Paths and Edge-Connecivity in Graphs

大阪市大工 岡村治子(Haruko Okamura)

1. INTRODUCTION

We consider finite undirected graphs passibly with multiple edges but without loops. Let G be a graph and let V(G) and E(G) be the sets of vertices and edges of G respectively. For two distinct vertices x and y, let $\lambda_G(x,y)$ be the maximal number of edge-disjoint paths between x and y, and let $\lambda_G(x,x)=\infty$. For an integer $k\geq 1$, let $\Gamma(G,k)$ be $(X\subseteq V(G) \mid For \ each \ x,y\in X, \ \lambda_G(x,y)\geq k$. Let $(s_1,t_1),\ldots,(s_k,t_k)$ be pairs of vertices of G. When is the following statement true?

(1.1) There exist edge-disjoint paths P_1, \ldots, P_k such that P_i has ends $s_i, t_i (1 \le i \le k)$.

Seymour [8] and Thomassen [9] characterised such graphs when k=2, and Seymour [8] when $\{(s_1,\ldots,s_K,t_1,\ldots,t_K)\}=3$.

For integers $k \ge 1$ and $n \ge 2$, set

g(k)=min(m | If G is m-edge-connected, then (1.1) holds),

$$\chi'(k,n)=\min\left\{\begin{array}{ll} m & \text{ If } l\{s\ ,\dots,s\ ,t\ ,\dots,t\ \}|\le n \text{ and} \\ \{s_{l},\dots,s_{k},t_{l},\dots,t_{k}\}\in\Gamma'(G,m), \text{ then } (1.1) \\ \text{ holds} \end{array}\right\}$$

$$\lambda(k,n)=\min\left\{\begin{array}{c|c}m&|\text{ If }l\{s_1,\ldots,s_K,t_1,\ldots,t_K\}|\leq n\text{ and}\\\\\lambda_{G}(s_1,t_1)\geq m&(1\leq i\leq k),\text{ then }(1.1)\text{ holds}\end{array}\right\},$$

and set

 $\chi'(k)=\chi'(k,2k)=\chi'(k,m)$ (m>2k) and $\chi(k)=\chi(k,2k)$. Then for each $k\geq 1$,

 $\lambda'(k,3)=\lambda(k,3)$ and $\lambda(k)\geq\lambda'(k)\geq g(k)\geq k$. For $n\geq 4$ and even integer $k\geq 2$,

g(k)>k and $\lambda(k)\geq\lambda(k,n)\geq\lambda'(k,n)>k$ (see Figure 1 in which k/2 represents the number of parallel edges).

Figure 1.

Thomassen [9] gave following Conjecture 1, and we give following Conjecture 2 slightly stronger than Conjecture 1.

CONJECTURE 1. For each integer $k \ge 1$, $g(k) = \begin{cases} k & \text{if } k \text{ is odd} \\ k+1 & \text{if } k \text{ is even} \end{cases}$

CONJECTURE 2. For each integer
$$k \ge 1$$
,
$$\lambda(k) = \begin{cases} k & \text{if } k \text{ is odd} \\ k+1 & \text{if } k \text{ is even} \end{cases}$$

It easily follows from Menger's theorem that $\lambda(k) \leq 2k-1$; thus $\lambda(1)=1$ and $\lambda(2)=3$. Cypher [1] proved $\lambda(4) \leq 6$ and $\lambda(5) \leq 7$, and $\lambda(3)=3$ was announced in [5] and proved in [6] by the author. Enomoto and Saito [2] proved $\mu(4)=5$, and independently Hirata, Kubota and Saito [3] proved $\lambda(k) \leq 2k-3$ ($k \geq 4$).

Our main results are the following.

THEOREM 1. Suppose that $k \ge 2$ is an integer, G is a graph, $\{a_1,a_2\} \subseteq T \subseteq V(G)$, $|T| \le 3$ and $T \in \Gamma(G,k)$. Then there exists a path P between a_1 and a_2 such that $T \in \Gamma(G-E(P),k-1)$.

THEOREM 2. Suppose that $k \ge 5$ is an odd integer, G is a graph, $\{a_1, a_2, a_3\} \subseteq T \subseteq V(G)$, $a_1 \ne a_2$, $(1 \le i < j \le 3)$, $|T| \le 5$ and $T \in \Gamma(G,k)$. Then

- (1) If $|T| \le 4$, then there exists a path P between a_1 and a_2 such that $T \in \Gamma(G-E(P),k-1)$.
- (2) For m=2,3 if $|T| \le 4$ and for m=3 if |T| = 5, there exist edge-disjoint paths P_1 between a_1 and a_2 and P_2 between a_1 and a_m such that $T \in \Gamma(G \bigcup_{i=1}^2 E(P_i), k-2)$.

THEOREM 3. For each integer $k \ge 1$,

$$\lambda(k,3)=k$$
 and $\lambda(k,4)=\lambda(k,5)=\begin{cases} k & \text{if } k \text{ is odd} \\ k+1 & \text{if } k \text{ is even.} \end{cases}$

In Theorem 2(2) if m=2 and ITI=5, then the conclusion does not always hold. Figure 2 gives a countrexample with with k=7.

