@. Then
dg(xq1)=k=pq, 4tro+r3,
dg(x4)=k=p1,4+P2,4+P3,4tr1+r2+r3

Thus
P2,4P3,45r1=0.
Since T€[(G,k), we have
10 5({x2,x33) I=rp+rg 2k.
Thus
P1,4%0.
By compairing dg(xj) wifh dg(x ) for 1£i<j<3, we
have
ro=r3=p2,3.
Now (ii) follows.
(2) Assume pq,2=r3=rg=8. Then by compairing
dg(x1)+da(x2) with dg(x3)+dgixq), we have
r1=r2=53,4=0. /
Now by compairing dg(x3)=k=pq 3+p2,3 with dG(x‘i)

for i=1,2, we have
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p1;a=pz,3 and p2,4=P1,3-
Moreover
| 9g(ix1,%x42) 1=p,3tP2,4=2P1,32 k,
19 6({x1,x3)) I=pq ,4+P2,3=2p1 42 ke
Thus
P1,3%P2,3%P2,4%P1,4>
and so (ii) follows.

(3) (i) We assumevp1’2=r4=8, and then prove r32 2.
Since any cut separatong {x1,x3} and {x2,x4) or
separating {xq1,x42 and {x2,x3) has more than k edges
we have

(3.1) p1,4%P2,3*P3,4tr1+rotr32 k+l,
and

(3.2) pq,3+P2,4%P3,4%r1trotra 2 k+l.

By compairing dg(x3)+dgi(xg) with (3.1)+(3.2), we have
r3z 2.

(ii) If there exists £ €9(x1,x3), then by
Lemma 2.1 G has a path PLx3,x2] such that f e E(P),
{x3,%x2) €[ (G-E(P),k-1) and Tél’(G—E(P),k—Z); and so (a)
follows. Thus we may let

- P1,3P1,270,
then by (1)
rqa>e.
If r3)>0, then for y1eRg and y2 €R3,
(xs,x,f>er(s—:g’as(y;>,k—1> and T€[ (G- ‘g?g(y?),k—Z)-,
and so (a) follows. Thus we may let

P3=0 .

jio
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Then by (1) and (3)
P1,4> 08 and rg2> 2.
Let ¥ be another end of e, then y=xq or ¥ Rj (i=1,2 or .

In each case (b) easily follous.

LEMMA 3.5. Suppose that k>3 is an odd integer, G is a
graph, {(x1,x2,x32CTCV(G), xjfx; (1<£i<jL3),
T€[7(6G,k) and e€ E(G). If following (i) or (ii) holds, then
for m=2,3, G has edge-disjoint~p§ths P1Lx1,x2] and
PoLxq,xm] such that e€ E(P1)UE(P2) and
Te["(G-:t2 ECP;),k-2).

(i) e €9g(xq1,x2),

(ii) e‘é'ag(xpy) for some y e V(G)-T with dg(y)=3

and with Ng(y)={xq1,x2,x32.

Proof. Assume that (i) holds. By Theorem ,1 if m=2,  then
G has a cycle C such that e€ E(C) and Té]’(G-E(C),k—Z)', and
if m=3, then G has a path PLx9,x3] such that e € E(P) and
Te[ (G-E(P), k-2).

Assume that (ii) holds. We may assume that G is
2-connected. If dg(x3)=d>k, then we replace x3 by d
vertices of degree k (Figure 4 gives an example with d=8 and
k=5), producing a new graph G’ . In G° we assign x3 on
NG’ (¥)-{x1,x2). If the result holds in G’, then
clearly the result holds in G, and so we may assume that

dg(x3)=k. Let f€9g(x3)-g(y,x3). By Lemma 3.1

"
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G has a path PCxq,x2] such that x3¢U(P),Té [((G-E(P),k-2),
{x1,%x2,x3>€ [ (G-E(P),k-1) and {xj,x3}€[ (G-E(P)-Ff,k=1)
(i=1 or 2). Then y#£ V(P), because dg{x3)=k and dg(y)=3,

Moreover T€[ (G-E(P)-y,k-2). Thus the result follows.

