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Abstract.

The problem of partitioning a polygonal region into a minimum number

of trapezoids with two horizontal sides is discussed. A triangle with a
horizontal side is considered to be a trapezoid with two horizontal sides
one of which is degenerate. First, a method of achieving a minimum
partition is presented. The number M* of the trapezoids in the minimum

_partition of a polygonal region P is shown to be M#*=nt+w-h-d-1, where n, w,
and h are the number of vertices, windows, and horizontal edges of P,
respectively, and d is the cardinality of a maximum independent set of the
straight-lines-in-the-plane graph associated with P. Next, this problem is
shown to be polynomially equivalent to the problem of finding a maximum
independent set of a straight-lines-in-the-plane graph, and consequently,
it is shown to be NP-complete. However, for a polygonal region without
windows, an O(nz) time algorithm for partitioning it into a minimum number
of trapezoids is presented. Finally, an O(n log n) time approximation

algorithm with absolute performance ratio 3 is presented.

*This paper is an expanded version of a paper [1] presented at the 24th

Annual IEEE Symposium on the Foundations of Computer Science, Tucson, 1983.



1. Introduction

The problem of partitioning a geometric figure into a minimum number
of more fundamental ones arises in applications such as manipulation of
VLSI artwork data, image processing, and architectural data base.
Triangles, convex polygons, and rectangles have been chosen to be the
fundamental figures. Fbr a simple polygon (i.e., a polygonal region
without holes), there have been several polynomial-time algorithms fqr
partitioning it into a minimum number of triangles, convex polygons, etc.
[3,4,8,16]. However, for a polygonal region with holes, in most cases,
this problem has been shown to be NP-complete [13,18]. On the other hand,
Lipski et al. [19] and Ohtsuki [20] gave polynomial-time algorithms for
partitioning a rectilinear polygonal region into a minimum number of
rectangles.

In this paper, we consider the problem of partitioning a polygonal
region into a minimum number of trapezoids with two horizontal sides. A
triangle with a horizontal side is considered to be a trapezoid with two
horizontal sides one of which is degenerate. This problem is closely
related to VLSI artwork data processing systems of Electron-Beam
Lithography for VLSI microfabrication which have been becoming in use. 1In
such systems, the layout is stored as a set of polygonal regions per layer.
These regions are bounded by straight lines which may have any slope. They
may contain windows, or '"polygon holes'". Each polygonal region should be
partitioned into fundamental figures since the aperture of a pattern
generator is restricted. Trapezoids are used as fundamental figures in
AMDES [21], one of EB Lithography systems. Evidently, the proceséing time
is proportional to the number of trapezoids. Thus a minimum partition of a
polygonal region is required.

First, we describe the problem in graph~theoretic terms, and present a
method of achieving a minimum partition of a polygonal region P into
trapezoids. The number M* of the trapezoids in the minimum partition is
shown to be M*=nt+w~h-d-1, where n, w, and h are the number of vertices,
windows, and horizontal edges of P, respectively, and d is the cardinality
of a maximum independent set of the straight—lines—in—the—plane graph
 associated with P. Next, we show that this problem is polynomially
equivalent to the problem of finding a maximum independent set of a
straight-lines-in-the-plane graph. Thus, it is shown to be NP-complete.

Although it is NP-complete to partition a polygonal region into a

minimum number of trapezoids, there may be a polynomial-time algorithm for
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a polygonal region with a fixed number of windows. In fact, we present an
O(nz):time algorithm for partitioning a polygonal region without windows
into a minimum number of trapezoids. Also, we give an O(n2+w)'time
algorithm for a polygonal region with w windows.

Finally, we present an 0(n log n) time approximation algorithm which
uses only horizontal chords to partition a polygonal region into
trapezoids. We show that the absolute performance ratio of the algorithm
is 3 for polygonal regions (2 for polygonal regions without windows). We
can design another approximation algorithm with the absolute performance
ratio (1 + 2/c) for polygonal regioﬁs ((1 + 1/c) for polygonal regions
without windows) if we have a (1 - 1/c) approximation algorithm for the
maximum independent set problem on stfaight—lines—in—the—plane graphs,
where ¢ is some constant. From the viewpoint of practical applications, a
minimum partition is not so important. A neat‘optimal partition'is quite

satisfactory in practice.

2. Preliminaries

In this section we present some definitions and results necessary for
the discussions in the following sections.

Consider a set of pairwise non-intersecting simple polygons wo, Wl,

0 Lo sees W

and no other polygon contains any polygons, then we have the connected

ey Ww. If one polygon, say W,, contains all other polygons W

region specified by the interior region of W, excluding the interior

0

regions of Wl, “ees ww. Such-a connected region is called a polygonal

region of one connected region and is illustrated in Fig. 1. WO is called

the external polygon and W Ww are called internal polygons.

12 o
Internal polygons are often called windows or holes. Thus, a polygonal

region is specified by the set of its polygon edges (edges of polygons of
the polygonal region). Each polygon edge is oriented in a way that the
interior lies to the right of the edge. 1In other words, the external
polygon is oriented in clockwise order, whereas the internal polygons
(windows) are oriented in counter-clockwise order. Any three consecutive
vertices must not be collinear. If any, we eliminate consecutive collinear
vertices. We consider only a polygonal region of exactly one connected
region. (A polygonal region with several connected regions is considered
to be a set of polygonal regions with one connected region.)

Given a polygonal region, we must add chords to partition it into

trapezoids. In this paper, only trapezoids with two horizontal sides are



Fig. 2. Partition of P into trapezoids.

(a) Non-optimal partition. (b) Optimal partition.

Fig. 1. A polygonal region P with two
windows w] and w2 and the external polygon W

o
considered to be trapezoids. A triangle with a horizontal side is
considered to be a trapezoid one of whose horizontal sides is degenerate.
Partitions into trapezoids are shown in Fig. 2. Fig. 2(5) shows a
non-optimal partition while Fig. 2(b) an optimal one, where an optimal
partition means a partition into a minimum number of trapezoids. 1In the
following, we shall investigate effects of chords for partitioning a

polygonal region into trapezoids.

Definition 1. A chord of a polygonal region is a straight line

segment lying inside it. Each of its endpoints must be a vertex or lie on
a polygon edge. It may touch vertices on the way, but it must not
intersect with any edges. A chord is primitive if it touches no vertices

except at the endpoints.

Definition 2. Let s be a primitive chord of a polygonal region P.

