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I. Introduction

It is well-known that a continuous-time, time-invariant
linear scalar system H(s)=b(s)/a(s), where a(s) and b(s) are
polynomials with dega(s) =n and degb(s) £ n~1l, has the _Schwarz\—

form realization (A,B,C) as follows.
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A is determined by a(s) and called the Schwarz matrix of a(s)
after [1]. Deriving A from a(s) is equivalent to applying the
stability test of Routh-Hurwitz to a(s), and {fi} are related

to entries of the Routh table of a{s) and to the Hurwitz deter-



minants of a(s) [2]. This relation leads to an outstanding feature
of A as follows: A is stable, (i.e., all eigenvalues of A have
negative real parts,) if and only if all {fi} are positive. An-
other important property of A is that the Lyapunov equation AX+XA

» U n-t

+BB=0 has a diagonal solution X=diag{§,,----- 8ai}, where {§.} are

defined by

S

.= l/2fn, 8., = Gi/fi for i=1,2,--¢,n-1.
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This property also yields the same stability criterion of A as
above, and thus the Routh-Hurwitz test is linked to the Lyapunov
equation via A [2]. Moreover, the Schwarz-form realization is
used for some lower order approximation methods including the
Routh apbroximation [3].

The above situations, however;‘cannot be exténded(to multi~
variable systems. To construct the Schwarz-form realization of
a prescribed multivariable system written in a matri# fraction
description H(s)=N(s)D(s)-l, where N(s) and D(s) are polynomial
matrices, we need a polynomial matrix version of the Routh-Hurwitz
test. But the results on the stability of polynomial matrices
which have been obtained so far, such as [4], cannot be applied
to our problem.

In this paper, we introduce the notion of orthogonal polyno-
mial matrices to study the stability of D(s) and to derive the
Schwarz-form realization of H(s).

We proceed as follows. In section II, we define a basis of

polynomial matrices suitable to treat D(s), and derive the block-
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companion~-form realization of H(s). A solution of a Lyapunov
equation derived from this realization is used to define a matrix-
valued inner product of polynomial matriées in section ITII. In
section IV, we introduce an orthogohal system of polynomia; mat-
rices, which is related to ﬁhe stability of D(s). An efficient
algorithm‘for constructing. the érthogonal polynomiél matrices is
presented. In the scaiar case, this algorithm amounts to the
reversed procedure of the Routh-Hurwitz test. By means of this
algorithm, we derive the Schwarz-form realization of H(s) in sec-
tion V; | -

We refer to [6] for fundamental arguments on multivariable

systems.



II. Mathematical Preliminaries

Let H(s) be a strictly proper rational matrix of size gxp,
which expresses the tranfer function matrix of a p-input-g-output,
continuous-time, and time-invariant linear system. Suppose that

H(s) is written in a right matrix fraction description (MFD) such
as

1

H(s) = N(s) D(s) (2.1)

where N(s) and D(s) are polynomial matrices of sizes gXp and pXp,
respectively.’ We further assume that D(s) is column-reduced (or
column—propeg), which can always be attained by obtaining, if
necessary, another right MFD by multiplying bqth N(s) and D{(s)
from the right-by an appropriage unimodular polynomial matrix [6].
Let m, (i=1,2,.---,p) denote the ith column-degree, i.e., the

highest degree of all the polYnomials in the ith column, of D(s).

We can assume without loss of generality that

Y
3

v
v
=
v

1. - (2.2)

The column-reducedness of D(s) is expressed as

p

n £ deg det D(s) = I m; . (2.3)
-

i
Note that n amounts to the McMillan degree of H(s) if and only if
the MFD (2.1) is irreducible.

For each j=0,1,.-.-,m, we define an integer r(j) by

r(j) & Max {r] 1srs<p and m_zm-3 }.



For example, if

p=4, (m=)m1=4, m2=m3=2, m4=1,
then

r(0)=x(1)=1, r(2)=3, r(3)=r(4)=4.