Now we prove Theorem 2. We may assume that G is
2-connected, dg(x)=k for each xe& T (see the proof of
Lemma 3.5 and Figure 4, in this case we can assign x on any
vertex of new dg(x) vertices of degree k) and that
dgl{y)=3 for each y €V(G)-T (see Case 1 in the proof of
Theorem 1). We proceed by induction on IE(G)I. If ITIL3,
then the results follows from Theorem 1. Thus let ITI2 4,
Case 1. G has a nontrivial k-cut Bg(X)={e, IR -1
(X CV(G)) separating T.
We define H,K,u,v,Ty and Tk similarly as in
the proof of Theorem 1. If IXN TIi=1, then the results hold
in K, and so in G. Thus let IXATI12 2 and IT-XI2 2.

- We require the following.

(3.3) If G has a nontrivial k—cut Dg(Y)=(Ff ,...,Fi2?
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(YC X) separating T, then we méy assume that (X—Y)(\T%}ﬁ.

Proof. Assume (X-Y)O T=$. Let b;j. (cj) be the end
of e; (f;) in Y V(G)-X (Y)(1 i< k). We may assume that
the graph obtained from <X-Y>g by adding b;,...,bksc,
.'.,ck,e,;..;,ek,F,,.s.,Fk‘ has edge-disjoint paths
P1Cbgsc13y ¢+« sPlbksckl. Let G be the graph
obtained from G-(X-Y) by adding new edges g1,.+.s9k>»
where g; has ends bj énd c;j(1'iL k). Then
IECG”) I < IE(G) |, and the results of Theorem 2 hold in G’,

and so in G. Now (3.3) is proved.

(3.4) If IX-TI=2 (IT-X1=2), then we may assume that:
H (K) is G(p,q) (G(p’,q’)) for some integers p and q (p’

and q”).

Proof. Assume IXNT1=2, If H has a nontrivial‘k-cut
IHY) (YCV(H)-u) separating TH, then by (3.3)
(X-Y)AT# P, and so 1Tn YI=1. Then by taking Y instead of X
the results of Theorem 2 hold. Thus we may assume that an
end of each edge of H is in TyH. Hence the result easily

follows.

We return to the proof of Theorem 2. By Lemma 3.5 we may
assume the following.
(3.5) Dglag,aj)=@H (i=2,m) and for each y €V(G)-T,

(al,az,am}ggNg(y)t
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Let aq € X.

(1) Now IX-TI=1T-XI=2, If ae X, then by (3.4) the
result easily follows. Thus let a2 € V(G)-X. Since

p+tq 2(k+1)/2 and p +q’ 2 (k+1)/2,
for some 1< if k, H has an elemental star S4 containing a,
and e; and K has an elemental star S containing a2 .
and ej. Then Tér(G—:\z‘:{ E(S;),k-1).

(2) Subcase 1-1. {a2,ap>< X,

H haé required paths. If one of them passes through u,
then we can deduce the result by using Lemma 3.1(3) on K.

Subcase 1-2. (a2,apXC V(G)-X and IXNTI=2.

Set X(\T=Ca1,85}. By (3.4) H is G(p,q). Thus if
following (3.6) or (3.7) holds, then the result follows.

(3.6) For some eie§8 H(u,a1), K has edge-disjoint
paths P, [v,a2] and P,lv,an] such that eiEEE(P.)L’E(PQ)
and TKé]"(K—Fl?' ECP;),k=2).

(3.7) For some ei',e‘jGB H(W -0 H(u,as5), K has
edge—~disjoint paths P, [v,a2] and P, [v,ap] such that
Cej,edC E(P, YUE(P,) and Tkel (K- Q'E(Pi),k—Z).

If p=0, then’BH(u,as)=¢', and so (3.7) follows. Thus
let p>0@. If IT-XI1=2, then by (3.4) K is G(p’,q"), and so
(3.6) follows. Thus let IT-XI=3 and m=3. Set T-X={a,,a3,843,

Subcase 1-2-1, K has nontrivial k-cut 9 (Y)

(YC V(K)-v) separating Tk.