Then the resultant region(s) after adding it to P is denoted by P+s. If
its endpoints both lie on the éxternal polygon of P or both on the same
window, then P is decomposed into two regions (see Fig. 3(a) and (b)).
Thus, P+s consists of two distinct polygonal regions. If one endpoint lies
on the external polygon and the other on a window, then the window is
eliminated and connected to the external polygon (see Fig. 3(c)). If two
endpoints lie on two distinct windows, then these two windows are merged

into one (see Fig. 3(d)).

Definition 3. Let S be a primitive‘chord of a polygonal region P and

s, be a primitive chord of P+sl (i.e., s

is a primitive chord of some

2
polygonal region in P+sl), then P+sl+s2 is defined to be the polygonal
region(s) obtained from P by adding 81 and then s, to P. P+sl+sz+...+sm,
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Fig. 3. Resultant polygonal region(s) P+s after adding a primitive
chord s to a polygonal region P. (a) Both endpoints Tie on the external
polygon. .(b) Both endpoints 1ie on the same window.

(c) One endpoint lies on the external polygon and the other on a window.
(d) Two endpoints lie on distinct windows.

m>3, is defined in a similar way. For a non-
primitive chord s, such as shown in Fig. 4, which

consists of primitive collinear chords s s

l, 2’ R |

s , P+s is defined to be P+s,+s.,+...+s
m 172 m

. 1 ] Fig. 4. A non-primitive
Since any connected planar graph with p nodes, chord s which consists
q arcs and f faces satisfies p-q+f=2 (Euler's of three primitive

formula [9]), we have the following lemma. chords S5 szand S3-

Lemma 1. Let D be the number of pairwise non-intersecting primitive
chords drawn to partition a polygonal region P into trapezoids. Then, the
number M(P) of trapezoids is given by

M(P) =D - w(P) + 1,

where w(P) is the number of windows contained in P.

An index of a polygonal region in the following definition plays the

most important role in this paper.

Definition 4. Let P be a polygonal region. Then, an index t(P) of P

is defined by

t(P) = n(P) + w(P) - h(P) -1,
where n(P), w(P), and h(P) represent the number of vertices, windows, and
horizontal edges of P, respectively. Similarly, an index t(d) of a set of
polygonal regions ¢ = {Pl’PZ""’Pk.} is defined by the sum of all indices
of the polygonal regions in ¢, i.e.,

te) =z, t(@).
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Evidently, the index of any trapezoid with two horizontal sides is

one. Thus we have the following lemma.

Lemma 2. If ® is a set of trapezoids with two horizontal sides, then

the index t(®) represents the number of those trapezoids.

In other words, if a sequence of chords (81’32""’Sm) partitions a
polygonal region P into trapezoids, then the index t(P+s +s +...+sm)

1 72
represents the number of those trapezoids.

Definition 5. Let s be a chord of a polygonal region P. An effect of

s in P is defined by
effect(s;P) = t(P) - t(P+s).

Generally, an effect of a chord Sy in P+Sl+"'+sk—l is defined by
effect(sk;P+s1f...+sk_l) = t(P+Sl+"'+sk—1) - t(P+Sl+"'+Sk)'
Let (sl,sz,...,sm) be a sequence of chords which partitions a

polygonal region P into trapezoids. Then, we have
t(P+s +...+sm) = t(P) - 2

effect(sk;P+s +...+sk_1).

m

1 k=1 1
Therefore, a sequence of chords to maximize the sum of their effects
partitions P into a minimum number of trapezoids. The following lemmas are

concerned with the effect of a chord s.

Lemma 3. Let s be a primitive chord of a polygonal region P. Then,
-3 <effect(s;P) <1. Specifically, the following hold.
(a) Effect(s;P)=1 if and only if the following (i) or (ii) holds.
(i) s is a horizontal chord between two vertices of P.
(ii) Two edges collinear with s are adjacent to s.
(b) - Effect(s;P)=0 if and only if the following (iii), (iv) or (v)
holds.
(iii) s is a horizontal chord and exactly one of its ednpoints is
a vertex of P.
(iv) s is a non-horizontal chord between two vertices of P and
exactly one of edges adjacent to s is collinear with s.
(v) s is a non-horizontal chord between a vertex of an edge
collinear with s in P and a point on a horizontal edge of P
which is not a vertex of P.
(c) Effect(s;P) is negative if and only if s does not sétisfy any
condition stated above.
Proof. Let o be the number of those endpoints of s which are not
vertices of P, and B be the number of thoée polygon edges adjacent to s

which are collinear with s. Let Y be the number of those endpoints of s



(1) (i) (i) (iv)

(v) (vi) (vii) (viii) (i’x)'

Fig. 5. Effects of chords. (i) effect(s];P)=1. (ii) effect(sng)=1.l
(i11) effect(s3;P)=0. (iv) effect(s4;P)=0. (v)effect(ss;P)=0.
(vi) effect(sB;P)=—1. (vii)ﬁeffect(s7;P)=-].
(viii) effect(sB;P)=-g. (ix) effect(sg;P)=-3.

which are not vertiées of P but are points on horizontal edges of P. Then,
0<ys<oa<2 and 0sB=<2, and consequently, the proposition in the lemma is
equivalent to the following: ,
effect(s;P) = {1 - ¢ if s is horizontal, (Z.Ia)
j\e - (a-v7) -1 otherwise. (2.1b)
Let n(P+s), W(P+S),‘h(P+S), and iP+s| denote the number of vertices,
windows, horizontal edges, and connected regions, respectively,’of the
resulting polygonal region(s) P+s obtained by adding s to P. ©Note that
t(P) = n(P) + w(P) - h(P) - 1,
t(P+s) = n(P+s) + w(P+s) - h(P+s) - |P+s] , and
effect(s;P) = t(P) - t(P+s).
Thus, we can obtain (2.1) by counting n(P+s), w(P+s), h(P+s), and |P+sl,

according to the location of two endpoints of s (Fig. 3), because we have

n(P+s) = n(P) + 2 - B + a,

w(P+s) = (w(P) for cases (a) and (b),
{w(P)-l for cases (c) and (d),

h(P+s) = (h(P)+2-33 - if s is horizontal,
{h(P)+Y otherwise,

|P+sl = {2 for cases (a) and (b),
1 for cases (c¢) and (d).[]

Fig. 5 illustrates the effects of various chords. In Lemma 3 we
require chords to be primitive. Generally, we have the following lemma by

a similar argument.

Lemma 4. Let s be any chord (not necessarily primitive) of a

polygonal region P. Then, effect(s;P) is positive if and only if the




following (i) or (ii) holds.
(i) ‘s is a horizontal chord between two
vertices of P.
(ii) Two edges collinear with s are adjacent to

S.