~ In general, it is clear that

1 £ r(0) £ r(1) £ ¢«+++ 2 r(m-1) = r(m) =p
holds. It also follows from (2.2) that
m, 2 m-j if and Only if i 2 r(3)
for 1sisp and 0sjsm, from which we have
m-1
Zr(j) =n (2.4
3=0
and
m, =m - Min {3] 0sjsm-1 and r(j)zi }. (2.5
Note that
r(j) = p for Vj if and only if m, =m for Yi.
Let, for j=0,1,---,m,
3 :
\ sj—m+mz s
Ty(s) = .. . O : r(j)xp.
sj—m+mr(j)5 :
Note that
sTj(s) = Aj Tj+1(s) (2.6!
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where

>

A, = [ Ir(j) I 0 J :r(j)Xr(j+1).

suppose that a kXp polynomial matrix P(s) is written as.

d ' :

‘P(s) = L P, T.(s) (2.7)

3=0 J 3]
Where d is an integer in 0s2dsm, and Pj is a kXr(j) constant matrix.
Then, the ith column-degree of P(s) is less than or equal to
d-m+mi, where a negative column-degree means that all the elements
in the corresponding column of P(s) are 0. Conversely, any kXp
polynomial matrix P(s), with the ith column-degree less than or
equal to d—m+mi for i=1,2,..---,p, can always be written as (2.7).
For convinience, we call d in (2.7) the degree of f(s) and write
d=deg P(s), when P

z0. Especially if Pd=I P(s), consequently

d

being of size r(d)xp, is said to be monic.

r(d)’

For example, since the ith column-degree of D(s) is mi,_D(s)

is represented as

D(s) =
3.

n~Ms

D. T. : .8
o3 Tj(s) (2.8)

where Dj is a pXr(j) matrix. Moreover, the column-reducedness of
D(s), (2.3), is equivalent to the nonsingularity of Dm. Hence,
we can define a monic polynomial matrix D(s) by

m-1

T (s) + £ D. T.(s)
m 3=0 J 3

D(s) = D_  D(s)

where

e
i
—

O



On the other hand, from the strict properness of H(s):N(s)D(s)—1,

- the ith column-degree of N(s) is less than m, . Therefore, N(s) is
represented as
m-1
N(s) = § N. T.(s) (2.9)

where Nj is a gxXr(j) matrix.

Now, let
0 A0
A‘l
A = .°. T nxn
Am—2
_DO -D1 ....... -D_ 4
B2 o | o] i oax
= \ m . p
o
C = { NO ' N1 ’ . Nm—1 ] : gdXn
T(s) 2 T’ T’ “eoe ! ' . nx
s) = 0(s) 1(s) : Tm_1(s) : nXp.

Then, it follows from (2.6),(2.8) and (2.9) that

1

( sI -A )" B = T(s) D(s)‘1

and that

C T(s) = N(s);
Hence, we have
-1
H(s) = C (sIn—A) B,



i.e., (A,B,C) is a realization of H(s). We call (A,B,C) the
controller block-companion-form realization of H(s) or, more
precisely, of the MFD (2.1). It is clear that (A,B) is control-
lable and has controllability indices {mi}. In fact, (A,B,C) can
be obtained immediately from the well-known controller-form reali-
zation [6] of the MFD (2.1); by a permutation on the ordering of
state variables.

Next, we consider the following Lyapunov equation:
AX+ XA +BIB =0 - (2.12)

where Il is a given pXp positive definite matrix and X is an
unknown nXn matrix. From now on, we aésume that a symmetric
solution X of (2.12) has been obtained. It should be noted that
the following three statements’are equivalent.

(i) X is positive definite.

(ii) A is a stable matrix; i.e., all eigenvalues of A

have negative real parts.

(iii) D(s) is a stable polynomial matrix; i.e., all

zeros of det D(s) have negative real parts.

