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ABSTRACT

Deédlock—freeness (1iveness) of a structually restricted sub-
class of Petri nets, Extened Marked Graphs (EMG), is considered in
this paper. EMG can be also viewed as augmented marked graphs with
some sbecified arcs that express a permissive control function of
places on firing of corresponding tfansitions. Necessary and suff-
icient conditions for the liveness of EMG are derived in terms of

the initial token distribution and the net structure.
1. INTRODUCTION
A large class of concurrent discrete event systems can be

modelled by Petri nets and control problems of such systems are

basically reduced to solving reachability and liveness on the nets.
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It is known that liveness and reachability in Petri nets are equi-
valent with respect to decidability [1]. Recently reachability

problem has been settled by Mayr [2]; he has presented an algorithm
which terminates in finite steps and determines whether for given M09
Me Nn, M is reachable from MO or not. Thus equivalent problems such
as liveness, coverability and submarking reachability are decidable

in this sense. On the otherhand it is also known that the decision
algorithm requires in general an exponential amount of space and steps
with respect to the size of the net [3]. Thus it may not be applicable
to the analysis and synthesis problems encountered in practical con-
current systems.

As structually restricted Petri nets, marked graphs possess
definite ?e1ationships between the net structure and dynamic properties
of the system being modelled. The reachability problem and related
probiems, e.g., 11venéss, safe-liveness and submarking reachability
were successfully resolved for marked graphs to obtain necessary and
sufficient conditions on the net structure and the initial token dis-
tributions that ensure these properties [4, 5, 6]. Marked graphs,
however, have their natural drawback 6f weak modeling ability. For
example, conditional branching function cannot be modelled with marked
graphs. _

In this paper, Extended Marked Graphs (EMG) are define& as the
augmented marked graphs by adding some specific arcs between some pairs
of places and transitions to represent the permissive controlling
function of a place for firings of the corresponding transitions.

If a token capacity is prescribed for each contfoi]ing place, inhibitive

function (zero testing capability) [7] can also be modelled by EMG.



The purpose of this paper is to investigate structural properties
of EMG with respect to the dynamics of the token distributions and
to derive necessary and sufficient conditions for liveness of EMG

in terms of the net structure and the initial token distributibns.
2. DEFINITIONS AND NOTATIONS

The structure of Petri nets can be defined as a directed bi-
pertite graph with two disjoint sets of nodes, called a set S of
places ( symbol: 0) and a set T of transitions (symbol:|).Marked
graphs are a subclass of Petri nets, where each place has exactly
one 1hcoming arc and exactly one outgoing arc. In the following
we do not consider Petri nets with multiple arcs. Assume that
cardinality of S is n. To each place s, we associate an non-
negative integer M(s), called a number of tokens on s. Marking M
e N fs then defined as an non-negative integral vector whose
‘component M(s) equals the number of tokens of place s. For a subset
D of S, M(D) denotes a subvector of M with component M(s), s € D.
M(D) denotes the sum of tokens of places in D. °D denotes the set
of all transitions t such that there exists an arcve:t -~ s, s e D.
‘D is called the set of input transitions of D. Similarly, D denotes
the set of all transitions t such that there exists an arc e:s -~ t,
s e‘D and is called the set of output transitions of D. For a subset
Q of T, the set of input places "Q and the set of output places Q-
of Q are similarly defined. Subset D of places is called a deadlock
iff ‘D & D°. D is called a trap iff D" 'D. Deadlock D (Trap E) is

said to be minimal iff no subset of D (E) is a deadlock (trap), res-
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pectively. Note that for marked graphs the definitions of minimal
deadlock and trap coincide and are equivalent to a set of places on
a directed circuit [1]. Now the‘dynamic behavior of Petri nets is
stipulated by the following simple firing axiom. For a transition ¢,
t is said to be firable at M iff M(s) > 0 for each s € "t. A firing
of firable transition t at M is said to be legal and consists of the
following change of the tokens. The resulting new marking MI > 0 is

defined as

M(s) =Ms)+1,set As ¢ t (1)
M(s)=M(s)-1,s¢e thsgt (2
Ml(s) = M(s) , otherwise.v (3)

