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OPTIMUM BLOCK PLAN FOR A FRACTIONAL 2™ FACTORIAL DESIGN

Teruhiro Shirakura (Kobe University)

e x K& A ®W

I. Introduction. Consider a 2™ factorial experiment with m factors. An
assembly (or treatment combination) is represented by an m-rowed vector
(jlv’ ]'2, .., jm), where jt (the level of t-th factor) is equal to 0 or 1.

As unknown effects, 80, et, and in general, Stl. ..t, denote the general |

k

mean, main effects of t-th factor, and k-factor interactions of corresponding
factors, respectively. For a fixed integer 2(l< 2 sm), let § be the v x1

vector composed of effects up to ¢-factor interactions, where v = X;L:O(T) ,i.e.,
'=(6.:8 0 R 6 .86 .. T
Q ( 0’ 1! 2! b m, 12’ H em_l m’
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Assume throughout this paper that (2+1)-factor and higher' order interactibns
are negligible and that the m factors do not involve block factors. Let T

be a fractional 2™ factorial (2m-FF) design which is a suitable set of N assem-
blies. Note that the assemblies in T are not always distinct. We now con-
sider the estimation of a v, *x 1 vector of linear parametrié functions 90 =

0

C 6 with the design T. For an N X 1 observation vector ¥,, of T (whose

T
observations are assumed to be independent random variables with common

variance), consider the model

(1.1) E(yp) =EB8



where E(.) stands for an expected value and E- is the N x y design
matrix with elements 1 (see, e.g., Yamamoto, Shirakura and Kuwada

(19753)).  The best linear unbiased estimate of 8y can then be given by
; A .
(1.2) | | 85 KE Yy

where K is a vg XV matrix satisfying KM = C. Here M =E'E is ,
called the information matrix of T. Note that there doés not always exist

K satisfying: KM = C for a given C. However we consider a design T
for' which’ there exists such a matrix K, because of the estimability of g 0"
When 8g = @ > i.e., vg =V and C =1 (identity matrix of appropriate
order), T corresponds to a 2™-FF design of resolution 22+1l. On the

other hand, when 8g = (el, cee B e ),

m P 891 0 g 42--em

(\)0 = v—l-(%‘)), T corresponds to a 2™-FF design of resolution 2% (see
Box and Hunter (1961)).

In view of (1.1) and (1.2), N homogenuous observations are necessary
in order to estimate QO' After planning a design T, however, it may
occur that the N observations can not be obtained simultaneously by
physical, chemical énd/or ecomomical reasons, etec. In this case, it is
required to divide T into some blocks. Of course, the number of such
blocks (say k) must be small compared to N. Tﬁe problem is to constitute
the k blocks such that they make an influence on the estimate éO\ as
small as possible. Aé measures for constituting such blocks, we use well-
known three norms of a confounding matrix of T. In Section 2, we intro-
duée the three norms of a confounding matrix for r block effects and
present a procedure for the constitution of at most k = 2% blocks for a
design T. Furthermore, some properties of these norms are discussed for

a 2"-FF design of resolution 2¢ or 22+l. In particﬁlar, it is shown that
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for any ,2m-FF design of even resolution, there exist.at most 2° blocks
for which the three norms are zero. A design T whose information matrix
M is of the form M = nll + nzG, where N =n

+n2 and n, > 0, has

1
various desirable properties (see Bhaskararao (1966), Raghavarao (1959, 1960,
1971), and Cheng (1980),‘ etc.). In the above, G denotes a matrix of appro-
priate order whose elements are all one. For the constitution of 2 (r = 1)
blocks for such a design T, Section 3 gives a lower bound on one norm
which may be preferred over the other two norms. Some examples in which
this bound is attained are also given. Section 4 deals with the constitution
of 2 blocks for a balanced fractional 2™ factorial (Zm-BFF) design of reSo-
lution 24+1. It may be noted that the above type design is a special case
of this design. A Zm—BFF design of resolution V (2= 2) was first discussed
by Srivastava (1970). Yamamoto. Shirakura and Kuwada (1975, 1976) have
generalized to a design of resolution 22+1. Some properties of the prefer-
able norm are presented for a 2m—BFF design of resolution 2%¢+1. Also, the
norm are slightly‘modified. Indeed, the constitutions of 2 blocks mini-
mizing the modified measure in some class are presented for A-optimal 2™
BFF designs of resolution V for m = 4 and for the values of N satisfyin'g
11 < N < 26.