Hereafter, we call a chord to be effective. if
its effect is positive. Fig. 6 shows an example of
effective chords which are not primitive. They both - Fig. 6. Effective chords

consist of three primitive chords. which are not pr‘1‘m1t1ve.

Lemma 5. Let s be any chord of a polygonal region P, and SEC(P) and
SEC(P+s) be the sets of all effective chords of P and P+s, respectively.
Then, the following holds:

|sEc(P)| = |SEC(P+S)| + effect(s;P).

Proof. This lemma can be proved in the same way as in the proof of

Lemma. 3. [

We now present a natural partition method, which is not only simple

but also optimal for some polygonal regions.

[Partition method H]

For each vertex of a polygonal region, draw as many horizontal chords

as possible within the region to the first edge encountered.

Theorem 1. Partition method H is optimal for a polygonal region P
with no effective chords. The number of trapezoids is given by the index
of P, that is,

t(P) = n(P) + w(P) - h(P) - 1.

Proof. Let (sl,s ,...,sm) be any sequence of chords which partitions

2
a polygonal region P into trapezoids. For each k (k=1,2,...,m), let

SEC(P+S1+...+sk) be the set of all effective chords of P+Sl+"'+sk' Then,

by Lemma 5, we have

—effect(sk;P+s +...+s 2 |SEC(P+$1+,..+sk)] - |SEC(P+sl+...+s

1 k—l) B k—l)l'

Therefore, we have

t(P+s

- ‘
+...+sm) t(P) - ¢ k=1 effect(sk,P+s +"'+Sk—l)

1 1

£(P) + [SEC(P+s +...+s )| - [SEC(P)] .

[\

Since we assumed that there is no effective chord in P, i.e., | SEC(P)|=0,

we obtain t(P+s +...+sm) > t(P). Here, note that if the sequence of chords

1
is produced by Partition method H then every chord has effect zero by Lemma
3, because it is a primitive horizontal chord and exactly one endpoint is a

vertex of P by the assumption that P has no effective chords. Thus, we



have t(P+s +...+sm) = t(P). []

1
We can implement Partition method H in O(n log n) time by using the
so-called plane sweep method, where n is the number of vertices of a

polygonal region.

3. Minimum Partition Problem

We have shown that the minimum number of trapezoids needed to
partition a polygonal region P is given by the index of P, i.e., t(P) =
n(P)+w(P)~-h(P)-1, if no effective chord (with positive effect) is available
in P. Generally, we can use effective chords to decrease the number of
trapezoids. To find the minimum number of trapezoids we must find the
maximum number of effective chords available which are pairwise
independent. The main objective here is to describe the problem (minimum
partition problem) in a definite way. -For this purpose we define a

minimally effective chord and examine the relation between two such chords.

Definition 6. An effective chord s is minimally effective if s is

primitive, or s is non-primitive and no primtive subchord contained in s is

effective, For two minimally effective chords s, and s, of a polygonal

1
region P, 1 is independent of S, if Sq is a minimally effective chord in
P+32. (Clearly, in this case Sy is also independent of 8- Thus, 81 and
s, are often said to be independent.)

A minimally effective chord is characterized by the following lemmas,

which are easily observed.

Lemma 6. A chord s of a polygonal region P is minimally effective if
and only if the following (i) or (ii) holds.
(i) s is a primitive horizontal chord joining two vertices of P.

(ii) s is a non-horizontal chord joining two edges collinear with it.

Lemma 7. Let s be.a minimally effective chord of a polygonal region
P. Then, the effect of s in P is one, that is,

effect(s;P) = t(P) - t(P+s) = 1.
Lemma 8. For each vertex v of a polygonal region P, there are at most

four minimally effective chords of P that contain v as an endpoint.

Lemma 9. Two minimally effective chords are independent if and only
if the following (i) or (ii) holds.
(i) They do not intersect at all.



(ii) They touch each other and one of
the interior angles at their common point

after drawing them is exactly 180°.

Fig. 7 illustrates three minimally

effective chords s(2-5-7) between vertices

2 and 7, s(3-5) between 3 and 5, and
s(2-11) between 2 and 11. The chord

Fig. 7. Three minimally effective
chords. Chords s{2-5-7) and s(3-5)

s(3-5) touches s(2-5-7) at the vertex 5. are hMepaMgntwhﬂe chords s(2-11)
The interior angle at vertex 5 is divided and s(2-5-7) are not independent.
by the chords s(3-5) and s(2-5-7) into

four, that is, angle(2-5-3), angle(3-5-4), angle(6-5-7), and angle(2-5-7),
where angle(i~j-k) is the angle specified by the three vertices i, j and k.
Among them the angle(2-5-7) is exactly 180°. Therefore, the chords

s(2-5-7) and s(3-5) are independent. On the other hand, the interior anglé
at vertex 2 is divided by chords s(2-5-7) and s(2~11) into three, any of
which is not 180°. Therefore, the chord s(2-5-7) is not independent of

s(2-11).

Lemma 10. Let s ,S. be minimally effective chords of a

1289558y
polygonal region P which are pairwise independent. Then,

t(P+sl+sz+...+sD) = t(P) - D.

Proof. Immediate from Lemma 7 and Definition 6.0

Now it is evident that the maximum number of minimally effective
chords which are pairwise independent coincides with the cardinality of a

maximum independent set of akgraph which is defined as follows.

Definition 7. An interesection graph of minimally effective chords of

a polygonal region P, denoted by G(P), is a graph whose node set V(G(P)) is
the set of all minimally effective chords of P and two nodes of V(G(P)) are
joined by an arc if and only if they are not independent. TFor a set © of

polygonal regions, G(¢) is defined similarly.

A subset N of the node set of a graph G is called independent if there

is no arc of G joining any two nodes of N. A maximum independent set of a

graph is an independent set of maximum cardinality. Dotted lines in Fig. 8
show the minimally effective chords of the polygonal region. The
intersection graph of the minimally effective chords is shown in Fig. 9.

Corresponding to Lemma 5, we have the following.

Lemma 11. Let P be a polygonal region and s be any chord of P. Let

10



Fig. 9. Intersectibn
graph G(P) of minimally
effective chords of P.

Fig. 8. Minimally effective
chords of P (dotted lines).

Fig. 10. Minimum partition
of P into trapezoids.

d(P) (d(P+s), resp.) be the cardinality of a maximum independent set of the
intersection graph G(P) (G(P+s), resp.) of minimally4effecfive chords of P
(P+s, resp.). Then,

d(P) >d(P+s) + effect(s;P). ‘ (3.1)

Proof. By an argument similar to the one in the proof of Lemma 3.[]
Now, we can obtain an optimal partition method as follows:

[Partition method OPM]

Step 1. Find the set of minimally effective chords of a given
polygonal region P. ‘

Step 2. Find a maximum independent set I*(P) of the intersection
graph G(P) of minimally effective chords of P.