If there exists a legal sequence of firings that brings M0 to M,
M is said to be reachable from M,. R(MO) denotes a set of all markings

reachable from M, and is called the reachability set of M,. For a

0
iff for any M ¢ R(MO) there

0

transition t, t is said to be live at M0
1 ]

exists M e R(M) such that t is firable at M . If there exists M ¢ R(MO)

such that t is not firable at any M € R(M) then t is said to be dead

at M. If each t of T is 1ive at M,, then the Petri net is said to be

03
live or, equivalently, deadlock-free. It is known that the reachability
prob]ém,,i.e., to decide for any given MO’ Me N whether M ¢ R(MO) or
not, is equivalent to the liveness problem, i.e., to decide for a

given MO e N" whether the Petri net is live or not. For marked graphs

the following results are well known [8].

(i) Token sum of places on any directed circuit is invariant

through any firing sequence.
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(ii) A marked graph is live at Mg iff theré exists no unmarked

directed circuit at MO‘

Given a marked graph, we can augment it by adding some special
arcs, say, s| —@ t as shown in Fig. 1 (a). The firability condition
of t is defined such that.t is firable at M iff M(s) > 0 for each
s‘e “t, and in addition M(s') > 0 for each sI: s' —@ t. The transition
rules (1), (2) and (3) of markings still apply here except that M(sl) |
remains unchanged when t fires. Hereafter we mean by a directed path
( circuit ) in EMG a directed path ( circuit ) of directed arcs - in

EMG.

~O=-

(a) a traffic system modelled by EMG

(b) Petri net equivalent

Fig. 1 Extended Marked Graph

The added arc s —@ t implies a permissive controlling

function of place s on the firing of t in that only while s is
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marked the firing of t is allowed and the firing does not affect

the marking of sl. s. is called a controlling place of t. The
resulting augmented marked graph is called an Extended Marked Graph
( EMG ). As is easily seen, the arc s'-0 t is equivalent to sl Tt
in a Petri net model (see Fig. 1 (b)). Thus EMG are a subclass of
Petri néts. The inhibitor s' —O0 t introduced in [7] is an arc such
that t may be fired only while s' is unmarked. Note that it can be
modelled by EMG if sl has a prescribed token_capacity C. ( See

Fig. 2.) In the following section some structural properties of EMG

are investigated to derive necessary and sufficient conditions for

liveness.
t -t
] S| 2
t
M0=0
(a) an inhibitor (b) EMG model

- ]
MO(]) + .- 4+ MO(C) =C - Mo(s )
Fig. 2 inhibitor modelled by EMG

3. THE LIVENESS OF EMG

To investigate a relation between the dynamic behavior and the



net structure of Petri nets, deadlock and trap defined in the previous
section play a central role. These concept are genera]izéd by using
Tinear algebra in [9] but their topological interpretation are not
clarified.

We begin with by considering possible structures of minimal
deadlock and trap of EMG. A directed circuit in EMG is a minimal -
deadlock and also a minimal trap. Another possible structure of
minimal deadlock and minimal trap can be shown as depicted in Fig. 3.
Thesg are only structures possible for a minimal deadlock and trap in
EMG. Note that a controlling arc —@ should be therﬁreted as fwo

way arcs 2.

s e

d .
(a) deadlock (b) trap

(c) a deadlock containing a trap

Fig. 3 a minimal deadlock and trap

For any deadlock D of a Petri net, if IM(D) = O at some M ¢ R(MO)
then IM (D) = 0 at any M € R(M). Also for any trap E, if ZIM(E) # O at

some M € R(M,) then IM (E) # 0 at any M € R(M). Thus if there exists

o)
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a deadlock D and M such that IM(D) = O then any transition of D° is
dead at M. It is then clear that non-existence of unmarked deadlock

is necessary for liveness. It is not in general sufficient for live-
ness, i.e., there exists a non-live Petri net such that each deadlock
cannot become unmarked through any possible firing sequence. We impose
the following structural constraint on EMG for the condition to be

necessary and sufficient.