The results contained in this paper are also useful in the case where
one does not know in advance whether block factors are exactly needed.
Usually, the addition of new factors (nuisance factors) requires a larger

number of assemblies and makes it difficult to plan a design in which the

effects 8 is unconfounded with nuisance parameters.

2. Constitution of a confounding block plan. Let T be a 2™ -FF
() (@)

design with N assemblies whose a-th assembly is given by (31 8 PR

s, ir(r(:)) for a =1,---, N. For 2¥ < N, consider another 2" design
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D with r factors and N assemblies whose o-th assembly is g"ivén by

(q§a), dga), e, dia)) for o« =1,--+, N. Suppose the number of

distinct assemblies in D is k with of 1 <k <9,

Further let [T:D]
be a set of N assemblies obtained by juxtaposing T and D such that
its a-th assembly is "(i{*), -+, &5 a0 al®)y for o =1, W
The set [T ; D] can be considered as a 2™ T _pE design with m+r factors.
However,; the r factors play here the role of block factors and D gives

a block plan for -T. That is, k blocks B(dl...';'dr)» for T are con-
(a)

stituted in a way such that the o-th assembly of [T :D] is (]'1 y Tt
jr(na); d(la), s dia)) if and only if the oa-th assembly of T belongs to

B , ] . - .
(d(la)_._dg‘u)) Consider now the N x 1 observation vector Y[T:D]

of [T :D]. According to model (1.1), we then have the following model:

(2.1) =E¢ +X(D)n ,

EGrr . py)
where n' = (ﬁl, e nr)’ (nB is the effect of B-th biock factor), and
X(D) is the N x r design matrix for n of D with elements f1. Note
. that the level of j-th factor of the o-th assembly in D is 0 and 1 if and
only if the (a, j) element of X(D) is -1 and 1, respectively. We still insist

on using § in (1.2) for the estimation of 8 Under model (2.1), the

0 0"
expected value of 90, (yT in 8, 1s replaced with y[T:D])’ becomes

(2.2) E( + A(D)n,

o) =8

0
where A(D) = KE'X(D) is said to be a confounding matrix of D. As

measures how E(QO) in (2.2) can be close to (_90, the following three

norms of A(D) may be considered:

(i) ”A(D)”l = maxlgiévo {2]?:1}&1]' |},

(2.3) (ii) HA(D)HZZ““aX y | i,

(iif) |1A(D>l|’3=’{tr(A(D)'A(D))}% = {2212]?:1 af]. 1,
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where a, i are the (i, j) elements of "A(D). Let DII;I denote the collec-

tion of all possible D  with N assemblies, _,‘contaihing k. distinct. ones

r-1 k s27). For a given T, D in Dllj is said to be a confdunding

block (CB) plan of order k when D is selected in a consideration of

(2

the norms ”A(D)Hi, (i=1,2,3). In particular, D in DII;I is said to be

an optimum confounding block (OCB) plan of order k for T with respect

N
k

each 1= 1,2,3. Also, the set Br x of the corresponding k blocks

to the norm [|[AMD)[; if [JAMD)|; is a minimum in the calss D for
B(dy...dy) 1s said to be an optimum block of order k for T. This
idea is due to Hedayat, Raktoe and Federer (1974), in which they have
given the norm [[A|| = (tr A'A)% of alias matrix A as a measure in
selecting a design. |

2™ FF designs of reéolution 2% or 2%+1 are particularly important
for our practical uses. Therefore we shall discuss some properties of

the norms ”A(D)“i’ (i =1,2,3) for these designs.

Theorem 2.1. Let T be a 2"-FF design of resolution 2%. Suppose
an N x r submatrix of E whose r columns correspond to r &factor
interactions has k distinct rows (21'—1 <k = 2r). Then there exists an

OCB plan D of order k for T such that HA(D)“i =0, (i=1,2,3),

i.e., A(D) is a zero matrix.

Proof. Denote the submatrix by Y. Assume that the r 2-factor

interactions are at the sl-th, S,~th, -+, sr-th positions of g and let

2
Z Dbe the v x r matrix in which the i-th element of si-th row is 1
and 0 elsewhere. Then Y = EZ holds. Put X(D) = Y. It is observed

that A(D) = KE'X(D) =KMZ =CZ = 0. This completes the proof.