Figure 2.

When k is odd and $|s_1, ..., s_K, t_1, ..., t_K| \ge 4$, if for some $1 \le i \le k$,

then (1.1) does not always hold. Figure 3 gives a counterexample.

Figure 3.

Notations and Difinitions. Let $X,Y\subseteq V(G)$, $F\subseteq E(G)$, $\{x,y\}\subseteq V(G)$ and $e\in E(G)$. We often denote $\{x\}$ by x and $\{e\}$ by e. The subgraph of G induced by X is denoted by $\{X\}_{G}$ and the subgraph obtained from G by deleting X (F) is denoted by G-X (G-F). $\partial_{G}(X,Y)$ denotes the set of edges with one end in X and the other in Y, and $\partial_{G}(X)$ denotes $\partial_{G}(X,V(G)-X)$. $\lambda_{G}(X,Y)$ denotes the maximal number of edgedisjoint paths with one end in X and the other in Y. $\partial_{G}(X)$

is called an n-cut if $|\partial_{G}(X)|=n$ and $\langle X\rangle_{G}$ and $\langle V(G)-X\rangle_{G}$ are both connected. An n-cut $|\partial_{G}(X)|$ is called nontrivial if $|X| \geq 2$ and $|V(G)-X| \geq 2$, trivial otherwise. $|\partial_{G}(x)|$ denotes the degree of x and $|\nabla_{G}(x)|$ denotes the set of vertices adjacent to x. We regard a path and a cycle as subgraphs of G. A path P=P[x,y] denotes a path between x and y, and for $|x',y' \in V(P)$, |P(x',y')| denotes a subpath of P between x' and y'.

2. PROOF OF THEOREM 1

For a vertex $w \in V(G)$ and $b,c \in N_{G}(w)$, we let $G_{W}^{b,c}$ be the graph $(V(G),E(G)^{U}=-\{f,g\})$, where e is a new edge with ends b and c, $f \in \partial_{G}(w,b)$ and $g \in \partial_{G}(w,c)$. We require the following lemmas.

LEMMA 2.1 (Mader [4]). Suppose that w is a non-separating vertex of a graph G with $d_G(w) \ge 4$ and with $|N_G(w)| \ge 2$. Then there exist b,c $\in N_G(w)$ such that for each $x,y \in V(G)-w$,

$$\lambda_{q_w}^{(x,y)=\lambda_q(x,y)}$$

Now we prove Theorem 1 by induction on IE(G)I. We may assume that $a_1 \ne a_2$ and ITI=3. If G has a nontrivial k-cut $\partial_G(X)$ ($X \subseteq V(G)$) separating T, then let H (K) be the graph obtained from G by contructing V(G)-X (X) to a new vertex u (v). Set $T_H=(X \cap T)U$ u and $T_K=(T-X)U$. We may

let IT $_{\cap}$ XI=2. By induction for H and (T $_{\cap}$ X) U instead of for G and T, the result holds. Thus the result follows. Hence we may assume that each edge is incident to a vertex of T.

Case 1. There exists $x \in V(G)-T$.

If $d_G(x) \ge 4$, then by Lemma 2.1 there exists $b, c \in N_G(x)$ such that for each $y, z \in V(G)-x$,

$$\lambda_{G_{x}^{b,c}}(y,z)=\lambda_{G}(y,z).$$

By induction the result holds in G_x . Thus we may assume that $d_G(x)=3$ and clearly that $N_G(x)=T$. Now the path $P[a_1,a_2]$ with $E(P)\subseteq \partial_G(x)$ is a required path.

Case 2. V(G)=T.

The result easily follows.

3. PROOF OF THEOREM 2.

We call a graph G is elemental for $V_1\subseteq V(G)$ if $V(G)=V_1\cup V_2$, $V_1\cap V_2=\emptyset$ and for each $x\in V_2$, $d_G(x)=3$, $|N_G(x)|=3$ and $N_G(x)\subseteq V_1$. We call a graph G is elemental for $V_1\subseteq V(G)$ and an integer $k\ge 1$ if G is elemental for V_1 and for each $x\in V_1$, $d_G(x)=k$. For integers $p\ge 0$ and $q\ge 0$, we call a graph G is G(p,q) if G is elemental for some $V_1=(x_1,x_2,x_3)\subseteq V(G)$, $|V(G)-V_1|=q$ and $|\partial_G(x_i,x_j)|=p$ $(1\le i\le j\le 3)$. Let G be an elemenal graph for $V_1\subseteq V(G)$. We call a subgraph S an elemental star if $V(S)\subseteq V_1$, |V(S)|=2 and |E(S)|=1, or if for some $x\in V(G)-V_1$, $V(S)=N_G(x)\cup x$ and $E(S)=\partial_G(x)$.

We require the following lemmas.

LEMMA 3.1 (Okamura [7]). Suppose that $k \ge 4$ is an integer, G is a graph, $\{s,t\} \subseteq T \subseteq V(G)$ and $T \in \Gamma(G,k)$. Then

- (1) For each non-separating edge e incident to s, there exists a path P between s and t passing through e such that $T \in \Gamma(G-E(P),k-2)$ and $\{s,t\} \in \Gamma(G-E(P),k-1)$.
- (2) For each vertex a of T-(s,t) with fewer degree than 2k and for each edge f incident to a, there exists a path P between s and t not passing through a such that

 $T \in \Gamma(G-E(P), k-2), \{s,t,a\} \in \Gamma(G-E(P), k-1),$

 $\{s,a\}$ or $\{t,a\} \in \Gamma(G-E(P)-f,k-1)$.