Assumption 1. For each transition t, if there exists a directed

circuit passing through more than two controlling places of t, then
the token sum of the circuit is greater than or equal to the number

of controlling places.

Let DeadM [1] denote the maximum set of dead transitions with

respect to possible reachable markings from MO’ i.e.,

Dead, := ,Sup {teT|tisdeadatM } (4)

Suffix M denotes a marking which attains the righthand set of (4).

Lemma 1. For any t ¢ Deady there exists a s € "t such that M'(s) =

0 for any M' & R(M).

Proof: It is known [1] that for a subset D of S, |D| 2 2, if each s
e D has at least one live input transition and M(D) will never be
positive then there exists a strongly connected state-machine (

SCSM- ) component including at least two places of D. In EMG, SCSM-
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component is equivalent to a.directed circuit. The proof is shown by
contradiction. Suppose the contrary. Then we can show as in [1] that

for some t € DeadM, a set L,
L:={se " "t| s has at least one live input transition }

satisfies |L| 2 2. Suppose |L| = 2 without loss of generality. It is
clear that M(L) will never be positive. Thus there exists a directed
circuit including L and the places of L are controlling places of t.
By Assumption 1 this directed circuit has a token sum greater than or
equal two and any transition on the circuit must be live. Then M'(L)
becomes positive at some M' € R(M). This leads to the desired contra-

diction.
By Lemma 1, we obtain the following result.

Theorem 1. Under Assumption 1, EMG is live at M0 iff there exists no

unmarked deadlock at any M reachable from MO'

Proof: Only the sufficient part is proved. Suppose EMG ié not live.

Then DeadM is not empty. Let D be a set of places such that
D:={se °( Deady ) | M'(s) = 0 for any M' ¢ R(M) }.

By Lemma 1, D is well defined. From the maximality of DeadM, any t €

T - Dead,, is live. Thus any t € s, s € D, cannot be in T - DeadM, i.e.,

M

‘D& Dead,, = D°. This implies D is an unmarked deadlock.

M
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Contrary to the invariant property of circuit token count in
marked graphs, IM(D) is not invariant for a deadlock in EMG. It
remains to consider the conditions for a deadlock to preserve the
positiveness of the token count throughout all possible firing
sequences. It suffices to consider the conditions for a minimal
deadlock D as depicted in Fig. 3. In case D contains a trap D' as

in Fig. 3 (c), if M, (D') # O then D cannot become unmarked from the

of
property of trap D'. Such D is said to satisfy trap-condition at MO'

On practical points of view, we may simplify the cases so that a
deadlock does not satisfy trap—cohdition iff it contains no trap.
Consider a minimal deadlock D which contains no trap as shown in

Fig. 4 (a). A transition t is called an outlet transition of D if

t is not an input transition but an output transition of D. t] and

t2 are outlet transitions in Fig. 4. A directed path from some tra-
nsition of D to an outlet transition t which does not pass througn

D is called a self-controlling path of t and denoted by'PC. A start-

ing transition of PC is called a branching transition. In Fig. 4,

paths t3 > el > t] and t3 - > t2 are PC’s of t] and tZ’ res-
pectively, and t3 is a branching transition. Without loss of generality,
we assume that there exists at most one branching transition between

two consequtive controlling places. A directed path in D from a
branching transition to the nearest outlet transition is called a
leading path and is denoted by PL. If there exists no branching tran-
sition in the section, PL is defined from the first controlled tran-
sition to the nearest outlet transition. In Fig. 4, path t4 oo > t]

and t3 > t2 in D are PL’s. Now soppose that EMG is live and contains

a minimal deadlock D which does not satisfy the trap-condition. If all

10
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outlet transitions have no self-controlling path, then D becomes
unmarked by the firings of the outlet transitions. We restrict the

structure of EMG by making the following assumption.