Step 3. Using the chords corresponding to the nodes in I*(P),
R 'Pk.
Step 4. Partition each Pi (i=1,2,...,k) into trapezoids by Partition

method H.

partition P into several polygonal regions P

Theorem 2. Partition method OPM partitioné a polygonal region P into
a minimum number of trapezoids. The number M*(P) of trapezoids in the
minimum partition is given by M*(P)=t(P)-d(P), that is,

M*(P) = n(P) + w(P) - h(P) ~ d(P) - 1,
where n(P), w(P), and h(P) are the number of vertices, windows, and
horizontal edges of P, respectively, t(P) is the index of P, and d(P) is
the cardinality of a maximum independent set of the intersection graph G(P)
of minimally effective chords of P.

Proof. By Lemmas 2 and 10 and Theorem 1, Partition method OPM
partitions the polygonal region P into t(P)-d(P)=n(P)+w(P)-h(P)-d(P)-1
trapezoids. Thus, we have M*(P) < t(P)-d(P)=n(P)+w(P)-h(P)-d(P)-1.

11



Next, we show
M%(P) > t(P) --d(P) = n(P) + w(P) - h(P) - d(P) - 1. (3.2)
"Sm(P)) of the

chords which partition a polygonal region P into a minimum number of

Let m(P) be the minimum length of those sequences (31’52’3'

trapezoids. Lemma 1 assures that there is an upper bound for m(P), such as
t(P)+l = M*(P)+1l 2m(P). Thus, m(P) is the well defined number for every
polygonal region P. We shall show (3.2) by induction on m(P). If ﬁ(P)=0
Vthen P is a trapezoid and (3.2) trivially holds. Assume that (3.2) is true
for all polygonal regions P with m(P) <m (m21). Let P be a polygonal
region with m(P)=m. Let (81’82""’Sm) be a sequence of chords which
partitions P into a minimum number of trapezoids. Set 88, . We first
consider the case where P+s has exactly one polygonal region. Then,
(SZ""’Sm) is a sequence of chords which partitions P+s into a minimum
number of trapezoids. Since m(P+s) <m, we have by the inductive hypothesis,

M* (P)=M*(P+s) 2 t(P+s)-d(P+s) = n(P+s) + w(P+s) - h(P+s) - d(P+s) - 1.
Thus, by Lemma 11, we have \

M*(P)=M*(P+s) > t(P+s)-d(P+s)=t(P)-effect(s;P)-d(P+s) =2t (P)-d(P). (3.3)

Even if P+s consists of k (k 22) polygonal regions P . Pk’ we can

' 17 -
apply the above argument to each Pi and obtain (3.3), where M*(P+s) is the
sum of all M*(Pi). Thus, we obtain (3.2) for all polygonal regions P, and

the theorem is proved.-[]

A maximum independent set of the intersection graph G(P) shown in Fig.
9 is {@,,}, where each chord is represented by a couple
of its endpoints. Fig. 10 illustrates the trapezoids produced by Partition
method OPM.’ ' '

Steps 1, 3, and 4 in Partition method OPM can be easily implemented in
O(n2) time. Thus, the efficiency of Partition method OPM can be estimated
by Step 2. An intersection graph of minimally effective chords of a
polygonal region is a rather restricted graph. However, it is not easy to
find a maximum independent set of the intersection graph because we have

the following theorem. To describe the theorem, we need some terms.

Definition 8. An intersection graph of a class A of sets is a graph

whose node set is the class A and two nodes are joined by an arc if and
only if the corresponding two sets have an element in common. An
intersection graph of a set of straight lines in the plane (chords of a

circle, curves in the plane, resp.) is a straight-lines-in-the-plane graph

(circle graph, curves-in-the-plane graph, resp.).

12



Fig. 11. Transformation of a polygonal region P.

Theorem 3. The class of intersection graphs of minimally effective
chords of polygonal regions is the class of straight-lines-in-the-plane
graphs.

Proof. We first show that the class of intersection graphs‘of
minimally effective chords of polygonal regions is a subset of the class of
straight-lines-in-the~plane graphs.

Let P be a polygonal region and L be the set of minimally effective
chords of P. We assume that L satisfies the following condition (X):

(X) Any chord in L is primitive and no two chords in L have an

endpoint in common.
Even if L does not satisfy the condition (X), L can always be modified to
satisfy the condition (X). For example, let v be a common endpoint of
four chords (v,vl), (v,vz), (v,v3), and (v,v4) in L. Also let chords
(ul,wl) and (u2,w )} in L touch v as shown in Fig 11(a). Then, consider

four points Vl, v, v3 and v4 sufficiently close to v and replace v with

these four points and (V,Vl), (v,v2), (v,v3), (V,Va) with (vl,vl), (vz,vz),
(v3,v3), (v4,v4) as shown in Fig. 11(b). Although (Vl,vl) and (v4,v4) are
no more effective chords of the resulting polygonal region, it can be
easily seen that the intersection graph of the set of the resulting chords
coincides with G(P) by the finiteness of edges of P. Other cases can be
similarly reduced. Thus, any intersection graph of minimally effective
chords of a polygonal region is a straight—lines—in—the—plane graph.

Next, we show that the class of straight-lines-in-the-plane graphs is
a subset of the class of intersection graphs of minimally effective chords
of polygonal regions, which will be shown below.

Let G be a straight-lines-in-the-plane graph, and L be a
representation of G, that is, a set of straight lines in the plane which

realizes the graph G. By the finiteness of L, we can assume that all

13
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Fig. 12. Straight lines in the plane and the associated
polygonal region.

endpoints of the lines are distinct and that any two lines are not
collinear. Then, we can make a polygonal region P whose intersection graph
of minimally effective chords coincides with the given graph G as follows.