In the above case, X can be represented as

oo 4
X = J ePprnB'et® gt. (2.13)
0



Let X be partitioned into blocks as

r \
X5,0 %*o0,1 X0 m-1
. X1,0 ceecsssane E
xm—1,0 ......... xm—1,m—1

where the size of X, . is r(i)xr(j). Note that X, .=X. . holds
i,] 1,3 J.,1
for every i,j, from the symmetricity of X. Then, the equation

(2.12) is represented as follows:

14

Ay xi+1,j + xi'j+1 Aj =0 (0si,jsm-2), (2.14)

m-1 , ,
'zo D, xi’j = xm_1'j+1 Aj (0sj=m-2), (2.15)
1=

m-1- m-1 _, N 4 ~
1 D, X, + _Z X . D, =1, (2.16).

where I = D HDA_ . For the later arguments, we further assume

that, for k=0,1,---,m-1,

e

0,0 7 %o,x
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k,k

is nonsingular.

Clearly, this assumption is satisfied in the case (i)-(iii)

described above.



II. Inner Product of Polynomial Matrices

Given two polynomial matrices P(s) and Q(s), with their

degrees less than or egual to m-1, such as

m-1
P(s) = JEO PJ T](S) = [PO|P1|..'.le—1} T(s) : kXp |
(3.1)
m-1
Q(s) = jzo Q; Ty(s) = [Q0’Q1l""lQm_1] T(s) : xp,

we define the inner product of them by

14

S Y R Y W [

J P, X, . Q. 2 kxQ.

[}}
[

Especially, we have
<Ti(s),Tj(s)>~= Xi,j'

It is obvious that the following properties hold:
° <P(s)+Q(s) , R(s) > = <P(s),R(s)> + <Q(s),R(s)>, (3.2)
© <KP(s),LQ(s)>= K <P(s),Q(s)> L', ©(3.3)

o <P(s),Q(s)> = <Q(s),B(s)>’, (3.4)

where polynomial matrices P(s),Q(s),R(é) and constant matrices K,L

are assumed to have suitable sizes. Furthermore, from (2.14),
°© <sP(s),Q(s)>+ <P(s),sQ(s)> =0 (3.5)

holds if deg P(s) sm-2 and deg Q(s) sm-2. This property will play

- 10 -



an important role in the later arguments.

Consider the case that D(s) is a stable polynomial matrix.
1

Let hD(t) : pXp be the impulse response matrix of D(s) . Then,
for P(s) and Q(s) written as (3.1), we have from (2.10)
d ta
P(EE) hD(t) = [PO|P1 le_1] B
(3.6)

ta
o)

d
o) n(t)
(t>0)

Since X is represented as (2.13) under the stability assumption,
we obtain from (3.6) the following time-domain expression of the

inner product:

o

<P(s),Q(s)> = f {p(S)h (0} T {o(Fn (t) } at. (3.7)

0

The corresponding frequency-domain expression is as follows:

<P(s),Q(s)> = —Z%f P(jw) D™ (3w) ID' " (-jw) Q"(-jw) du.

(37=-1) (3.8)

It should be remarked that the meaning of the property (3.5) becom%
4

clear in (3.7) and in (3.8).

So far, the inner product has been defined only for polynomia
matrices having degrees less than or equal to m-1. Next we consid
extending the inner product so that <P(s),Q(s)> is defined even if §
one of {P(s),Q(s)} has degree m. Of course, such an extension is

not unique. However, if D(s) is stable, a natural extension can b

- 11 -



obtained by means of (3.7) as follows. . Suppose that deg P(s) =m

and that deg Q(s) sm-1. Then P(g%)hD(t) has a §-function-like

singularity at t=0, while Q(-C—%:-)hD

ity, although possibly being discontinuous at t=0. Hence, replac-

(t) does not have such a singular-

ing LT by Li_in (3.7), and using the formula

J §(t) £(t) 4t = %—{f(0+)-+f(0—) '

we can obtain a finite value of (3.7). For instance, consider the

case P(s)=D(s). From the definition of hD(t), we have
= d -1

which yields

— wv -1 d ’
<B(s),Q(s)> = [ Dplee) T {a(gpng(e) Fae

1 1Y, a '
3 D {Q(gp)hp(0+)} .

