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1. Introduction.

The concept of lacuna for the fundamental solution of a
coﬁstant coefficient hyperbolic operator was defined by Atiyah-
Bott—Ggrding [1], in an attempt to clarify the results by
Petrovsky [6]. They obtained a so-called Petrovsky condition,‘
which seems very close, if not exactly equal, to a necessary
and sufficient condition for a given domain in the propagation
cone to become a lacuna.

We shall here pick up a rather simple case and consider a
domain called the innermost conoid. The name is derived from
the fact that, if the operator is a product of wave operators
with different light speeds, the innermost conoid coincides
with the cone surrounded by the wave surface of the slowest
speed. In the case of the constant coefficient operators the

innermost cone turns out to satisfy the Petrovsky condition.
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Our advantage, however, is not only that the method provided
here gives a simple proof for the innermost cone to become a
lacuna, but that it is applicable to the case of strictly
hyperbolic operators with variable coefficients.

A certain criterion of the strong lacuna (or the Huygéns'
principle) in the innermost conoid is an immediate consequence
of our method. Although it is‘difficult in general to appiy,
it gives a simpler and more comprehensible aécount of classical
Stellmacher's example ([71).

We shall also discuss an asymptotigwﬁéhavior of a solution
with compactly supported initial data in the directions of rays
lying © in the innermost cone. The study of this kind was done by
Littman and Lui [4] for some of the homogeneous, strictly
hyperbolic, constant coefficient operators. Our results will
encompass a larger class of operators including any homogeneous,
constant coefficient, hyperbolic operator with the innermost
cone and certain Euler-Poisson-Darboux type operators.

Most of the results stated in this note stems from the

author's joint work with Kyril Tintarev ([5]). The rest will
be included in forthcoming papers.
Let P(t,x,Dt X) be a strictly hyperbolic operator of

order m with the real analytic coefficients of (t,x) =

(t,xy,-++,%x JER™  (9=(1,0,-+,0)  is the direction of the
hyperbolicity). The k th fundamental solution (k=0,---,ﬁ—l)
is defined by

PE, = 0,

(1.1) |
03Ey = 65 8(x-y), €20, § = 0,1,i-,m-1.
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2. Innermost Cone.

We shall freeze the operator at (0,y); a(D)=Pm(0,y,Dt X).

Definition 2.4. The innermost cone of the operator a(D)

is defined by
(2.1) IC(a)={(t,x);t>0, X(t,x)NA(a)={0}},

where

X(t,%)={ (1, R, trtex,£5=01,

and A(a) 1is the set of real zeros of the polynomial a(t,Z).
Let us introduce some standard notation:
= e ..o n+l
I'(a,0)=the component containing 6 in R "\A, .

K(a,0)={(t,x);<(t,x),I'> > 0}.

The zeros of a(1,£)=0 are denoted by rj(g), j=1,-:--,m.

There is a permutation

i3 of {1,2,---,m} such that
(2.2)

Tj(-E) = —rj.(g).

Lemma 2.2. Suppose n>2. Then IC(A) 1is an open, convex

cone contained in K(a,0).

Proof. For (t,x)GEIC(a) the condition (2.1) can be

written as
t > 0, Tj(g)t+<x,£>¢ 0, £€R™MO.

The left-hand side must therefore be always either >0 or <O.



Replacing & by -£ gives a similar inequality involving
Tj.(E) but with the opposite sign. A certain reordering of

the zeros then yields

Tj(g)t+<x,g>> 0, j=1,--.-,m/2,
(2.3) rj(g)t+<x,g><0, j=m/2+1,--.,m
t >0, j+j'=mt+l, odd.

This separation of the zeros iﬂto two sets ié.made independently
of the choice of (t,x)& IC(a). IC(a) is therefore convex
singe it iskthe’interéectibn'of’the convex sets of (t,x), each
determined by one of the inequalities of (2.3). These
inequalities are homogeneous in &, so IC(A) —isropen as well.
To prove 1IC(a)(K(a,p) we take (t,x)€ IC(a) and suppose
that X(t,x)(\F(a,é)EB(TO,go). Then for any real (T,E)
a(S(Td,£0)+(T,E))=O must have real zeros of s. Choosing
(t,£) in X(t,x) imphies XNA # {0}. This contradicts the
definition (2.1). We therefore have X(t,x)[\P(é,e) = @, which
means that T(a,8) lies in the same side of X(t,x) as (t,x).

In another word, (t,x)€ K(a,9). cL ‘ - Q.E.D.
As further properties we can prove

IC(a) \sing supp.(E(a,8)) = @,
3IC(a) sing supp (E(a,8)), and that every point of
IC(a) satisfies the Petrovsky condition with respect

to the operator a(D).