Theorem 2.2. Let T be a 2"-FF design of resolution 22+1. Suppose

that there exists the same submatrix as in Theorem 2.1. Then, there exists

_5_
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a CB plan D of order k for T such that HA(D)“i =1, (i=1,2),
and ||A(D)H3 =/r . Moreover, in the plan D, every effect up to (2-1)-

factor interactions is unconfounded with block effects n.

Proof. Consider the same matrices Y and Z as in Proof of Theorem
2.1. Put X(D) = Y. Then, since C =1 and K = M}, we have A(D)

= Z, which completes the proof.

Let &M be the set of 2™ all distinct m-rowed vectors with elements
0 or 1. Consider the design Ty obtained from a design T by a level

transformation (jl’ cee, jm)»+ w = (j1+ Wy j o+ wm), (mod 2), where

m

Gpoors i) e T and w = (uy, 00,0 ) eQm. (In particular, T(O,---,O)

=T.) Then we have
Theorem 2.3. Let T be a 2™-FF design of resolution 22 or 22+1.

Suppose D is a CB plan for T. Then for o e ¢,
(2.4) A (Dl = H,AxT_LL)(D)Hi ,i=1,2,3
hold where Arp, 1is the confounding matrix for Ty.

Proof. Let Er (D) and Mt (D) be respectively the design matrix
and information matrix of Tg. Then it can be shown that there exists the

v x v diagonal matrix
P, = diag(l; (-1, .-+, (-1m; (P02 .. pfmatom
;DML L fmeen Ty

which satisfies ET@ = Eg Py (see Srivastava, Raktoe and Pesotan (1976)).
Therefore we have Mp = PyMrPy.. Also, in this case, there exists a v xv,
matrix Qu satiéfying QwCPy = C. In fact, put Quw = CPyC'. We thus

have

(QuKP)Mp = QuKPyPoMp Py = QuKMpPy = QuCPy = C.
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This means that if T is a oM FF design of resolution 2& (or 22+1),
then T, 1is also of resoution 2% (or 22+1). Therefore, ATm(D) =
(Qu K Py) EJI‘QX(D)=Q@ A7) holds. Since Qg is a diagonal matrix such

that the nonzero elements are *1, we have (2.4) from (2.3).

As the first problem, it is interesting that (optimum) CB plans of
order 2 (i.e., r = 1) are constituted for designs. (In this case, note
that A(D) and X(D) are column vectors.) In view of Theorem 2.1,
we can always constitute an OCB plan of order 2 for a 2™ -FF design of
even resolution. The following theorem implies that for a 2™-FF design of
odd resolution, we can obtain a CB plan better than one in Theorem 2.2

with respect to the norm | A(D)| :
) 1

Theorem 2.4. Let % <m-2. Then there exists a CB plan D of order
2 for a 2"-FF design of resoluton 2¢+1 such that || A(D)H1 = } holds.
Moreover, in this plan D, any effects up to (2-1)-factor interactions are

unconfounded with block effects n.

Proof. Since & s m-2, there exist two main effects 6, and B¢
such that t, t' ¢ {tl, AERI P t'l, --+, ty_1} for two (&-1)-factor
interactions Oty---ty.q and et'l. . 't'J?,—l' Denote a column vector of E
corresponding to an effect ez in 6 by e,- Then consider the N x 1

vector x as follows:

x = dlepr(ety oty g redy-otly ) Fefr(ety ity gt ety ety D)

where = denotes the product operation defined by (al, 8y, vt an)’ *
. 1 = e ' i3 3

(bl’ bZ’ s bn) (albl’ azbz, , anbn) . Then it is easy to verify

that x is a vector with elements 1 or -1. From the property of design

matrix E, Xx can also be written by

x = 3(et tyeoetg-1 Tt trl":t'l-l + ?ftl"'tg-l' - et t']_"'t'g_l)'

-3
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This means that x caﬁ be expressed as a linear combination of columns of
E corresponding to the four 2-factor interactions 6+ tyecetyop 8t tvl' RYISE
ot t1e e tgoq and ~6ft'l...t'2_1. Suppose now z isa v x 1 Véctér with
elements 0, 1 or -1 obtained from 6 by replacing the above first three
2-factor interactions with 1, the last one with -1, and the other effects with

0. Further put X(D) = x. Then we have X(D) = $Ez. Therefore, A(D) =
1o, |

M “E'X(D) = 3z. Hence ||A(D)||,= %, which completes the proof.