é%)hD(t)=O for Yt<0. Assuming that Q(s) is written

as (3.1), we obtain from (3.6)

. Note that Q(

d
Q(F)hy(0+)

[20]or |+ [on] 2

' Therefore we have

4

<D(s),0(s)> o1

1 =
510

°

Thus, the following important equation is obtained:

- 12 -



L5u

, 0, for j=0,1,-++,m-2,
<5(S),Tj(S)> = : ' (3.9)

% I, for j=m-1.

It follows immediately from (3.9) that

m-1
—izo J-Xi'j m-1,j+1AJ' (see (2715
<Tm(s),Tj(s)> = { for j=0,1,+--,m-2,
1= mT
—2—1-[ - z i“i, m-1"* for j:m—1.
\ i=0 ’

(3.10)

Clearly, (3.2)-(3.4) still hold for the extended inner product.

(3.5) also holds if degFWs) sm-1 and deg Q(s) =m-=1, which can be
proved by applying an integration by parts to (3.7). It should

be noted that the same extension as shown above can be obtained

also by means of (3.8).

Remark: Replacing LT by L:_in (3.7), we obtain another exten-
sion of the inner product. On this extension, D(s) is orthogonal
to all the polynomial matrices with degrees less than or equal to
m-1 (cf. (3.9)), and (3.5) does not hold when deg P(s) =deg Q(s) =
m-1. .

In the general case without the stability assumption on D(s),

we choose to extend the inner product by (3.10), preserving the
properties (3.2)-(3.4). Then, it is obvious that (3.9) holds.
Moreover, it follows from (2.15) and (2.16) that (3.5) holds if

deg P(s) sm-1 and deg Q(s) sm-1.

- 13 -




Iv. Orthogonal Polynomial Matrices

In this section, we consider polynomial matrices {Rj(s);

0<j sm} such that

(i) Rj(s) is of degree j and monic; i.e., it can be written

as

-1
Rj(s) = Tj(s) +i£0Rj’i'Ti(s) | (4.1)

where Rj ; is a r(j)xr(i) matrix;
14

(i) <Rj(s),Ti(s)> = 0, for i=0,1,-+<,3-1.
It follows immediately that
<Ri(s),Rj(s)> = 0, if 1i235; (4.2)

i.e., {Rj(s)} constitute an orthogonal system.
In terms of the coefficient matrices of Rj(s) in (4.1), (i)

is represented by the following matrix equation:

R, |+eeeee|R. . X, X.
[ J,Ol | 3,3—1] j-1 ¢ [ j,0

cecece X, . =0
‘ 3,3—1]

(4.3)

where Xm i (02iz=m-1) is defined additionally, according to the
14

extension of the inner product, by

A
= >
Xm i <Tm(s),Ti(s) .

14

We can see from (4.3) that, on the assumption (2.17), {Rj(s)}

satisfying (i) and (ii) always exist and are uniquely determined.

- 14 -



For -j=0,1,++-+,m-1, let
A E <Rj(s),Rj(S)> : r(j)xr(j) symmetric,

(Note that Am=<Rm(s),Rm(s)> cannot be defined.)

and let

I (0)
Rio Tr(1)
-~ A .
R. = . . .
j : : ..
(Ry,0 By, T Tr(3)

J 3
: z i z i .
{izor(l)}X{i=Or(l)}

Then, from (4.2) we have

-~ . ~p .
R. X. Rj = block diag {AO,A1,----,Aj}. (4.4)

It can be seen from (2.17) and (4.4) that all {Aj} are nonsingular.
Moreover, since the stability of Dis) is equivalent to the positive
definiteness of X=Xm—1' we obtain from (4.4) the following proposi-
tion.

Proposition 1

D(s) is stable, if and only if all {Aj} are positive definit

- 15 -~



Because of the condition (i), we can adopt {Rj(s)} as a basis
of polynomial matrices instead of {Tj(s)}. For instance, N(s) can

pe written as

N(s) = | N. R,(s) (4.5)
-0 J 3

where &j is a gXr(j) matrix (cf. (2.9)). Similarly, D(s) and D(s)
ought to be represented by linear conbinations of {Rj(s) ;Oéjém}.