- (3) For each non-separating edges e and e' incident to s, there exists a cycle C passing through e and e' such that $T \in \Gamma(G-E(C),k-2)$.
- LEMMA 3.2 (Okamura [7]). Suppose that $n \ge 4$ is an integer and $k \ge 3$ is an odd integer. If for each odd integer $1 \le m \le k$, $\mathcal{N}'(m,n)=m$,

then

and

 $\lambda(k,n)=k$ and $\lambda(k+1,n)=k+2$.

LEMMA 3.3. Suppose that $k \ge 3$ is an integer, G is an elemental graph for $T \subseteq V(G)$ and k, $T \in \Gamma(G,k)$, G has no nontrivial k-cut separating T, and that S_1, S_2, S_3 are elemental stars of G. If $V(S_1) \cap V(S_2) \cap V(S_3) = \emptyset$, then

 $T \in \Gamma(G - \bigcup_{i=1}^{3} E(S_i), k-2).$

Proof. Assume that $X \subseteq V(G)$, $|X| \le |V(G)-X|$ and X separates T. Set $G' = G - \bigcup_{i=1}^{3} E(S_i)$. If |X| = 1, then let $X = \{x\}$. Since $dG'(x) \ge dG(x) - 2 = k - 2$, we have $|\partial G'(X)| \ge k - 2$. If $|X| \ge 2$, then $|\partial G(X)| \ge k + 1$, and so $|\partial G'(X)| \ge k - 2$. Now Lemma 3.3 is proved.

LEMMA 3.4. Suppose that $k \ge 2$ is an integer, G is an elemental graph for $T=\{x_1,x_2,x_3,x_4\}$ V(G) and k, |T|=4 and $T\in \Gamma(G,k)$. Then

- (1) One of the following holds.
- (i) $\partial_G(x_1,x_2) \neq \emptyset$, $\partial_G(x_1,x_3) \neq \emptyset$, or for some $y \in V(G)-T$, $N_G(y)=\{x_1,x_2,x_3\}$.
 - (ii) k is even, $|\partial_G(x_2,x_3)|=k/2$, and $|\{y \in V(G) T \mid N_G(y) = \{x_i,x_1,x_4\}\}|=k/2$ (i=2,3).
 - (2) One of the following holds.
- (i) For each $1 \le i \le j \le k$, G has an elemental star S containing x_i and x_j .
- (ii) k is even and G is the graph obtained from four cycle by replacing each edge by k/2 parallel edges.
 - (3) If G has no nontrivial k-cut separating T, then
- (i) $\partial_G(x_1,x_2)\neq \emptyset$ or G has two elemental stars containing x_1 and x_2 .
 - (ii) One of the following holds.
- (a) G has edge-disjoint paths $P_1[x_1,x_2]$ and $P_2[x_1,x_3]$ such that for i=2 or 4,

 $(x_i,x_3)\in \Gamma$ $(G-\bigcup_{i=1}^{2}E(P_i),k-1)$ and $T\in \Gamma$ $(G-\bigcup_{i=1}^{2}E(P_i),k-2)$.

(b) For each $e \in \partial_G(x_3) - \partial_G(x_3, x_2)$, G has edge-disjoint paths $P_1[x_1, x_2]$ and $P_2[x_1, x_3]$ such that $e \in E(P_2)$ and $T \in \Gamma(G - \bigcup_{i=1}^{2} E(P_i), k-2)$.

Proof. For $1 \le i, j \le 4$, set $P_i, j = | \bigcirc_G(x_i, x_j)|,$ $R_i = \{y \in V(G) - T \mid N_G(y) = T - x_i\},$ $r_i = |R_i|.$

(1) Assume $p_{1,2}=p_{1,3}=r_{4}=0$. Then $d_{G}(x_{1})=k=p_{1,4}+r_{2}+r_{3},$ $d_{G}(x_{4})=k=p_{1,4}+p_{2,4}+p_{3,4}+r_{1}+r_{2}+r_{3}$

Thus

P2,4=P3,4=r1=0.

Since $T \in \Gamma(G,k)$, we have

13 G((x2,x3)) 1=r2+r3 ≥k.

Thus

P1.4=0.

By compairing $d_G(x_i)$ with $d_G(x_j)$ for $1 \le i \le j \le 3$, we have

Now (ii) follows.

(2) Assume $p_{1,2}=r_3=r_4=0$. Then by compairing $d_G(x_1)+d_G(x_2)$ with $d_G(x_3)+d_G(x_4)$, we have

Now by compairing $d_G(x_3)=k=p_1,3+p_2,3$ with $d_G(x_i)$ for i=1,2, we have

P1.4=P2.3 and P2.4=P1.3.