Note that |IA(D)|]2= 2 and ||A(D)|]3= 1 for the plan D in Theorem
2.4. However, as compared to the norms (criteria) ||A(D)H2 and’ || A(D)H3 ,
the criterion ||A(D) “1 directly acts to reduce the bias for each estimate

~

in 6, In a sense, HA(D)Hl may be preferred over HA(D)H2 and [IA(D)H3 .
We henceforth investigate an OCB plan of order 2 for a 2™_FF design of
odd resaluiton with respect to [|A(D)H1 . For simplicity, we write | A(D)]

for ||A(D)Hl.

3. OCB plan of order 2 for some design. In this section, an

~ optimum block B with respect to | A(D)|| is characterized for a oM.

T,2

FF design of resolution 2¢+1 whose information matrix is of the form M =

ny

I+ nzG, where N = n, +n, .and n, z 0.

The design T is called an orthogonal 2"™-FF (OFF) design of reso-
Iution 22+1 if M = nll, (n2 =0 m the above). Such a design has
various desirable properties. It is well known that the design is optimal
with respect to most established criteria (e.g., A-, D- and E-criteria due

to Kiefer (1959)). It is cear that minimizing of ||A(D)|| is equivalent

to that of ||E'X(D)||. We have [|E'X(D)|| z 2s, (si is a nonnegative 7

integer), in the design, since N and therefore, |[E' X(D)|| are even.

Example 1. Consider
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T = {Q(S,O), 9(5;2)) 9(5’4)} >

where q(m, h) is the set of (ﬁ) distinet m-rowed vectors in Q! with
weight h (number of 1’s). Then, it is easy to see that T 1is a 25—OFF

design of resolution V with N = n, = 16 aseemblies. Let

B gy = (2(5,0), (5,0}, By ={a(5,2)} .

be two blocks for T. For the corresponding plan D, we then have

|E'X(D)| = 4 ‘and therefore, |[A(D)|| = %. In fact, this design D turns out
to be an OCB plan of order 2 for T. Thus BT,Z = {B(O)’ 7B(1)} is

an optimum block.

Consider now a design T with n, > 0. This design can be obtained

2

by adding n assemblies (1, 1, -+, 1) to the above orthogonal design. -

2
Recently, Cheng (1980) has shown that the design with n, = 1 is optimal

with reépect to a generalized type criterion (defined by the same author

(1978)).

The following lemma can easily be proved:

Lemma 3.1. For M = nll + nzG, (n2<> 0),

M-1 = v

11 - VZ(G - D ;

where vy = {n1+(v—l)nz}/{nl(n1+vnz)}' and Vo = nzl{nl(n1+vn2)}.

N

Let b = E'X(D) and assume there does not exist a plan D in D2

such that b=0 (0 is a zero vector of appropriate order). Then we

establish:
Theorem 3.2. For a design T such that M = n, I+ nzG, (n2 > 0),
and for a plan D in Dg},
(3.1) Aoz —L1
B nl + \)n2 l
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holds with equality if and only if b' = #(1,1, ..., D).

Proof. Let b'=(by,by, =", by) and b = 2;:1"1‘ Further suppose
the bi’s are arrenged in ascending order of magnitude such that b(l) <

b £+ <D

(2) Then

)’

(3.2) A = M lp| = max (v, V)b ~bv

1sizv] 2l -

where v1 and v2 are in Lemma 3.1. We divide two cases b > 0 énd
b < 0.

(i) The case of b > 0. In this case, b z 1, since bi’s are

(v
integers. Take p = {vl - (v-1) VZ}/VZ (> 0). Then it is easily seen that

(3.3) (p+v) D p (b

L i AL

-1) + vb - bz 0.

) ™)

Therefore,
(V1+V2)b(v) -bvy 2Vyp = > 0
holds. Hence from (3.2) we have

(3-4) ”A(D)“ P4 (V1+V2)b(\)) - bV2 ?_im

The equality in (3.3) holds if and only if b(v) =1 and b = y. This
means b' = (1,1, -+, 1). It follows from (3.4) that the equality of (3.1)

holds if and only if b'= (1,1, ---,1).