By (3.3) We may let IYaTkl=ITk-YI=2. Let K1 and

K2 be the graphs obtained from K by contructing Y and

V(K)-Y to a vertex respectively., Then similarly as (3.4)

14
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Ki is G(pj,aj) for some integers p; and q; (i=1,2)
Let M be J

Cxg, x> C VCKI-Ty | 0 kixg,xEPY
and let M" be

{ x | For some Ne M, xe& N3,
For each NeM , NaV(K;)~A & (i=1,2),
dg-NCaj)=dg-N(vI=k-1 (j=2,3,4) and Tke [ (K-N,k-1).
If k=IMl, then p{=p2=08 and the result easily follows,

and so let k > IMI. K-M" is elemental for Tk and K- | M|,

Assume that k-IM| is even and K-M" is the graph obtained
from four cycle by replacing each edge by (k—-IM1)/2 parallel
edges. For*» each cycle C of K-M" such that IV(C)I=IE(C) =4,
we have Tk€T(G-E(C),k-2). If dglag,agp)#P, then
(3.6) follows, and if not, then by (3.5) aj is adjacent to
p vertices of M. If IMI>2, then (3.6) follows. Thus
assume 12IMI> p>1. Since (k-—IM’I)/22(5-1)/2=2,> for some
1£i< <Xk,

(ej,e;d C I H(W-9 Klu,as),
and K has a four cycle C such that IV(C)I=1E(C)I=4 and
{ej,e;3CE(C). Hence (3.7) follows.

By Lemma 3.4(2) we may assume that for each two vertices
of Tky K-M" has an elemental star containing them. Set
apg=v, and for i, j=6,2,3,4,set

Pi,j=10 k(aj,ajll,
ri=l xeVK)=Tg | Ng(x)=Tg-aj>!.
For i, j=0,2,3,4, since"aK({ai,aJ}& k,

15
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Pi,j L(k-1)/2.
If a4 is adjacent to a vertex of M" in G, then (3.6)
follows., If for some x&€ V(G)-T, Ng(x)=(aq1,aj,ag?
(i=2 or 3), then (3.6) follows. Thus and by (3.5) we may
assume that
10 G(ai,a45,|=p.
If ageY; then (3.6) easily follows, and thus let
TH-Y=(ag,a4). Since pg’az.l’a c(a1,ag)i=pp G,
by Lemma 3.4(1) we have
PA,2> 8, P4,378, or rg7 @,
and
pg,2>0, P@,3>8, or rg> 0.
If rg>8, r4a>8, pg,2°P3,479, or pg,3°p2,4” O,
then (3.6) follows (note that K; is G(pj,qj)for i=1,2)
Thus we may assume that
(3.8) pp,2>08, P2,4> 8 and rg=rg=pg,3=P3,4=0.
Assume IMI=0. Then
dg(ag)=p2,63*r2 and p2,3< (k-1)/2,
and so
(3.9) rp> (k+1)/2> p+1,
By compairing dg(a2) with dg(aj) we have
- P@,2%P2,3%P@,4%r2.
Thus
(3.10) P@,2>PR,42 P
From (3.9) and (3.18), (3.7) follows.

Now we may let IMI>B. Since {an,a32C Y, we have

16 -
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VBK(Y)!=k=dK(a2)+dK(a3)-2p2,3-IMIf
=2k-2p2,3~ IMI, "
and so
2pp, 3+ IMI=k.
Since dg(a3)=k=p2,3+r2+IMl,
r2=p2,3.
Since dg(a3z)=2r2+IMI, dG(q4)=pe,a+p2,a+Q-+Q,+IM|,
and p2,4> 0@ (by(3.8), we have
(3.11) rp>ag,a+lx ptl.
By compairing dg(a2) with dg(ag), we have
P@,27PB,4-
Thus
(3.12) pg,2+IMI2 p+1,
From (3.11) and (3.12), (3.7) follows.
Subcase 1-2-2. K has no nontrivial k-cut separating Tk
We may assume that an end of each edge of K in Tk and
K is elemental for Tg. The proof is similar as the case
IMI=6 in the proof of Subcase 1-2-1.
Subcase 1-3. (az,am}Q;U(G)—X and IXNATI=3,
Now m=3. By (3.4) K is G(p’,q9")., Set XN T=(a ,ay,as?
If H has nontrivial k—-cut 73H(Y) (Y CV(H)-u) separating
THs then we may let IYNTHI=2. Then for Y or V(G)-Y
instead of X Subcase 1-1 or Subcase 1-2 occurs. Thus we may
assume that this is not the case and H is elemental for Ty.
If following (3.13) or (3.14) holds, then the result follus.
(3.13) For some e; €0 Kl{vi- ‘_@JB k{v,aj), H has

edge-disjoint paths Pqlaq,ul and P2lLa1,ul such that



e;j€ E(P{)U E(P2) and THer’(H-f_J' E(Pi),k-2).