Moreover

 $|\partial_{G}(\{x_{1},x_{4}\})| = p_{1,3} + p_{2,4} = 2p_{1,3} \ge k,$ $|\partial_{G}(\{x_{1},x_{3}\})| = p_{1,4} + p_{2,3} = 2p_{1,4} \ge k.$

Thus

P1,3=P2,3=P2,4=P1,4,

and so (ii) follows.

- (3) (i) We assume $p_{1,2}=r_{4}=0$, and then prove $r_{3}\geq 2$. Since any cut separatong $\{x_{1},x_{3}\}$ and $\{x_{2},x_{4}\}$ or separating $\{x_{1},x_{4}\}$ and $\{x_{2},x_{3}\}$ has more than k edges we have
- (3.1) $p_{1,4}+p_{2,3}+p_{3,4}+r_1+r_2+r_3 \ge k+1$, and
- (3.2) $p_{1,3}+p_{2,4}+p_{3,4}+r_{1}+r_{2}+r_{3}\geq k+1$. By compairing $d_{G}(x_{3})+d_{G}(x_{4})$ with (3.1)+(3.2), we have $r_{3}\geq 2$.
- (ii) If there exists $f \in \mathfrak{I}_G(x_1,x_3)$, then by Lemma 2.1 G has a path P[x3,x2] such that $f \in E(P)$, $(x_3,x_2) \in \Gamma(G-E(P),k-1)$ and $T \in \Gamma(G-E(P),k-2)$, and so (a) follows. Thus we may let

then by (1)

 $r_{\Delta} > 0$.

If r3>0, then for $y_1 \in R_4$ and $y_2 \in R_3$, $\{x_3, x_4\} \in \Gamma(G - \bigcup_{i=1}^2 \partial_G(y_i), k-1\}$ and $T \in \Gamma(G - \bigcup_{i=1}^2 \partial_G(y_i), k-2)$, and so (a) follows. Thus we may let $r_3 = 0$.

Then by (1) and (3)

 $p_{1,4} > 0$ and $r_{4} \ge 2$.

Let y be another end of e, then $y=x_4$ or y R_i (i=1,2 or 4). In each case (b) easily follows.

LEMMA 3.5. Suppose that $k \ge 3$ is an odd integer, G is a graph, $\{x_1, x_2, x_3\} \subseteq T \subseteq V(G)$, $x_i \ne x_j$ $(1 \le i < j \le 3)$, $T \in \Gamma(G, k)$ and $e \in E(G)$. If following (i) or (ii) holds, then for m=2,3, G has edge-disjoint paths $P_1[x_1,x_2]$ and $P_2[x_1,x_m]$ such that $e \in E(P_1) \cup E(P_2)$ and $T \in \Gamma(G-\bigcup_{i=1}^{n} E(P_i),k-2)$.

- (i) $e \in \partial_G(x_1, x_2)$,
- (ii) $e \in \mathcal{I}_G(x_1,y)$ for some $y \in V(G)-T$ with $d_G(y)=3$ and with $N_G(y)=\{x_1,x_2,x_3\}$.

Proof. Assume that (i) holds. By Theorem 1 if m=2, then G has a cycle C such that $e \in E(C)$ and $T \in \Gamma(G-E(C), k-2)$, and if m=3, then G has a path $P[x_2,x_3]$ such that $e \in E(P)$ and $T \in \Gamma(G-E(P), k-2)$.

Assume that (ii) holds. We may assume that G is 2-connected. If $d_G(x_3)=d>k$, then we replace x_3 by d vertices of degree k (Figure 4 gives an example with d=8 and k=5), producing a new graph G'. In G' we assign x_3 on $N_{G'}(y)-(x_1,x_2)$. If the result holds in G', then clearly the result holds in G, and so we may assume that $d_G(x_3)=k$. Let $f\in \partial_G(x_3)-\partial_G(y,x_3)$. By Lemma 3.1

Figure 4.

G has a path P[x₁,x₂] such that $x_3 \notin V(P)$, $T \in \Gamma(G-E(P),k-2)$, $\{x_1,x_2,x_3\} \in \Gamma(G-E(P),k-1)$ and $\{x_i,x_3\} \in \Gamma(G-E(P)-f,k-1)$ (i=1 or 2). Then $y \notin V(P)$, because $d_G(x_3)=k$ and $d_G(y)=3$. Moreover $T \in \Gamma(G-E(P)-y,k-2)$. Thus the result follows.

Now we prove Theorem 2. We may assume that G is 2-connected, $d_G(x)=k$ for each $x\in T$ (see the proof of Lemma 3.5 and Figure 4, in this case we can assign x on any vertex of new $d_G(x)$ vertices of degree k) and that $d_G(y)=3$ for each $y\in V(G)-T$ (see Case 1 in the proof of Theorem 1). We proceed by induction on IE(G)I. If $ITI \le 3$, then the results follows from Theorem 1. Thus let $ITI \ge 4$.

Case 1. G has a nontrivial k-cut $\partial_G(X)=\{e_1,\ldots,e_k\}$ $(X\subseteq V(G))$ separating T.

We define H,K,u,v,T_H and T_K similarly as in the proof of Theorem 1. If $|X \cap T| = 1$, then the results hold in K, and so in G. Thus let $|X \cap T| \ge 2$ and $|T - X| \ge 2$.