In fact, the following equation holds.

Proposition 2

- -1 ’
Tazl R . (s) (4.6)

- 1
Ds) = Ry(s) + 3 T oy,

Proof: D(s) is monic polynomial matrix of degree m satisfy-
ing (3.9). But such a polynomial matrix is unique, because of
the nonsingularity of X assumed in (2.17). Thus, the above equa-
tion is readily proved by verifying that the right-hand side

satisfies the same equation as (3.9).

In order to obtain {Rj(s)}, we may solve the linear equations
(4.3) by a standard method, separately for j=0,1,---;m. However,
owing to the special property (3.5) of the inner product, there
exists a recursive and. more efficient algorithm to obtain {Rj(s)},
as presented below. 1In general, {Rj(s)} are not sufficient to |
form a recursion. Hence, in the algorithm, we shall introduce
new polynomial matrices {Uj(s) .03 sm} with Uj(s) : {p-r(j) }xp

and shall accomplish a recursion on

- 16 -



Rj(s)

—_— P X P, j=0,1,+°°-,m.
Uj(s)

Theorem 1
{Rj(s)} are obtained by the following recursive algorithm.

Initialization: Set

RO(S) } r(0)

= I_.
Uo(s) } p-xr(0)

P

Recursion: Compute the followings, successively for

§=0,1,+++,m-1.

Ay = <Rj(s),Ry(s)> : r(3)xr(3) (4.7) -
\ Fj = <st(S),Rj(S)> : r(j)Xr(j) (4.8)
Gj = <Uj(s),Rj(s)> : {p-r(3)}xr(3) (4.9)
' -1 . . :
Ej = Fj Aj s r(j)xc(3) (4.10)§
’ -1 . . . | i
| Fy = 85 Mg 855y = T()xE(3-1) (4.11)9
G. =0 A'1 : {p-r(3) }xr(3) (4 12)§
L 3] J 3 ) ' o
4
Rj+1(s) r(3+1) (sIr(j)-Ej)Rj(s)-+FjRj_1(s)
Uj+1(s) p-r(j+1) Uj(s)-GjRj(s)

(4.13)

- 17 -
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X
Qi

with the exception that (4.11) and the term

'+FjRj_1(s)' in (4.13) are omitted when j=0.

Remark 1: On the assumption (2.17), the algorithm can always

be carried out because of the nonsingularity of every Aj.

Remark 2: When r(j)=p holds, we can do without Uj(s): 0xp

and omit (4.9),(4.12) and the term ' Uj(s)—GjRj(s) ''in (4.13).
Remark 3: Because of (3.5), we have
[y = -<Ry(s),sRy(s)> = -T

i.e., Fj is anti-symmetric.

Proof of Theorem 1: Together with (i),(ii), we consider the

following statements.
(i) Uj(s) can be written as
Uj(s) = 2.+ Y U, .T.(s),

where Uj ; is a {p-r(j)}xr(i) matrix and
J !

R

-

' . : -r(j) r*p.
3 { ° le-r(J)] {p-r(3) pxp
(iv) <Uj(s),Ti(s)> =0, for i=0,1,+-,j-1.
© We shall prove by induction on j that Rj(s) and Uj(s) obtained by
the "algorithm satisfy (i)-(iv) for j=0,1,---,m. The case j=0 is

trivial. Assume that (i)-(iv) hold for 3=0,1,-++,k (Osks=m-1).

Then, (i) and (iii) for j=k+1 can be easily verified from (4.13) by

noting that

- 18 -



sTk(s) Tk+1(s)
= = = (cf. (2.6) )
“k “k+1 .
Let
(SIr(O)"EO)RO(S) if k=0
Qk(S) =
(sIr(k)-—Ek)Rk(s) + FkRk—1(S) if kz1,
Vk(s) = Uk(s) - GkRk(s).