(3.14) For 1=2 or 3 and F;;- some eie_’f} kK{v,x]1) and
ej €0 K(v)-—? K(v,x1), H has edge-disjoint paths
P4Caq,ul and P2Laj,ul such that |
(ej,e;>C E(P1)U E(P2) and THer(H—'Lzli E(P;),k-2).
Set ag=u and for i,j=0,1,4,5 set '

Pi, ;=19 Hlaj,aj)i,
Ri=(x € V(H)-TH | NH(x)=TH-a;r,
ri=IR; I. | :
By (3.5) pg,1=0.
Assume p1,4=P1,56. If rg<L(k-1)/2, then
rgtrs=dglaq)-rg2 (k+1)/2>p"+1,
and so (3.13) or (3.14) follows. Thus let rg > (k+1)/2,
Since dg(ag)=pg,4+pPg,5*+ri+ra+rs and
dg(a5)=pg,5+pP4,5trgtri+ry, we have
P@,4*trs=p4,5%rg.
Hence
dglag)=k pg,a+trg+r522rg7 k,
a contradiction.

Now we may let pq,; >0 for i=4 or 35, say i=4.

Since pg,1=6 and by Lemma 3.4(3), we have

ratrs2 2.
For each xe RgURs, if x is adjacent to a vertex of
V(K)-Tk in G, then (3.13) follows, thus assume that
Deix,a)E P (i=2 or 3). For each x,yc RgURs, if
0 6{x,a2)#P and 06(y,a3)EP , then (3.14) follous,

thus assume that for i=2 or 3, fag(.x,'ai)f? G{y,aj)=@, say i=3,
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and that rg+r5<{ p’. ) A

Assume r4> 8. For some eiégK(v)-’B-K(v,al), e;

is incident to aj or a vertex of Ry in G, because
| p +a’> (k+1)/2 >pg, 5.
Thus (3.14) follows. ’

Now we hay assume that r4=0, E5:>0 and p1,5=0.
Thus pg,1=P1,5r4=0, contrary to Lemma 3.4(1).

Subcase 1-4. aze X ‘and amGVfG)—X.

now m=3. |

Subcase 1-4-1. IXnTI=2.

By (3.4) H=6(p,q), and by (3.5),p=0. Since 1TkiL 4,
by induction K has a path plLv,a3] such that
TK€[’(K—EkPi,k—1). Let eqeE(P), H has an elemental
star Sq1 containing ai and e1. Let S2 be another
elemental star of H. Then THe["(H- O E(S{) ,k-2), and so
the result follows. -

Subcase 1-4-2. IXATI=3 and IT-XI1=2.

Assume that H has a nontrivial k-cut 73H(Y)=(F,,...,
ficd (YT V(H)-W) seéarating TH. Then we may assume that
IYATHI=2, a2 €Y and ag € X-Y. Let Hy (Hp) be the
graph obtained from H by contructing V(H)-Y -(Y) to a new
new vertex uyg (uj). Then similarly as (3.4) H; is
Glpjsaj? for some integers pj and q; (i=1,2). If
§é=0, then the result easily follows. If p2> 8, then we
may let (f1,e13C 0 g(a1) and we can easily deduce
the result.

Now we may assume that H has no nontrivial k-cut
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separating T4 and H is elémenta] for TH. Set

Xn T={ay,a2,u,ay) and T-X={a3,a5). For ay,a2,

u,a] instead of x1,%x2,x3,%4, (&) or (b) of

Lemma 3.4(3) holds. If (a) holds, then the result easily

follows, thus assume that (b) holds. Since

| (=D (uya,) 1 > (k+1)/2 and p’+a’ > (k+1)/2, for some

1£iL k, |
e;€ DH(W-? Htu,az) and eie?K(v)-’bK(u,as),

and so the result follows. | |

Case 2. G has no nontrivial k-cut separating T.