» We first find the convex hull C(L) = VisVgseeo vy for the set of all

'V =
endpoints of the lines of L. Then, we extend eazzlline of L sufficiently
short at both endpoints. By the finiteness of L, we can assume that the

set of the resulting lines also represents G and that any two endpoints do
not have the same y-coordinate. We then modify the convex hull C(L) and

obtain a polygon as illustrated in Fig. 12. For each endpoint inside the
polygon we assign a small triangle appropriately. Let P be the resulting

polygonal region. Then, it is easy to show that the intersection graph

G(P) of minimally effective chords of P coincides with G.[

A straight-lines-in-the-plane graph is a curves-in-the-plane graph,
and a circle graph is a straight-lines-in-the-plane graph [5,14]. The
maximum independent set problem is solvable in polynomial time for circle
graphs [7,11], while it is NP-complete for curves-in-the-plane graphs,
because planar graphs are curves-in-the-plane graphs [5] and the maximum
independent set problem is NP-complete for planar graphs [6]. Recently,
Kashiwabara [15] showed that the maximum independent set problem for
straight-lines-in-the~plane graphs is NP-complete. He proved that the
planar 3-satisfiability problem, which is known to be NP-complete [17], is
polynomially transformable to the maximum independent set problem for
straight-lines-in-the-plane graphs. The maximum independent set problem
for straight-lines-in-the-plane graphs is polynomially transformable to the
problem of minimum partition of polygonal regions into trapezoids, which is
obtained by the same argument in the proof of Theorem 3. Thus, we have the

following theorem.

Theorem 4. The problem of partitioning a polygonal region into a

minimum number of trapezoids is NP-complete.
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4. Exact Algorithms for Polygonal Regions With a Fixed Number of Windows

In the preceding section we showed that it is NP-complete to partition
a polygonal region into a minimum number of trépezoids. However, for a
polygonal region with a fixed number of windows, a polynomial~time
algorithm may be possible. In this section we first present an O(nz) time
algorithm for partitioning a polygoﬁal region without windows into a
minimum number of trapezoids. Next, we descfibe a polynomial~time
algorithm for a polygonal region with a fixed number of Qihdows.

Our O(nz) time algorithm is based on two results: one is our efficient
algorithm for finding a maximum independent set of a circle graph [11],

which will be described later; and the other is the following theorem.

Theorem 51 The class of intersection graphs of minimally effective
chords of polygonal regions without windows is the class of circle graphs.

Proof. We first show that the class of intersection graphs of
minimally effective chords of polygonal regions without windows is a subset
of the class of circle graphs.

Let P=v1,v2,...,vn,v be a polygonal region

1
without windows. Let L be the set of minimally
effective chords of P. By the same reason as in
the proof of Theorem 3, we can assume that L

satisfies the condition (X): Any chord in L is

primitive and no two chords in L have an endpoint

in common. Thus, by Lemma 9, two minimally Fig. 13. Two non-independent
effective chords of P are independent if and only chords of P.

if they do mot intersect at all. Since P is a polygon, for any chords
e=(vi,vj) and e'=(vp,vq) inL (1<i<j<n, 1<p<q<n), e and e' intersect
if and only if one of {Vp,vq} lies on the arc VisViigee
VosViseeesVys that is, i<p<j<q or p<i<qcx

..,vj of P and the
other on the arc Vj’vj+1""’
j (Fig. 13). Thus, if we consider that chords of a circle C are obtained
in a way as shown in Fig. 14 corresponding to the minimally effective
chords of P, then the intersection graph of the chords of C coincides with
G(P), the intersection graph of minimally effective chords of P. This
implies that G(P) is a circle graph.

Conversely, by an argument similar to the one in the proof of Theorem

3, we can obtain that any circle graph is realized by an intersection graph

of minimally effective chords of a polygonal region without windows. ]

Since Steps 1, 3, and 4 in the optimal Partition method OPM in Section
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3 can be easily implemented in O(n"™)

time, if Step 2 can be implemented in -/

O(nz) time for a polygonal region P

/
!
\
without windows, then the Partition \

method OPM requires only O(nz) time.

NG 13 %
Note that even if the set L of minimally - 1273
b
effective chords of P does not satisfy (a) (b)
the condition (X) stated above, L can Fig. 14. Circular representation of a
always be modified. to satisfy the polygonal region P without windows.

condition (X) in O(n?‘) time. Since G(P) (a) »Mim'maﬂy effective chords of a
polygonal region P. (b) chords of

is a circle graph by Theorem 5, we will .
a circle.

try to design an O(nz) time algorithm
for finding a maximum independeht set of a circle graph. We first present
an 0(n log n) time algorithm for finding a maximum-weight independent set
of an interval graph. Then, using this algorithm for an interval graph, we
describe an O{nz) time algorithm for finding a maximum independent set of a

circle graph. Here, interval graph is an intersection graph of a set of

intervals and a maximum-weight independent set is a independent set of a

maximum weight with respect to a given weight function on the node set.

-+
Consider an interval graph Gn whose intevals are given by Ii=[xi sXg ]
(i=1,2,...,n). Without loss of generality, we can assume that 2n numbers

X. X.+ are distinct and x, <x, <...<x_ . To each interval I., a
i i 1 2 n i

positive weight w(i) is attached. For this interval graph Gn’ a maximum-
weight independent set can be found by the algorithm shown in Fig. 15 which
uses a kind of the so-called plane sweep method, where we consider a dummy
interval IO=[—w,—w]. For i=1,2,...,n, let Gi be the interval graph of

intervals I Ii' Then Si is a maximum-weight independent set of

1 12, ey
Gi that contains the interval Ii if and only if Si—{Ii} is a maximum-weight
independent set of the interval graph of those intervals Im with Xm+< Xi_.
Thus we can easily obtain the following observation by induction on k,
which will help us to understand the algorithm well:
Let x be the k-th number and J be a maximum-weight independent set of
the interval graph of those intervals Im with xm+< x. Then, just
before the k-th iteration, U is the weight of J and, for each i with
xi_< x, W(i) is the weight of a’ maximum-weight independent set of Gi
that contains Ii' Furthermire, i indicates the rightmost interval
contained in J, that is, Xj <X for any interval Im in J if J#4, j=0

otherwise.

16
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Procedure MWIS;

begin _ £
sort 2n numbers x., , x. (i=1,2,...,n) in increasing order;
- i i
j:=0; U:=0;
for k:=1 to 2n do
begin _
if the k-th number is X, then
begin
comment: U is the weight of a maximum-weight
independent set of an interval graph of
intervals I with xt < x_ ; '
W(i):=U+w(i); P(i)=]
end; +
if (the k~th number is x, ) and (U<W(i)) then
begin  U:=W(1i); t j:=i end
end;
find i such that W(i)=max {W(j)| j=1,2,...,0}; S:=4;
while i#0 do
begin S:=Su{i}; di:=p(i) end;
comment: S is a maximum-weight independent set
end;

Fig. 15. A maximum~weight independent set algorithm for an
interval graph Gn'

Thus, we have the following lemma.