(ii) The case of b < 0. In this case, b(l) < -1. By an argument
similar to the case (i), it can be shown .that .
N B} 5 - 1

Also, it can be shown that the equality holds if and only if b' = -(1,---,1).

This completes the proof.
Example 2. Consider

T = {2(5,0), a(5,1), (5,2), «5,3), 5,4), A5,5), a(5,5)} .

_10_



Then, it is easy to see that T 1is a 25—FF design of resolution V with

N = 33 assemblies such that M = 321 + G. That is, v = 16, n, = 32

and n, = 1. Let

B(O) = {Q(5,0), Q(5,2), 2(5,4), Q(5,5)},

B(l) ={a(5,1), (5,3), (5,5)}

be two blocks for T. It is easily seen that b =E'X(D) = (1,...,1)

for the corresponding plan D in DI;. Since N 1is odd, b is not equal

to 0 at all. Therefore, it follws from Theorem 3.2 that ||A(D)||= (n;+vn,) 1

= 1/48 is a minimum in Dl;. Hence D is an OCB plan of order 2 for

T and BT,Z = {B(O)’ B(l)} is an optimum block.

4. OCB plans of order 2 for balanced designs. CB plans in DI;
are developed for 2™-BFF designs of resolution 24+1. We first define a

balanced design. A 2™ -FF design of resolution 2%+1 is called balanced if

the covariance matrix Var(§) = Mulor2 of 8§ = @0 in (1.2) is invariant

under any permutation of m factors, i.e., if for two estimates étl' Sty

1<

b

and 8ty...¢, in

Var(8¢,...¢ ) = Var( b ¢4q---t.))>
(4.1 1 u’ (t1 w)
Cov(étl...tu, Bty ...f,) = COV(ér(tl-'-tu)’ 8 o(ty---t'y))

where Var(.) and Cov(-:,-) stand for variance and covariance of estimates,

respectively, and T is an element of the symmetric group 6 = {17 ; 1 =

1 2 PN m
(1) ©2) ---™Wm)

2% < m. It is known from Srivastava (1970) and Yamamoto, Shirakura and

( )} of order m. We here give the practical restriction
Kuwada (1975, 1976) that a 2™-BFF design of resolution 22+1 with N as-
semblies is equivalent to a balanced array of size N, m constraints, strength

24 and index set U = {pl, s * }, (simply B-array[N, m, 2%, 11]),

b u22

provided M is nonsingular. For the save of space, see the above papers

- 11 -
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for the definition of a blanced array. In particular, a B-array[N,; m, 2%,
i1 ] is called an orthogonal array of size N, m constraints, strength 22
and index x if X = Hp = Hy =700 Hgg- As a natural consequencer, the
above orthogonal array is equivalent to a 2™-OFF design of resolution 28+1

2 2%

with M = 2**AI (i.e., N = n, = 2°°% in Section 3). A design with M =

1
nll + nZG, (n2 > 0), in Section 3, is also equivalent to a B—array,\[N =

n,+n,, m, 22, 1] where il = {uo = A, = X+n2} and

b ng‘_l = X’ uzg[
ng = 27
Now, for a v x 1 vector ¢, attach the same subindices as the effects

of 6 to the elements of ¢, i.e.,
' = . .. -

c (cgs €15 , € 5 ¢C

T Cyg.ie T cm—SL+1--~m)'

Further, consider a v x 1 vector 1t(c) for 1 ¢ 6 defined by

T(g)': (CO; cT(l)’ AR cl’(m); CT(.]_Z)’ M ] CT(m_lm);

).

-, C

© 01(12...2)" T(m-2+1---m)

Then, we have the following lemma which can -easily be proved:
Lemma 4.1. For any t € &G,
1 - 1 ' A
¢yrleg) = Toleyiey

are v x 1 vectors.

holds where <_: 9

1andc_:

Theorem 4.2. Let T be a 2"-BFF design of resolution 2¢+1 with

N assemblies and D be a plan in VDI;I. Then, for any 1 ¢ 6,
[a@)] = [a" D]
holds where AT(D) = M ! 1(E'X(D)).