Assumption 2. For each minimal deadlock, each outlet transition

has at most one self-controlling path.

For a minimal deadlock D, consider a subnet composed of places
and transitions on all sets of Pc and P and denote it as { PcsPL }.
From Assumption 2, the structure of each connected component of { PC’
PL} fs either thé one as depicted in Fig. 4 (b) or simple path. A
structure of Fig. 4 (b) is called a dendroid R of D. In Fig. 4 (a),
EPre Pere Prae
picked so as to coincide with the direction of PL'

PC2 } constitutes a dendroid. Here the direction is

(a) a deadlock with self- (b) a dendroid of PL and PC
controlling path

Fig. 4 self-controlled deadlock

11
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Now it can be seen that PC in a simple path has no controlling
effect to preserve the token count of D. Thus it is necessary
that there exists at least one dendroid for D not to be unmarked.
Consider the circuit CR of a dendroid R of D. If the following
inequality,

is satisfied at an initial marking MO’ then it is satisfied at any
Me R(Mb). Conversely, if the inequality (5) does not hold at MO’
then it does not hold at any M ¢ R(MO) and moreover it can be shown
that there exists some M at which left-hand of (5) equa¥s to zero
while tokens of other part of D unchanged. At the same time all

tokens- of PL’S on the feeler of dendroid and all tokens of directed

paths in D which connect to any PL are removed from D. From the

discussion above, we obtain our main result.

Theorem 2. Suppose that EMG satisfy Assumption 1 and 2. EMG is live
at M0 iff the following conditions are satisfied.
(1) There exists no unmarked deadlock at MO'
(2) Foe each minimal deadlock D, at least one of the following
conditions is satisfied.

(1) D satisfies the trap-condition at MO'

(i1) There exists at least one dendroid R of D and the following

inequality holds on the circuit C, of R at M,.

12



Proof: The necessity of cdndition (1) is obvious. Suppose EMG is
live and condition (2) is not satisfied for a deadlock D. The only
possible structure to preserve the tokens on D is a dendroid R.

But R does not satisfy (5) that makes D unmarked. By Theorem 1,this
leads to a contradiction. Sufficient part is also obvious from the

discussion above.
4. CONCLUSION

Extended Marked Graphs are introduced to enforce the modelling
ability of marked graphs by al]bwing to include priority function in
concurrent processes being modelled. Applications to traffic signal
systems and some sequential control problems are apparent. The nece-
ssary and sufficient conditions for the liveness of a class of EMG
were derived in terms of the initial token distributions and the
net structure. Evaluation of reachability of EMG is currently under

investigation.
REFERENCES

[1] M. Jantzenvand P. Valk, "Formal properties of place/transition
nets," Net Thedry and Application, Springer-Verlag 84, 165/212,
1980.

[2] E. W. Mayr, "An algorithm for the general Petri net reachability
problem," Proc. of the 13th Ann. ACM Symp. on Theory of Computing,

13



[3]

[4]

[5]

(6]

[7]

(al

[91]

Milwaukee, 1981.

J. L. Peterson, "Petri nets," Computing Surveys, vol. 9, 223/252,
Sept. 1977.

T. Murata, "Circuit theoretic analysis and synthesfs of marked
graphs," IEEE Trans. on Circuit and Systems, vol.cas-24, 7,
400/405, 1977.

T. Taguchi, S. Kodama and S. Kumagai, "Analysis of marked graphs
with safe condition," Trans. IECE, vol. J63-D, 4, 343/348, 1980.
S. Kumagai, S. Kodama and M. Kitagawa, "Submarking reachability
of marked graphs," IEEE Trans. on Circuits and Sysfems, vol. 31,
1984. |

T. Agerwala, "Putting Petri nets to work," COMPUTER, vol. 12, 12,
85/94, 1979.

F. Commoner et. al, "Marked directed graphs," J. of Computer and
System Sciences, 5, 511/523, 1971.

G. Memmi et. al, "Linear algebra in net theory," Net Théory and

Application, Springer-Verlag 84, 213/223, 1930.

14