Lemma 12. For i=1,2,...,n, consider an interval graph Gi consisting
of Il’ IZ’ ceey Ii‘ Then, W(i) is the weight of a maximum-weight
independent set Si of Gi that contains Ii’ and p(i) indicates the rightmost

interval contained in Si—{Ii}, i.e.,

x;(i)=max {xh+ |Ihe (Siu {10})— {Ii}}.

This algorithm takes O(n log n) time in sorting 2n numbers xi—, Xi+
(i=1,2,...,n), and O(n) time in the other parts, hence we have the
following.

Lemma 13. A maximum-weight independent set of an interval graph
composed of n intervals can be found in O(n log n) time. Furthermore, if
2n endpoints of intervals are given in sorted order, it can be found in

0(n) time.

Gavril [6] has shown that a maximum-weight independent set of a circle
graph can be found by solving n times the problem of finding a maximum-
weight independent set of an interval graph consisting of at most n
intervals. He has considered that the problem for interval graphs can be
solved in O(nz) time, and that the total time complexity of his algorithm
is O(n3). In solving n problems for those interval graphs, we need sorting

only once in total, so that, by Lemma 13, we can obtain the following:
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Theorem 6. A maximum-weight independent set of a circle graph

composed of n chords of a circle can be found in O(nz) time.

By Theorems 5 and 6 we have the following main theorem in this

section.

Theorem 7. Partition method OPM can be implemented in O(nz) time for
a polygonal region P without windows, where n is the number of vertices of
P.

24w . . e s
Next, we present an O(n ) time algorithm for partitioning a

polygonal region with w windows into a minimum number of trapezoids after
giving a few preliminaries.
W

Let P be a polygonal region with w windows W WW. We

gs nees
0" For a minimally

effective chord s, s is called a connector of P if it connects two distinct

1’
consider the external polygon of P to be a window W

windows (Fig. 3 (c¢) and (d)). If a minimally effective chord s connects
two points on the same window (Fig. 3 (a) and (b)), then it is called a
proper chord of P. TFor two proper chords s and s' such that s connects two
points on some window and s' connects two points on another window, s
and s' are clearly independent. By an argument similar to the one in the
proof of Theorem 5, we have that the intersection graph G(Wi) of those
minimally effective chords of P which are proper chords connecting two

points on wi is a circle graph. Thus we have the following lemma.

Lemma 14. For a polygonal region P with w windows wl, wz, veey Ww and

the external polygon W the intersection graph GO(P) of those minimally

O,
effective chords of P which are proper is a disjoint union of circle graphs
G(Wi) (i=0,1,...,w), where G(Wi) is the intersection graph of those
minimally effective chords of P which are proper chords connecting two

points on Wi.

By Lemma 14, we can obtain the following partition method for a

polygonal region with w windows.

[Partition method B for a polygonal region with w windows]

Step 1. For a given polygonal region with w windows, find the set of
minimally effective chords of P.
Step 2. Find a maximum independent set I*(P) of the intersection
graph G(P) of minimally effective chords of P as follows.
Step 2.1. Find a maximum independent set I, of the intersection

0
graph GO(P) of those minimally effective chords of P which are proper.

18



Step 2.2. For each connector sj (j=1,2,...,m), find a maximum
independent set‘I*(P+sj) of the intersection graph G(P+sj) of
minimally effective chords of the polygonal region P+sj and set
I.,=1%(P+s, s.}.

i ( J) ui J}

Step 2.3. Find a set I*(P) of maximum cardinality among the sets

Igs» Ips -oes L. o
Step 3. Using the minimally effective chords corresponding to the
nodes in I*(P), partition P into several polygonal regions Pl’ PZ’ ooy Pk.

Step 4. Partition each Pi (i=1,2,...,k) into trapezoids by Partition .
method H.

Theorem 8. Partition method B correctly partitions a polygonal region
P with w windows into a minimum number of trapezoids and can be implemented
in O(n2+w) time, where n is the number of vertices of P. ‘

Proof. Since every maximum independent set of the intersection graph
G(P) either contains connector sj or not, a maximum independent set of G(P)
is correctly obtained in Step 2. Thus, the correctness of Partition method
B follows from Theorem 2.

Steps 1, 3, and 4 in Partition method B can be implemented in O(nz)
time. Thus we consider only Step 2. Let m be the number of those
minimally effective chords which are connectors of P. We shall show by
induction on m and w that the time complexity T(n;m,w) required in Step 2
is estimated as follows:

T(n;m,w)=0(mmin(m’w)n2).

(4.1)
If m=0, then (4.1) holds for all w20 by Theorem 6 and Lemma l4. Assume
that (4.1) holds for all w =20 and all m <p. Now, let P be a polygonal
region with w windows and p connectors (w =0, p >0). Step 2.1 requires
O(nz) time by Theorem 6 and Lemma 14. Step 2.2 is divided into two parts:
one is to find the minimally effective chords of P+sj (j=1,2,...,p), which
requires 0(n) for each j; the other is to find a maximum independent set
I*(P+sj) of G(P+Sj), which requires T(nj;mj,wj) for each j, where nj, mj
and wj are the number of vertices, connectors and windows of P+sj,
respectively.  Thus Step 2.2 requires

;;?zl (T(n3my,w,)+0(n))
time. Since mj<:p—l and wj<:w-1 for each j (j=1,2,...,p), we have by the

inductive hypothesis that Step 2.2 requires
min(p—l,w—l)n2

o(p-p )
time. Step 2.3 requires O(p+n) time. Thus Step 2 is shown to require only
O(pmln(p’w)nz) time and (4.1) is proved for all m and w.
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Since m <n, we have the

theorem. [] . 2\

Q N <.
’ N,
.

e o
Finally, we give a remark EM' %

on a heuristic method of

finding a maximum independent

set of the intersection graph

_of minimally effective chords. : '
Let P be a polygonal region (a) (b)
with w windows wl, w2, ey Ww.

Fig. 16. (a) Graph F(P) of a polyQOnal region P and
Consider the external polygon

two broken lines s and s'.  (b) Polygonal region
to be a window WO- Let F(P) be  obtained by drawing two broken Tines s and s'.

the plane graph obtained from P

by drawing all minimally effective chords of P (Fig. 16(a)). A node of
F(P) is a vertex of P or an intersection point of some minimally effective
chords of P. C(Clearly, F(P) has O(n2) nodes. If F(P) has a region f
adjacent to two distinct windows Wi and Wj of P, then we can merge two
windows into one by drawing broken line s inside the region f connecting a
point on Wi and a point onij. As far as finding a maximum independent set
of G(P) we can draw such lines, because the intersection graphvis not
changed. 'Thus? this may be applied to decrease the number of windows of P

in Step 2 of Partition method B (see Fig. 16(b) and Theorem 8).