We require the following.

(3.3) If G has a nontrivial k-cut $\partial_G(Y) = \{f_1, \dots, f_k\}$

 $(Y \subseteq X)$ separating T, then we may assume that $(X-Y) \cap T \neq \emptyset$.

Proof. Assume $(X-Y) \cap T = \emptyset$. Let b_i (c_i) be the end of e_i (f_i) in Y V(G)-X $(Y)(1 \le i \le k)$. We may assume that the graph obtained from $(X-Y)_G$ by adding b_1, \ldots, b_k, c_1 , $\ldots, c_k, e_1, \ldots, e_k, f_1, \ldots, f_k$ has edge-disjoint paths $P_1[b_1, c_1], \ldots, P_k[b_k, c_k]$. Let G' be the graph obtained from G-(X-Y) by adding new edges g_1, \ldots, g_k , where g_i has ends b_i and $c_i(1 \le i \le k)$. Then IE(G') | C | E(G) |, and the results of Theorem 2 hold in G', and so in G. Now (3.3) is proved.

(3.4) If |X-T|=2 (|T-X|=2), then we may assume that H (K) is G(p,q) (G(p',q')) for some integers p and q (p' and q').

Proof. Assume $|X \cap T|=2$. If H has a nontrivial k-cut $\partial_H(Y)$ (YCV(H)-u) separating T_H , then by (3.3) $(X-Y) \cap T \neq \emptyset$, and so $|T \cap Y|=1$. Then by taking Y instead of X the results of Theorem 2 hold. Thus we may assume that an end of each edge of H is in T_H . Hence the result easily follows.

We return to the proof of Theorem 2. By Lemma 3.5 we may assume the following.

(3.5) $\partial_G(a_1,a_i) = \phi$ (i=2,m) and for each $y \in V(G)-T$, $\{a_1,a_2,a_m\} \not \in N_G(y)$.

Let $a_1 \in X$.

(1) Now |X-T|=|T-X|=2. If $a_2 \in X$, then by (3.4) the result easily follows. Thus let $a_2 \in V(G)-X$. Since $p+q \geq (k+1)/2 \text{ and } p'+q' \geq (k+1)/2,$

for some $1 \le i \le k$, H has an elemental star S_1 containing a_i and e_i and K has an elemental star S_2 containing a_2 and e_i . Then $T \in \Gamma (G - \bigcup_{i=1}^2 E(S_i), k-1)$.

(2) Subcase 1-1. $\{a_2, a_m\} \subseteq X$.

H has required paths. If one of them passes through u, then we can deduce the result by using Lemma 3.1(3) on K.

Subcase 1-2. $\{a_2, a_m\} \subseteq V(G)-X$ and $IX \cap TI=2$.

Set $X \cap T = \{a_1, a_5\}$. By (3.4) H is G(p,q). Thus if following (3.6) or (3.7) holds, then the result follows.

- (3.6) For some $e_i \in \mathcal{J}_H(u,a_1)$, K has edge-disjoint paths P_i [v,a_2] and P_2 [v,a_m] such that $e_i \in E(P_i)^{\bigcup} E(P_2)$ and $T_K \in \mathcal{J}(K-\mathcal{J}_2)$ $E(P_i),k-2)$.
- (3.7) For some $e_i, e_j \in \partial_H(u) \partial_H(u, a_5)$, K has edge-disjoint paths $P_i[v, a_2]$ and $P_2[v, a_m]$ such that $\{e_i, e_j\} \subseteq E(P_i) \cup E(P_2)$ and $T_K \in \Gamma(K \bigcup_{i=1}^2 E(P_i), k-2)$.

If p=0, then $\partial_H(u,a_5)=\emptyset$, and so (3.7) follows. Thus let p>0. If |T-X|=2, then by (3.4) K is G(p',q'), and so (3.6) follows. Thus let |T-X|=3 and m=3. Set T-X= $\{a_2,a_3,a_4\}$.

Subcase 1-2-1. K has nontrivial k-cut $\partial_K(Y)$ $(Y \subseteq V(K)-v)$ separating T_K .

By (3.3) We may let $IY \cap T_K I = IT_K - YI = 2$. Let K_1 and K_2 be the graphs obtained from K by contructing Y and V(K)-Y to a vertex respectively. Then similarly as (3.4)

 K_i is $G(p_i,q_i)$ for some integers p_i and q_i (i=1,2) Let M be

((x₁,x₂) ⊆ V(K)-T_k 10 K(x₁,x₂) ≠ Ø),

and let M' be

If k=1MI, then $p_1=p_2=0$ and the result easily follows, and so let k > 1MI. K-M' is elemental for T_K and K-1MI.

Assume that k-IMI is even and K-M' is the graph obtained from four cycle by replacing each edge by (k-IMI)/2 parallel edges. For each cycle C of K-M' such that IV(C)I=IE(C)I=4, we have $T_K \in \Gamma(G-E(C),k-2)$. If $\partial_G(a_1,a_4)\neq \emptyset$, then (3.6) follows, and if not, then by (3.5) a_1 is adjacent to p vertices of M'. If $IMI \geq 2$, then (3.6) follows. Thus assume $1 \geq |MI| \geq p \geq 1$. Since $(k-IMI)/2 \geq (5-1)/2=2$, for some $1 \leq i \leq j \leq k$,

 $\{e_i,e_j\} \subseteq \partial_H(u) - \partial_H(u,a_5),$

and K has a four cycle C such that IV(C)I=IE(C)I=4 and $(e_i,e_j)\subseteq E(C)$. Hence (3.7) follows.