Proof. For 1., 1, ¢ G, suppose V( 1,(8), 71.(8))c* is the covariance

- 12 -
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matrix of @ in which the row and column orders correspond to Tt;(8) and

T2(8), respectively. In particular, note that V('Q, 8) = M_l since Var(8)

=M Y62, It follows from Lemma 4.1 that

AT(D) = M L@ x(D)) = V(8, 8) T(E'X(D))

V(g, TH(8))(E'X(D)).
Therefore, we have
THAT (D)) = V(T(8), TH(8))(E'X(D)).

From (4.1), V(8, 8) = V(T"I(Q), T’I(Q)) holds. Hence it can be shown that

A& ] = @ o) =M E ) | = [am] -
A design T 1is called a simple array with parameters Ag» Ay ottt s
>‘m’ (simply, S-array[m; >‘0’ >‘1’ e, )‘m])’ if the assemblies in T can be
obtained by >‘h repetitions of the set q(m, h) for each‘ h=20,1,---,m,

where Q(m, h) are given in Example 1 in Section 3. It is easily seen

that an S-array[m; ) .., >‘m] is a B-array[N, m, 2%, 111, where

0"
N =T, (@,

b= I, A (M2 L i=0,1, 000 20

As will be seen from Chopra (1975), Chopra and Srivastava (1973), Shirakura
(1976, 1977), Srivastava and Chopra (1971, 1974), etc., most of balanced
arrays are of simple types for practical values of m and N. Therefore,

it is desirable to study CB plans of order 2 for 2™-BFF designs of reso-

lution 22+1 which are obtained from simple arrays.

Theorem 4.3. Let T be an S-array[m; Ag» T Am] with N=Zﬁ’:0 Ay
-(1{1‘). Then, for any D ¢ DI; and any T e G, there exists D, in

Dgl such that

- 13_



(E'X(D)) = E'X(Dy).
Proof. The design matrix E is represented by

e ; ee. , € ;
€1 » €m’ €197 > €m-1m’
H) ),

€19...97 """ €

“m-2+1-+-m
where e, is an. N x 1 "vector corresponding to ez in 6. Suppose
T(E) 1is the N x v matrix obtained from E by exchanging e, ~ with

(In particular, e =e Further define the N x m matrices

f1(2)” 0)

(0)

Bp=leprreg) and w(Ep) = (Crqys os Sy(my)-

Since T 1is a simple array, both E1 and T(E then include just )‘h

1)
matrices of size (g) xm with elements *1 composed of (r;l]) distinct
m-rowed vectors in which the numbers of I's are h for each h =0,1, ...

m. Therefore, there exists a permutation matrix P of order N such that

(4.2) T(El) = PE

1
On the other hand, we have
St(tyte-tw) T Sn(ty) FET)* K S(tw) o
where # denotes the product operator defined in Theorem 2.4. By (4.2),
er(t;) = P?ti hold fori=1,.-.-, u. Thus it can be shown that
Cr(tytg- -ty = (Pegd* - *(Pet ) =P(et;* - *eg,)
Pg.tl"'tu *

Also, e, = Pey since the elements of e, are all one. Therefore, the

0 0

matrix P satisfies 1(E) = PE. This means that
T(E'X(D)) = w(E)'X(D) = E'P'X(D).

From the one-to-one correspondence of X(D) and D, there exists Dg

_14_



119

in DI; satisfying X(Dy) = P'X(D). This completes the proof..

Theorems 4.2 and 4.3 are useful in determining an OCB plan D for

a design T in which ||A(D)| has a minimum over DI;. Suppose E'X(D) -
. N

= = . e '

¢ = (cg5 ¢y s Cos s Cgtle--m) and consider a subclass D*,
= {De DI;; Cp SCy S cee S cm}. Suppose now D* is an OCB plan over
DI;. Let 7 €& Dbe a permutation such that (c¥, ---, cr"r‘]) transforms

* * i * < ... £ ¥ * = B! *) =
(cr(l)’ , CT(“_‘)) with cr(l) 4 s cT(m), where c E'X(D%*)

% . K e K. e * '
(cO, cl, y cm, , cm—2+1--~m) . Then, by Theorems 4.2 and 4.3,
there exists D% ¢ D*I; satisfying [|A(D*®)|| = ||A"(D*)|]| = [|[A(D™%)|| . This

means that D% is also an OCB plan over DI;I.