Then, the &erification of (ii) and (iv) for j=k+1 is reduced to

that of

1]
o

<Qk(S),Ti(S)> (4.14)
and

Vi (s),T;(s)>

1

0. (4.15)
for i=0,1,---,k. From the property (3.5), we have
<Q (s),P(s)>

~<Ry(s),s P(s)> - By <Ry(s),P(s)> if k=0

0

-<Rk(s),sP(s)>—E <Rk(s),P(s)>+F <Rk(s),P(s)> if k21

k k

(4.16)

for any polynomial matrix P(s) with degP(s) sm-1. Since both
R, (s) and R, ,(s) satisfy (ii) because of the induction hypothesis,”
it follows immediately from (4.16) that (4.14) holds for i=0,1,- i

k-2. (4.14) for i=k-1 is verified as

- 19 -




'—;')
X3
~.3

Qu(s),Tp _4(s)> = -<R, (s),s T _,(s)>+F <R _,(s),T) _,(s)>

+F A

T A kik-1

14
k"k-1
= 0 (from (4.11) ).

It also follows from (4.16) that

<Q (5),R,(s)> = -<R,(s),S R, (s)> - E, <R, (5),R, (s)>

k

1
o

(from (4.10) ),

which clearly implies (4.14) for i=k. (4.15) for i=0,1,---,k-1
is obvious from (i) and (iv) for j=k in the induction hypothesis,

and (4.15) for i=k comes immediately from (4.12). Thus, (il) and

(iv) for j=k+1 have been verified. (Q.E.D.)
Corollary
AOR1(S)= (SIr(O)"EO)RO(S)
(4.17)°
Aj Rj+1(s) = (s Ir(j) - Ej) Rj(s) + F& Rj_1(s)

(153 sm-1)

Proof: Obvious from (4.13).

The stability test of D(s) via the algorithm and Proposition 1
is nothing but an efficient test of the positive definiteness of X
taking advantage of the special structure (2.14)-(2.16). This pro-

cedure requires only O(pn?) operations, while a standard method

such as the Cholesky factorization requires O(ns) operations. We

- 20 -



note that, in view of the computational efficiancy, it is favorable

to replace (4.7)-(4.9) by the followings:

( Aj = <Rj(s),Tj(s)> (4.7)"
. = <s T, R. >+ R. . .A. .A, 4.8)"

) Ty ST () Ry(s)> + Ry y_qhy_ 48y (4.8)

\ ej = <Ej,Rj(s)>, ‘ (4.9)'

which are justified by (i)-(iv).
When D(s) is a regular polynomial matrix in the sense that

it can be written as
m .
D(s) = ¥ D, s’

with detDmAzd, it follows that m=m, =m,===*°*= o and that r(0)=r(1)=
----=r(m)=p. In this case, {Uj(s)},{ej} and {Gj} do not appear
substatially in the algorithm, and the recursion becomes much

simpler as follows:

RO(S) = Ipl R1(s) = SIp"EOI

Rj+1(s) = (s Ip-—Ej) Rj(s) + E& Rj_1(s).

(159 sm-1)

Moreover, when p=1, i.e., when D(s) is a scalar polynomial
of degree n (=m), every Fj becomes 0 because of its anti-symmet-

ricity, and we have

R, (s) 1, R, (s) = s, :
(4.18)
Ryq(s) = sRy(s) + (Aj/Aj_1)Rj_1(s).

(153 £n-1)

- 21 -



159

Combining (4.18) with (4.6), we can see that (4.18) is nothing but
the procedure to construct the Routh array of D(s) in reverse |
ordef, and that Proposition 1 is equivalent to the Routh-Hurwitz
criterion.