By Lemma 3.4(2) we may assume that for each two vertices of T_K , K-M' has an elemental star containing them. Set $a_0=v$, and for i,j=0,2,3,4,set

Pi, j=10 K(ai,aj)1,

 $r_i = 1(x \in V(K) - T_K \mid N_K(x) = T_K - a_i)$

For i, j=0,2,3,4, since $\partial_K(\{a_i,a_j\}) \geq k$,

$$(k-1)/2$$
 . We have the second second second $(k-1)/2$. We show that

If a_1 is adjacent to a vertex of M' in G, then (3.6) follows. If for some $x \in V(G)-T$, $N_G(x)=\{a_1,a_i,a_4\}$ (i=2 or 3), then (3.6) follows. Thus and by (3.5) we may assume that

10 G(a1,a4) |=p.

If $a_4 \in Y$, then (3.6) easily follows, and thus let $T_{H^{-Y}}=\{a_0,a_4\}$. Since $p_0,4 \ge 10$ $G(a_1,a_4) \mid =p > 0$, by Lemma 3.4(1) we have

 $p_{4.2} > 0$, $p_{4.3} > 0$, or $r_0 > 0$,

and

 $p_{0,2} > 0$, $p_{0,3} > 0$, or $r_{4} > 0$.

If $r_0 > 0$, $r_4 > 0$, $p_{0,2} \cdot p_{3,4} > 0$, or $p_{0,3} \cdot p_{2,4} > 0$, then (3.6) follows (note that K_i is $G(p_i,q_i)$ for i=1,2) Thus we may assume that

(3.8) $p_{0,2}>0$, $p_{2,4}>0$ and $r_{0}=r_{4}=p_{0,3}=p_{3,4}=0$.

Assume IMI=0. Then

 $d_{G}(a_{3})=p_{2,3}+r_{2}$ and $p_{2,3}\leq (k-1)/2$,

and so

 $(3.9) r_2 \ge (k+1)/2 \ge p+1.$

By compairing $d_G(a_2)$ with $d_G(a_4)$ we have $P0,2^{+}P2,3^{-}P0,4^{+}r2$.

Thus

 $(3.10) p0,2 > p0,4 \ge p$

From (3.9) and (3.10), (3.7) follows.

Now we may let |M| > 0. Since $\{a_2, a_3\} \subseteq Y$, we have

$$10_{K}(Y) = k = d_{K}(a_{2}) + d_{K}(a_{3}) - 2p_{2,3} - |M|$$

= $2k - 2p_{2,3} - |M|$,

and so

2p2.3+IMI=k.

Since dg(a3)=k=p2.3+r2+|M|,

r2=p2.3.

Since $dG(a_3)=2r_2+|M|$, $dG(a_4)=p_0,4+p_2,4+r_2+r_3+|M|$,

and $p_{2,4} > 0$ (by(3.8), we have

(3.11) r₂ \geq a₀,4+1 \geq p+1.

By compairing dG(a2) with dG(a4), we have

P0,2=P0,4.

Thus

 $(3.12) p_{0.2} + |M| \ge p+1.$

From (3.11) and (3.12), (3.7) follows.

Subcase 1-2-2. K has no nontrivial k-cut separating $T_{\mbox{K}}$. We may assume that an end of each edge of K in $T_{\mbox{K}}$ and

K is elemental for T_K . The proof is similar as the case IMI=0 in the proof of Subcase 1-2-1.

Subcase 1-3. $\{a_2, a_m\} \subseteq V(G)-X$ and $IX \cap TI=3$.

Now m=3. By (3.4) K is G(p',q'). Set $X \cap T = \{a,a_4,a_5\}$ If H has nontrivial k-cut $\partial_H(Y)$ ($Y \subseteq V(H)-u$) separating T_H , then we may let $IY \cap T_H I = 2$. Then for Y or V(G)-Y instead of X Subcase 1-1 or Subcase 1-2 occurs. Thus we may assume that this is not the case and H is elemental for T_H . If following (3.13) or (3.14) holds, then the result follws.

(3.13) For some $e_i \in \partial_K(v) - \bigcup_{i=1}^3 \partial_K(v, a_i)$, H has edge-disjoint paths $P_1[a_1, u]$ and $P_2[a_1, u]$ such that

 $e_i \in E(P_1)^{\cup} E(P_2)$ and $T_H \in \Gamma(H-\bigcup_{i=1}^{2} E(P_i), k-2)$.