(w.r.t. ||A(D)|)) over Dl; can be selected in D*

That is, an OCB plan D

N
9°

However, Dl; includes in general too many plans, which is not practical.
We thus consider the reasonable subclass of DI;,/

N

S

= 0 i w) = 1311,

which gives a balanced block plan for a design in some sense. In the above,
w(D) denotes the number of 1’s in D and» [x] denotes the greatest
integer less than or equal to x. Also, we take no interest in the confoud-
ing of the general mean and block effect. Therefore, the following slightly

modified norm may be considered:

la*@]| = max; ;. qlaf ]

where A#*(D) is the (v-1) x 1 vector obtained by removing the first

element of A(D)r and a’i"s are the elements of A*(D). Our interest

now lies in a CB plan such that ||A*(D)| is a minimum over Sl;.
The vector A*(D) can be rewritten by A*(D) = M*E'X(D), where
1

M* is the (v-1) x v matrix obtained by removing the first row of M .

_15_
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By arguments similar to Proofs of Theorems 4.2 and 4.3, we then have the

following two theorems:

Theorem 4.4. Consider the design T and plan D of Theorem 4.2.

Then, for any rte¢ 6,
[A*(D)]| = [|[a*"D)]|
where A*T(D) = M*t(E'X(D)).

Theorem 4.5. Consider the simple array T of Theorem 4.3. Then

for any D ¢ 51; and t € ¢, there exists D; ¢ Sgl such that
T(E'X(D)) = E'X(Dy).

From the above theorems, we observe similarly that an OCB plan
(w.r.t. |A*(D)||) over SI; can also be selected in the restricted class
s¥= (D es) ipeply.

On the other hand, the calculation of ||A(D)| or ||A*(D)][ requires the
inverse of vy x v .matrix M. However, Yamamoto, Shirakura and Kuwada
(1976) have shown that for a 2" -BFF design of resolution 22+1, M_1 has
at most (2'33) distinct elements. Furthermore, Shirakura and Kuwada
(1976) have given an explicit expression of those elements.

In Tables 1 and 2, optimum blocks B corresponding to OCB plans D

T,2
(w.r.t. ||A*(D)”) over SI;I are listed for A-optimal 24-BFF designs T of
resolution V (minimizing trM_l) for the values of N with 11 < N <26.

Such A-optimal balanced designs have been already given by Srivastava and
‘Chopra (1971). Note that a B-array[N, m=4, 4, |l = {”0’ B> Mgs Ug» u4}]
is equivalent to an S—array[m=4; >‘0’ )‘l’ >\2 A3, >\4], where N = )\0 + 4>\1

+6)\2 +4>\3 + A4 and by = )‘i (i=0,1,2,3,4). Therefore, 24—BFF designs

of resolution 'V can be represented by the sets q(m=4, h) of assemblies

_16_



N

-Uo My HaHaHy
12 10111
13 20111
15 11110
16 11111
17 21111
18 21112
19 31112
21 12112
22 11211
23 21211
24 21212
25 12122
26 22122
N gy by i 1y
11 10110

14 01110 {a(1l),(2),(3)}

2012111

Table 1

Optimum blocks for 2‘4-B-FF designs of resolution V

T
{Q(0), Q(2), U3y, A}
{Q€0), 2(0), A2), 2(3), 24}
{Q(m, 2(1),a(2), 3}
{Q0y, 21y, Q2), 2(3), WV}
{Q(0), Q(0), Q(1), Q(2),
2(3), 24}
{0y, Q(0), Q(1), Q2), -
Q(3), (9, (4}
{Q(0), (0), 2¢0), Q(1),
2(2), 2A(3), AP, AD}
{2, D), 2D, Q2), .
2(3), U, D}
Qm, &), 2(2), Q(2),
Q(3), U}
{Q0), (), 1), Q(2),
Q(2), 2(3), D}
(o), 2(0), 2(1), 2(2),
Q(2), 2(3), (4, D}
{Q(o), (), (1), 2(2),
Q(3), AU, AUD, D}

{QC0), 0y, (1), 21),Q(2),
Q(3),Q(3),2(4),2(4)}

B(o)
{Q2)}
{2(2), 2D}

e, A}

{a), et
{am.2, 2}

{a), 23, 2(d}
{ 2, QD), 2(3), UD}
{ o, Q2), a(H}
{ D), 2), D}
{Q0), 0, Q(2), U}
{Q0),2(0),2(2), 23)}
{2(0),2(1), 23, AN}

{Q), AL, A, WD}

Table 2

Optimum blocks for 24—BFF designs of resolution V

T
{Q(0), Q(2), (3}

{a(0), a(1),a(1), a(2),
: Q(3), AN}

B(o)

{e(0), (1,0,1,0), (0,1,0,1), (0,0,1,1),

0

0.

la*@||
0.
0.
0.