We may assume that G is elemental for T. If ITI=4, then
by Lemma 3.3 the result follows. Thus let ITI=5 and m=3.
Set T=(a,,az,a3,ag,a5> and for 1£1i,,1£{ 5, set

Pi, ;=1 0glajsajdl, |
R(i,j,1)=(xeV(B)-T | Ng(X)=(aj,aj,a}d,
FCiy 5y 1=IRCG, 5,101, |

We require the following.

(3.15) For each distinct 1<£i,j,1{ 5, G has an elemental

star containig {aj,a;> or {aj,ayl.

Proof. Assume that each elemental star of G‘does not
contain {aq,a2} nor {a1,a3>. Then
dglag)=pq,4+pPy,5tr(1,4,5).
Since p;, j K(k-1)/2 for each i, j,we have r(1,4,5)>0.
Let F be a cut of G separating {a',aa;as} and {a2,azJ,

~ then
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IFl=dG(aa)+dg(as)—(p1'4+p1,5+2r(1,4;5))< ky

a contradiction. Nou (3.15) is proved.

We return to the proof of Theorem 2. By (3.5)
p1,2=p1,3=r(1,2,3)=8.
If r(1,2,i)>0 and r(1,3,j)>0 (i,j=4 or 5), then the result
follows. Thus and by (3.15) we may assume that
r(1,2,4)> 0 and r(1,3,i)=0 (i=4,5).
By (3.15)
pj,5+r(i,5,2)+r(i,5,4)> 08 (i=1,3).
If p1,5>8, p3,5>0, r(1,5,2)r(3,5,4)> 0, or
r(1,5,4)r(3,5,2)> 08, then by Lemma 3.3 the result follous.
Thus we may assume that for (i,j)=(2,4) or (4,2),
P1,5-P3,5=9, r(1,5,i)=r(3,5,i)=0,
and
r(1,5,j)»r(3,5,j)>0,
Assume r(1,5,2)=r(3,5,2)=8. Then
- dg{x1)=p1,4+r(1,2,4)+r(1,4,5),
and '
dg(xa)> P1,a+r(1,2,8)+r(1,4,5)4r(3,4,5)> k,
a contradiction. Thus ' ‘ ;
r(1,5,4)=r(3,5,4)=0.
Since r(1,2,5)> 0, by the same argument we have
P1,4%P3,479.
Thus
dg(x1)=r(1,2,4)+r(1,2,5)

and

2|



dG(XZ)Z' f"‘(i,z,a)"'r‘(i,2,5)+f‘(2,3,5)> k’

a contradiction.
4. PROOF OF THEOREM 3.

Suppose that k> 1 is an integer, G is a graph, T={(si,.
coaSikatyse etk ICV(G) and TE[(G,k). We prove that if
ITI=3, or if k is odd and ITI=4 or 5, then (1,1) hé]ds by
induction on k.

Assume ITI=3. By Theorem 1 G has a path plsy,s|]
such that TE€[ (G-E(P),k-1). By induction for k-1, (1.1)
holds in G-E(P), and so for k, (1.1) holds.

Assume that k25 is odd and IT1=4 or 5. For some
1<i< j<k, if ITI=4, then

si=sj or t;,
and if ITI=5, then
sij=sj or t; and (si,ti2£{3j,tj),
say for i=k-1 and j=k. By Theorem 2 G has edge-disjoint
paths P, [s—1,tk-1] and B [si,t ] such that
Tel‘w—:gl E(P;),k-2). By induction for k-2, (1.1) holds
in G—iélE(Pi), and so for k, (1.1)holds in G.
Thus for integer k2 1,
A (k,3)= AUk,3)=k,
and for odd integer k21,
Ak, 4)=A (k,5)=k.
By Lemma 3.2 for odd integer k21,
AUk ,8)=A(k,5)=k and Ak+1,4)=Ak+1,5)=k+2.

Now Theorem 3 is proved.
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