(3.14) For l=2 or 3 and for some $e_i \in \partial_K(v,x_1)$ and $e_j \in \partial_K(v) - \partial_K(v,x_1)$, H has edge-disjoint paths $P_1[a_1,u]$ and $P_2[a_1,u]$ such that $(e_i,e_j) \subseteq E(P_1) \cup E(P_2)$ and $T_H \in \Gamma(H-\bigcup_{i=1}^2 E(P_i),k-2)$. Set $a_0=u$ and for i,j=0,1,4,5 set

 $P_{i,j}=10_{H(a_{i},a_{j})}$, $R_{i}=\{x \in V(H)-T_{H} \mid N_{H}(x)=T_{H}-a_{i}\}$, $r_{i}=1R_{i}$.

By $(3.5) p_{0.1}=0.$

Assume $p_1,4=p_1,5=0$. If $r_0 \le (k-1)/2$, then $r_4+r_5=d_G(a_1)-r_0 \ge (k+1)/2 \ge p'+1,$ and so (3.13) or (3.14) follows. Thus let $r_0 \ge (k+1)/2$. Since $d_G(a_0)=p_0,4+p_0,5+r_1+r_4+r_5$ and $d_G(a_5)=p_0,5+p_4,5+r_0+r_1+r_4, \text{ we have }$

P0,4+r5=P4,5+r0.

Hence

 $dG(a_4)=k \ge p_0, 4+r_0+r_5 \ge 2r_0 \ge k$, a contradiction.

Now we may let $p_{1,i} > 0$ for i=4 or 5, say i=4. Since $p_{0,1}=0$ and by Lemma 3.4(3), we have $p_{0,1}=0$

For each $x \in R_4 \cup R_5$, if x is adjacent to a vertex of $V(K)-T_K$ in G, then (3.13) follows, thus assume that $\partial_G(x,a_i)\neq \phi$ (i=2 or 3). For each $x,y \in R_4 \cup R_5$, if $\partial_G(x,a_2)\neq \phi$ and $\partial_G(y,a_3)\neq \phi$, then (3.14) follows, thus assume that for i=2 or 3, $\partial_G(x,a_i)=\partial_G(y,a_i)=\phi$, say i=3,

and that ra+r5≤ p'.

Assume r₄>0. For some $e_i \in \partial_K(v) - \partial_K(v, a_2)$, e_i is incident to a₄ or a vertex of R₁ in G, because $p'+q' \geq (k+1)/2 > p_0.5$.

Thus (3.14) follows.

Now we may assume that $r_4=0$, $r_5>0$ and $p_{1,5}=0$. Thus $p_{0.1}=p_{1,5}=r_4=0$, contrary to Lemma 3.4(1).

Subcase 1-4. $a_2 \in X$ and $a_m \in V(G)-X$.

now m=3.

Subcase 1-4-1. IX∩TI=2.

By (3.4) H=G(p,q), and by (3.5) p=0. Since $|T_K| \le 4$, by induction K has a path p[v,a3] such that $T_K \in \Gamma(K-E(P),k-1)$. Let $e_1 \in E(P)$. H has an elemental star S_1 containing a_1 and e_1 . Let S_2 be another elemental star of H. Then $T_H \in \Gamma(H- \overset{\circ}{\cup} E(S_i),k-2)$, and so the result follows.

Subcase 1-4-2. IX TI=3 and IT-XI=2.

Assume that H has a nontrivial k-cut $\partial_H(Y)=(f_1,\ldots,f_k)$ $(Y\subseteq V(H)-u)$ separating T_H . Then we may assume that $IY\cap T_HI=2$, $a_2\in Y$ and $a_1\in X-Y$. Let H_1 (H_2) be the graph obtained from H by contructing V(H)-Y (Y) to a new new vertex u_1 (u_2) . Then similarly as (3.4) H_i is $G(p_i,q_i)$ for some integers p_i and q_i (i=1,2). If $p_2=0$, then the result easily follows. If $p_2>0$, then we may let $\{f_1,e_1\}\subseteq \partial_G(a_1)$ and we can easily deduce the result.

Now we may assume that H has no nontrivial k-cut

separating T_H and H is elemental for T_H . Set $X \cap T = \{a_1, a_2, u, a_4\}$ and $T - X = \{a_3, a_5\}$. For a_1, a_2 , u, a_4 instead of x_1, x_2, x_3, x_4 , (a) or (b) of Lemma 3.4(3) holds. If (a) holds, then the result easily follows, thus assume that (b) holds. Since $| \partial_H(u) - \partial_H(u, a_2)| \ge (k+1)/2$ and $p' + q' \ge (k+1)/2$, for some $1 \le i \le k$,

 $e_i \in \partial_H(u) - \partial_H(u,a_2) \text{ and } e_i \in \partial_K(v) - \partial_K(v,a_5),$ and so the result follows.

Case 2. G has no nontrivial k-cut separating T.

We may assume that G is elemental for T. If |T|=4, then by Lemma 3.3 the result follows. Thus let |T|=5 and |T|=5 and

Pi, j=10 G(ai,aj) |,

R(i,j,1)=(x \in V(G)-T | NG(X)=(ai,aj,aj),

r(i,j,1)=|R(i,j,1)|.

We require the following.

(3.15) For each distinct $1 \le i, j, 1 \le 5$, G has an elemental star containing $\{a_i, a_i\}$ or $\{a_i, a_i\}$.