25
1429
2

0370

-0833

. 0437

.1398

.125

- 0690

. 0395

(1,0,1,1), (0,1,1,1)}

{(1,0,0,0), (0,0,0,1), (0,1,1,0), (0,1,0,1),

(0,0,1,1), (1,1,1,0), (1,0,1,1)}

see Example 3, (ii)

_17_
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(h =0,1,2,3,4). Briefly, we write a(h) =q(4, h) for h=20,---, 4.

' Fortunately, the optimum blocks B turn out to be simply expressed

T,2
by Q(h), (h=20, -+, 4), except N =11, 14 and 20. Tabe 1 lists these
blocks. Also, Table 2 lists those blocks for N = 11, 14 and 20. In the

tables, note that the other set B can be given by B =T - B(O) for

(1) (D

each T. For reference, the values of ||A*(D)| are given in the tables.

Again from the above theorems, it is observed that an OCB plan is not unique
for a given design. Furthermore, from Theorem 2.3, if D is an OCB plan

for a design T, then it is also so for T, where T is the design obtained by
an interchange of 0 and 1 in T. Note that (2.4) holds for the norm ||A*(D)|
and that if T is an A-optimal design, then T is also so. The following
example is helpful in referring to Tables 1 and 2:

Example 3.

(i) Consider a B-array[N=12, m=4, 4, 41 ={1, 0, 1, 1, 1}] given by
T = {(0), 2(2), a(3), ()},

which is a 24—BFF design of resolution V with 12 assemblies. Then, T
can be rewritten by the 4 x 12 matrix

011100011101
0100110111011
0010101110111
0,001011:!011141

whose " a-th column denotes the o-th. assembly in T. Let D1 =(1;0,0,0,

0,0,0;1,1,1,1;1) and D2 =(1;1,1,0,0,0,0;1,1,0,0; 1) be CB plans in

S§ , whose o-th elements denote the a-th assemblies in D1 and DZ’ re-

'spectively. Then HA*(Dl)H = 0.25 and ”A*(Dg)” = 0.5. This means

that D, is a CB plan better than D, for T. In fact, [A%(D )| is
. N . _ —
a minimum over S,. Hence D, is an OCB plan and BT,Z = {B(O) ={(2)},

B(l) =T - B(O) = {0(0), 2(3), Q(4)}} is an optimum block (w.r.t. ||A*(D)| )

over SI;] for the design T. This is the indication of Table 1 for N =12.

_18_
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(_ii) Consider a B-array| 20, 4, 4, {1, 2, 1, 1, 1}] given by
T ={a(0), (1), (1), a(2), 2(3), (4},

which is a 24-,BFF design of resolution V with 20 assemblies. Similarly,

T can be rewritten by the following

0'1000 11000111000 111101
0:0100 ;0100 '100110'1101 :1
0:0010,0010:010101,1011,1
010001:0001+001011,0111)1

T =

Let D = (1;0,1,0,0; 1,0,0,0; 1,1,1,1,1,1; 0,0,0,0; 1) € 51;. Then ||A*(D)]|
= 0.1429, which is a minimum over SI;]. Hence D is an OCB plan and

- . . N .
By 2 ={B(gy» B(yy} 1s an optimum block (w.r.t. | A*(D)[|) over s, for

T, where

B(O) = {(1,0,0,0), (0,0,1,0), (0,0,0,1), (0,1,0,0),

(0,0,1,0), (0,0,0,1), A3},

Biyy =T - Begy =10, (0,1,0,0), (1,0,0,0), 22), 2(4)}.

Remark. This paper deals with the constitution of block plan for a
fractional design of 2™ type. However, the procedure is available for a gen-
eral asymmetrical factorial design. Indeed, we may consider an S XSox "X

sm‘xzm-FF design forthe set [T : D] in Section 2.
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