»Thus, the results of this section might be regarded as a
matrix version of the Routh-Hurwitz stability test. However, it
should be noted that we cannot find Rm(s) and Rm_1(s) directly
from D(s) in the matrix case, whereas we can do it in the scalar
case by deéomposing D(s) into the even power part and the odd
power part. Therefore, the method for the scalar case which pro-
duces {Rfs)} by lowering degrees from Rm(s) and Rm—T(s) cannot be
extended to the matrix case, and we must produce {Rj(s)} in
reverse order by means of the algorithm in Theorem 1, which célls
for a solution of the Lyapunov equation (2.12).

We note that a similar situation appears in the stability
theory of discrete-time systems concerning the Schur-Cohn stability
test and the Levinson algorithm, as mentioned, for instance, in

[5].
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V. Schwarz-form Realization

Now, we are ready to derive the Schwarz-form realization of

H(s) =N(s)D(s) '.

Theorem 2

Let
Ey | A
--F1 E1 A1
A A ° (] ° L] * L]
A = . . . : nXn
"quz Em-2 Am-z
\ —%4—&+%%

where Fm is additionally defined by

a 1z, -1
Fm = EwlAm—1’
and let
A A ,_1 4
B = [ o} I Dm l : nxXp
I T eeee | R . gx
= 0 1 m-1 P9

( see (4.5)..)
Then it holds that

A = Rm—1 A Rm—1

- 23 -

(5.1)

(5.2)

(5.3)
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R _, B (5.6)

o>
1

ol

o -1
C=CR__,- (5.7)

Therefore, (ﬁ,ﬁ,é) is a realization of H(s), which is similar to

(A,B,C).

Proof: Let

R(s) = o

R ;1T(s) =’[R6(s) IR{(S) l---~ Ré_1(s)]’ : nXxp.

Then it follows from (4.6) and (4.17) that
(sIn-zl)ﬁ(s) = BD(s), (5.8)
while it follows from (2.10) that

aR~' ) R(s) = R, BD(s). (5.9)

(SIn"R m-1

m-1

Comparing (5.8) with (5.9), we have (5.5) and (5.6). (5.7) comes

immediately from‘(2.9) and (4.5).

Corollary
Let
X = block diag {AO,A1,-~--,Am_1} : nxn.
Then
AX + XA +BIBS=0. (5.10)

Proof: Obvious from (2.12),(4.4),(5.5) and (5.6).

- 24 -
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We call (A,é,é) the controller Schwarz-form realization (CSR)
of H(s). Note that (ﬁ,é,é) depends both on the choice of a right
MFD (2,1) of H(s) and on the choice of a pXp positive definite
matrix [I. If we start from a left MFD and a gXqg positive definite
matrix inétead of (2.1) and II, we can obtain the observer Schwarz-
form realization (OSR) of H(s) in a similar way.

Digressing from the realization problem of H(s), we can see
the properties of ﬁ from a matrix—theéretic viewpoint, as follows.
Suppose that symmetric matrices {Aj}, anti-symmetric matrices {Fj},
and a positive definite matrix  are given initially, and that A
is defined from these matrices by (5.1),(4.10),(4.11) and (5.2).
We call ﬁ the block-Schwarz matrix generated from {Aj},{Fj} and I.
Now, given a nonsingular matrix Dm’ let B be defined by (5.3) and
let IIQI%IﬁD;. Then, it is clear that (ﬁ,é) is controllable, and
we can verify the Lyapunov equation (5.10) by direct calculations.

Hence, the block-Schwarz matrix & is stable if and only if all {Aj}

are positive definite. In the scalar case, especially, it follows

from the anti-symmetricity of Fj that Ej=0 for every j, and we can
see that A becomes the well-known Scwarz matrix with the stability-

criterion

F. >0 for j=1,2,<++,m.

SRR T
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vI. Conclusions

Starting from a given MFD H(s)=N(s)D(s)—l, a matrix-valued
inner product of polynomial matrices has been defined, and an
efficient algorithm for constructing orthogonal polynomial matrices
has béen presented. This algorithm is regardéd as a polynomial
matrix version of the reversed procedure of the Routh-Hurwitz
stability test for scalar poiynomials. Using these results, we
have derived the Schwarz-form realization of H(s) and have inves-

tigated its properties.
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