5. Approximation Algorithms

In the preceding section, we have presented an 0(n2+w) time algorithm
for partitioning a polygonal region with w windows into a minimum number of
trapezoids, although, in general, this problem for polygonal regions with
the unbounded number of windows is NP-complete. However, this algorithm
requires too much time to be said practical. From the viewpoint of
practical applications, a minimum partition is not so important. A near
optimal partition is quite satisfactory in practice. )

In this section, we present an approximation method for this problem.
As a special case of this method, we can obtain an O(n log n) time
approximation algorithm with absolute performance ratio 3. Note that for
an approximation algorithm C for a minimization (maximization, resp.)
problem, the absolute performance ratio R(C) of the algorithm C is defined
by

R(C) = sup{|c(D)|/|oPT(1) |} (R(C) = infl|c(D)|/loPT(T)|}, resp.),
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where OPT(I) is an optimal solution and C(I) is an approximation solution
obtained by the algorithm C for an instance I of the problem. Our
approximation method is based on an approximation method AMIS for the
maximum independent set problem for intersection graphs df minimally
effective chords of polygonal regions. If the absolute performance ratio
of the method AMIS is 1-1/c (c 21) then the ratio of our method is given by
14+2/c for polygonal regions (1+l/c for polygonal regions with zero or cne

window).

[Partition method A]

Step 1. Find the set of minimally effective chords of a given
polygonal region P.

Step 2. Find an independent set I(P;A) of the intersection graph G(P)
of the minimally effective chords by an approximation method AMIS with the
absolute performance ratio 1-1/c.

Step 3. Using the chords corresponding to the nodes in I(P;A),
partition P into several polygonal regions Pl; PZ’ e Pk.

Step 4. Partition each P, (i=1,2,...,k) into trapezoids by Partition

method H.

Theorem 9. If the absolute performance ratio of the approximation
method AMIS is (1-1/c) for the maximum independent set problem on
intersection graphs of minimally effective chords of polygonal regions,
then the absolute performance ratio of Partition method A is (1+2/c) for
general polygonal regions and (1+1/c) for polygonal regions with zero or
one window.

Proof. Let‘I(P;A) be an independent set of G(P) obtained by the
method AMIS and I*(P) be a maximum independent set of G(P). Let M(P;A) be
the number of trapezoids obtained by Partition method A. There may be an
independent set containing all nodes in I(P;A) and other nodes of G(P)
which correspond to horizontal chords. Thus, by Lemmas 2 and 10, we have

M(P;A) < n(P) + w(P) - h(P) - |1(P;A)| - 1. (5.1)
By Theorem 2, we have

M%(P) = n(P) + w(P) - h(P) - [I*(P)| - L. (5.2)
We shall prove (c+2)M*(P)-cM(P;A) >0 (i.e., M(P;A)/M*(P) < 1+2/c) via Lemma
1.

Suppose that we applied the optimal partition method OPM to the given
polygonal region P and obtained the set D' of minimally effective chords
corresponding to a maximum independent set I*(P) of the intersection graph

G(P). Let D" be the set of chords drawn in Step 4 of the optimal partition
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method OPM. Then, by Lemma 1, we have the following inequality
Mx(P) = |p'| + [p"| - w(p) + 1. (5.3)
The equality holds when every chord in D' and D" is primitive. Since
p' =|1%(P) |, by (5.2) and (5.3), we have
2 [1#(P)| < n(P) + 2w(P) - h(P) - 2, and
MA(P) + w(P) + 1 - |I*(P)[2 2. (5.4)
Thus we have
@) < (3/2) (a(@)+2w(P)-h(P) -2)~2| Tx(P) |
<2(n(P)+w(P)-h(P)-|I*(P) | -1)=2M%(p), (5.5)
because it is easily seen that any window contains at least two
non-horizontal polygon edges and n(P)-h(P)-2w(P) 20. From the assumption,
we have |I(P;A)|/|1*(P)| =1-1/c. Thus, by (5.1) and (5.5), we have
(c+2)M#(P)-cM(P3A) = c(|I(R;A)| - |T*(R) | )+24(R)
> e |L(®;8) |- (e-1) [1%(2)] 20.
If w(P)=0 or 1, then by (5.1) and (5.4) we have
(c+1)M*(P)-cM(P3;A) =0. [J

If we set c=1, then we have the following theorem for the O(n log n)

time Patition method H.

Theorem 10. The absolute performance ratio R(H) of Partition method H
is 3 (2, resp.) for the problem of the minimum partition of polygonal

regions (polygonal regions without windows, resp.) into trapezoids.

Note that the bounds are best possible. For the polygonal region P
without windows shown in Fig. 17,
M(P;H)=2m+1 and M*(P)=m+l. Thus we
have

M(P;H)/M*(P) = 2 - 1/(m+l).
The ratio is asymptotically two.

On the other hand, the polygonal

region P shown in Fig. 18 contains

m windows. We can easily see that Fig. 17. The worst Fig. 18. The worst
M(P;H)=3m+5 and M*(P)=m+3. Thus, case polygonal region  case polygonal region
M(P;H)/M*(P) = 3 - 4/(m+3). P without windows. P with windows.

We have known that if we have an approximation algorithm with the
absolute performance ratio bounded by some constant for the maximum
independent set problem on the intersection graphs then we can design an
approximation algorithm for the minimum partition problem of polygonal

regions whose absolute performance ratio is better than that of Partition
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method H. Unfortunately, we know no polynomial-time approximation
algorithm with the absolute performance ratio bounded by some constant for
the maximimum independent set problem of general graphs [6]. It might be
true for straight-lines-in-~the-plane graphs, although no proof has been
done yet. Thus, if we consider all possible straight-lines-in-the-plane
graphs then there may be little hope to obtain a (1-1/c) approximation
algorithm for the maximum independent set problem for some c>1..

From the practical point of view, we do not need to consider all
possible intersection graphs. For example, VLSI artwork data contains k+45°
(k=0,1,2,3) lines to about 90 percents. Thus, it is meaningful to consider
polygonal regions bounded by k+45° lines. We now assume that polygon edges
are decomposed into four sets of 0°, 45°, 90° and 135° lines, respectively.
Thus, the set of minimally effective chords is;decompoéed into four sets
El’ E2, E3, and E4 of Oo, 45°, 900, and 135° lines, respectively. This
implies that the intersection graph is a 4-partite graph since any two
minimally effective chords s' and s'" in the same set Ei are independent.
The complexity of the maximum independent set problem for 4~partite graphs
is not known; but a maximum independent set of a bipartite graph can be

found in 0(r15/2

) by a maximum matching algorithm [10]. This polynomial-
time exact algorithm leads to the following approximation algorithm F on

the maximum independent set (MIS) problem for 4-partite graphs.