Proof. Assume that each elemental star of G does not contain $\{a_1,a_2\}$ nor $\{a_1,a_3\}$. Then

 $d_{G}(a_{1})=p_{1,4}+p_{1,5}+r(1,4,5)$.

Since $p_{i,j} \le (k-1)/2$ for each i,j,we have r(1,4,5) > 0. Let F be a cut of G separating $\{a_1,a_4,a_5\}$ and $\{a_2,a_3\}$, then $|F| = d_G(a_4) + d_G(a_5) - (p_1, 4 + p_1, 5 + 2r(1, 4, 5)) \langle k, a$ contradiction. Now (3.15) is proved.

We return to the proof of Theorem 2. By (3.5) $p_{1,2}=p_{1,3}=r(1,2,3)=0$.

If r(1,2,i)>0 and r(1,3,j)>0 (i,j=4 or 5), then the result follows. Thus and by (3.15) we may assume that

r(1,2,4) > 0 and r(1,3,i)=0 (i=4,5).

By (3.15)

 $p_{i,5}+r(i,5,2)+r(i,5,4)>0$ (i=1,3).

If $p_{1,5}>0$, $p_{3,5}>0$, $r(1,5,2)\cdot r(3,5,4)>0$, or

 $r(1,5,4) \cdot r(3,5,2) > 0$, then by Lemma 3.3 the result follows.

Thus we may assume that for (i,j)=(2,4) or (4,2),

$$P_{1,5}=P_{3,5}=0$$
, $r(1,5,i)=r(3,5,i)=0$,

and

$$r(1,5,j) \cdot r(3,5,j) > 0$$

Assume r(1,5,2)=r(3,5,2)=0. Then

$$d_{G}(x_{1})=p_{1}, \underline{A}+r(1,2,4)+r(1,4,5),$$

and

$$d_{G}(x_{4}) \geq p_{1,4}+r(1,2,4)+r(1,4,5)+r(3,4,5) > k$$

a contradiction. Thus

$$r(1,5,4)=r(3,5,4)=0$$
.

Since r(1,2,5) > 0, by the same argument we have P1.4=P3.4=0.

Thus

$$d_{G}(x_{1})=r(1,2,4)+r(1,2,5)$$

and

 $d_{G}(x_{2}) \ge r(1,2,4)+r(1,2,5)+r(2,3,5) > k$, a contradiction.

4. PROOF OF THEOREM 3.

Suppose that $k \ge 1$ is an integer, G is a graph, $T = \{s_1, \ldots, s_k, t_1, \ldots, t_k\} \subseteq V(G)$ and $T \in \Gamma(G, k)$. We prove that if ITI=3, or if k is odd and ITI=4 or 5, then (1,1) holds by induction on k.

Assume ITI=3. By Theorem 1 G has a path $p[s_k,s_k]$ such that $T \in \Gamma(G-E(P),k-1)$. By induction for k-1, (1.1) holds in G-E(P), and so for k, (1.1) holds.

Assume that $k \ge 5$ is odd and ITI=4 or 5. For some $1 \le i \le j \le k$, if ITI=4, then

 $s_i=s_i$ or t_i ,

and if ITI=5, then

 $s_i=s_i$ or t_i and $(s_i,t_i)\neq (s_i,t_i)$,

say for i=k-1 and j=k. By Theorem 2 G has edge-disjoint paths $P_1[s_{k-1},t_{k-1}]$ and $P_2[s_k,t_k]$ such that $T\in \Gamma(G-\overset{\circ}{\bigcup}_{i=1}^2 E(P_i),k-2)$. By induction for k-2, (1.1) holds in $G-\overset{\circ}{\bigcup}_{1}^2 E(P_i)$, and so for k, (1.1) holds in G.

Thus for integer $k \ge 1$,

2(k.3) = 2(k.3) = k.

and for odd integer $k \ge 1$,

 $\lambda'(k,4)=\lambda'(k,5)=k$.

By Lemma 3.2 for odd integer $k \ge 1$,

2(k,4)=2(k,5)=k and 2(k+1,4)=2(k+1,5)=k+2.

Now Theorem 3 is proved.

REFERENCES

- [1] A. Cypher, An approach to the k paths problem, Proc.

 12th Annual ACM Symposium on Theory of Computing (1980)

 211-217.
- [2] H. Enomoto and A. Saito, Weakly 4-linked graphs,
 Technical Report, Tokyo University (1983).
- [3] T. Hirata, K. Kubota and O. Saito, A sufficient Condition for a graph tp be weakly k-linked, J. Combinatorial Theory Series B, to appear.
- [4] W. Mader, A reduction method for edge-connectivity in graphs, Annals of Discrete Math. 3 (1978), 145-164.
- [5] H. Okamura, Three commodity flows in graphs, Proc.

 Japan Academy 59A (1983), 266-269.
- [6] H. Okamura, Multicommodity flows in graphs II, Japanese
 J. Math., to appear.
- [7] H. Okamura, Paths and edge-connectivity in graphs, to appear.
- [8] P. D. Seymour, Disjoint paths in graphs, Discrete Math. 29 (1980), 293-309.
- [9] C. Thomassen, 2-linked graphs, Europ. J. Combinatorics 1 (1980), 371-378.