[Approximation algorithm F for MIS problem]

Input. Four-partite graph G=(V1,V2,V3,V4,A), where each node set Vi
(i=1,2,3,4) corresponds to the set B - '

OQutput. Independent set I(F).

Method. For each pair (Vi,Vj), i <j, we construct the subgraph Gij'
induced by Vi Uvj' Since Gij is a bipartite graph, we can find a maximum

independent set Ifj. Let I(F) be a maximum one among Iij’ 1<4i<j=4,

Lemma 15. The absolute performance ratio of the algorithm F for the
maximum independent set problem on 4-partite graphs is 1/2.
Proof. Let I* be a maximum independent set of a given 4-partite graph

G=(V1,V2,V3,V4,A) and a; = | 1% ﬂVil for i, i=1,2,3,4. We can assume

without loss of generality that al 2 dz Z d3 2 u4, Then, the maximum
independent set Ifz of the subgraph induced by VIU V2 satisfies
* % % =
|112; > |I nVll + |I ”V2| oy + 0.

Thus, we have

T3, 1 /1T%] > (I T*a V)| +1T%0 V, 1)/ [T*|= (o +o,)/ (o toytogba) = 1/2. 0
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The set of minimally effective chords of such a polygonal region P can
be obtained in O{(n log n) time by the so-called plane sweep method. A
maximum independent set of the intersection graph of those minimally
effective chords of P which have only two kinds of slopes can be obtained

3/2

in O0(n log n) time [12]. Thus, Approximation algorithm F only requires

o(n3/2 log n) time. Using this approximation algorithm F and Theorem 9, we
have the following theorem.

/2

Theorem 11. There is an O(n3 log n) time approximation algorithm
for the minimum partition problem of polygonal regions with ke 45°
(k=0,1,2,3) lines into trapezoids whose absolute performance ratio is two

(3/2 for polygonal regions without windows).

Other examples of an application of the approximation method A are as
follows. Consider a polygonal region P whose windows (internal polygons)
are all rectilinear. Then the intersection graph G(P) of minimally
and G,: G, is the

1 2 1
intersection graph of those minimally effective chords of P which connect

effective chords of P is divided into two subgraphs G

two vertices on the external polygon; and G, is the intersection graph of

2
those minimally effective chords of P which connect a vertex on a window
and a vertex on a window or the external polygon. Note that G1 is a circle

graph and G, is a bipartite graph. Thus, we can obtain a maximum

independentzset Il of Gl in O(nz) time and a maximum independent set 12 of
G2 in 0(113/2 log n) time [12]. Since a maximum independent set I*(P) of
G(P) satisfies l/2|I*(P)l Smax{[11|,llzl}, we can obtain an O(nz) time
approximation algorithm with absolute performance ratio 1/2. Thus, we have
an O(nz) time approximation algorithm with the absolute performance ratio 2

for partitioning a polygonal region with rectilinear windows into trapezoids.

Also consider a rectilinear region P. An approximation algorithm with
absolute performance ratio 1/2 for the maximum independent set problem on
bipartite graphs can be trivially obtained. Thus, we have an O(n log n)
time approximation algorithm with the absolute performance ratio 2 for

partitioning a rectilinear region into rectangles.

Finally, we give a remérk on approximation algorithms. For a polygonal
region P, let |I*(P)|=a(P)n(P), where a(P) is a parameter. Clearly, 0<
a(P) <1/2. 1In practice, P contains not so many minimally effective chords;
and consequently, a(P) is very small. For example, current VLSI artwork
data may satisfy a(P) <1/10. Thus, it is meaningful to analyze the worst

case ratio of an'approximation algorithm with a(P) as a parameter. By an
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analysis similar to the one described above, we can obtain an apprbximation
algorithm with worst case ratio b(P)=14+(4a(P)/c(3-4a(P))) for a polygonal
region P if we have a (1-1/c) approximation algorithm for the maximum
independent set problem on intersection graphs of minimally effective
chords of polygonal regions. Note that if a(P)=1/2 then b(P)=l+2/c and if
a(P)=1/8 then b(P)=1+1/5c. Thus, Partition method H (c=1) may be a good

approximation algorithm in practice.

6. Conclusion.

We have considered the problem of partitioning a polygonal region into
a minimum number of trapezoids with two horizontal sides. We first
introduced an index t(P) = n(P)+w(P)-h(P)-1 of a polygonal region P, where
n(P), w(P), and h(P) are the number of vertices, windows, and horizontal
edges of P, respectively. Owing to this index, we could have many results
rather easily. Investigating the effect of a chord by employing this
index, we showed that the minimum number M*(P) of trapezoids is given by
M*(P) = t(P)~-d(P) = n(P)+w(P)-h(P)-d(P)-1, where d(P) is thg cardinality of
a maximum independent set of the intersection graph of minimally effective
chords of P. Thus, the problem is polynomially equivalent to the problem
of finding a maximum independent set of an intersection graph of minimally
effective chords of P. Next, we showed that the class of intersection
graphs of minimally effective chords of polygonal regions is the class of
straight~lines-in~the-plane graphs. Since the problem of finding a maximum
independent set of a straight-lines-in-the-plane graph has been shown to be
NP-complete [13], so is this problem of partitioning a polygonal region
into a minimum number of trapezoids. Although the problem of partitioning
a polygonal region into a minimum number of trapezoids is NP-complete,
there is a polynomial-time algorithm for partitioning a polygonal region
with a figed number of windows into a minimum number of trapezoids. In
fact, we have presented an O(nz) time algorithm for a polygonal region P
without windows by employing an O(nz) time algorithm for finding a maximum
independent set of a circle graph and by showing that an intersection graph
of minimally effective chords of P is a circle graph. Also, we gave an
O(n2+w) time algorithm for a polygonal region with w windows. Finally, we
presented an O(n log n) time natural approximation algorithm which uses
only horizontal chords. We showed that the absolute performance ratic of
the algorithm is 3 for polygonal regions (2 for polygonal regions without

windows) .
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The approach of introducing an index of a polygonal region may be
applied for the problem of partitioning a polygonal region into another
fundamental figures. For example, we have obtained an O(n log n) time
algorithm with the absolute performance ratio 4 for partitioning a

polygonal region with windows into triangles [2].
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