Here E(a,d) 1is the forward fundamental solution of -a(D);



a(D)E=8(x), supp EC{(t,x);t > 0}. We refer the definition of

the Petrowsky condition to [1].

3. Innermost Conoid.

As for the operator . P(x,D) with variable coefficients
its fundamental solutions Ek(t,x,y) turn out to be real
analytic along 1IC(a) 1in an infinitesimal sense; more precisely,
take any ray (0,y)+s(t,x), (t,x)& IC(a), then there is»a small
e > 0 such that E, 1s real analytic on the segment (0,y)+
s(t,x), O<s<e. It would be therefore natural to define the
innermost conoid as follows. Let U be a small neighborhood

of (0,y):

IC(P,U)=the connected component of U\sing supp Ek
(3.1) '
containing the above segment.

We will now give two examples in which the inner most conoid

is not empty.

Example 3.1. Let P.(0,y,0,8) be elliptic in &. (This

is the case, for instance, when P 1is a product of wave
operators.) The ellipticity implies that (t,0)& IC(a), ¢t > 0,

and so IC(P,U) 1is not empty as well

Example 3.2. Let P be of second order. Write

a(t,8) = Py(0,y,1,8) = t°-2<a,E>+b(E).
The different zeros Al(E), AZ(E) satisfy

Ay > <0, E> > Aq.
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This implies (1,-0)€&€ IC(a) and therefore £0,y)+&(1,-a)EIC(P,D)

if € > 0 is small enough.

4. An expression of Ek'

Our whole argument depends on a precise construction of
fundamental solutions, including the computation of smooth |
residual terms that remain inexplicit in the usual analysis of
singularities. Hamada's method [2], later apﬁlied to the real
analytic case by Kawai [3], turns out to be useful for our
purpose. |

The principal part P has m. differenct factors
T-ag(t,x,g), 2=1,---,m and each factor defines the phaée

function (Jol(tyx’y’€) by

3., - a,(t,x,3.4) =0,
(4.1) ' '
~sz(0,x,y,€) = <X"Y9£>°

We shall also use

F(-s)e

Xg(2) = -ims,s s=-1,-2,---
(4.2)
= zS(—log z+cs+ﬂi)/s!, s=0,1,---,
where -T< arg z <%, ¢4 =T"'(1), ¢, = S—1+Cs—l' The

relationship dxs/dz = Xg-1 is the key property that makes
them useful in constructing the fundamental solutions.
Ek can be written

| I B
(4.3) E=(2ri) " )

(s) .
P (X’Y,E)X ( +10)w(5),
=1 s=0J|£|=l % s-n%y |

where
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j-1
w (@)= -1)I e de A Ade s Ade - Ade

The functions pés), 2=1,-+-,m, s=0,1,---, are obtained by
solving the so-called transport equations. They prove to be
holomorphic in a common neighborhood of (0,y)xS™.  The series
(4.3) converges to the distribution Ep.

The permutation (2.2) now induces

5’ (t»X,Y,"E)',—"%v(t,X,Y,E)
(4.4) ‘
(S)(t X, Y,-E) ( 1) Pé?)(tyx!y,g)°
Besides,

Xg CFHLO)=(-1) Py (¥-10), s=-1,-2,-
Xg (-F+10)=(-1) ®x (F-10) - (im) (-§) °/s! s=1,2,+--.
Therefore we get

Jpé?)xs_n(93.+10)w(g)

J () 1)y (Fmi0u(e)-(-1) 1wJp(S%y B/ (s-n) lu(E)

if s-n=0,1,--: and a similar fomula without the additional
term if s-n#0,1,--:
Now suppose that IC(a) is not empty. Then by (2.3) m

is even and we get the following useful expression.

m§2
E, = E + R,
k =1 k2 k
_ .\ -n (s)
I SXkJPK g, (D) / (s-n) 1,



R, = z‘n<-in)'n'1m§2 020 p(sjsvs'né(a)/(s»—nﬂ |
k . =1 s=n . 2 ’

where gs(x) xs(x+iO)+(-1)nXS(x—iQ). R, turns out to be

real analytic in a néighbbrhood of (0,y).

5. Lacunas.
The expression (4.5) immediately brings about a result

that the innermost conoid is a weak lacuna.

Theorem 5.1. Let P be a strictly hyperbolic operatbr

with real analytic coefficients defined near a point (0,y) €

Rp+¥

Aséume that n 1is odd and.the innermost cone IC(a)
(a=Pm(O,y,T,£)) is not empty. Then there is a small neigh-
bourhood U of (y,0) such that the fundamental solutions
Ek,_k=1,---,m, restricted to IC(P,U) can be exteﬁded fo real

analytic functions in a neighborhood of (y,0).

Proof. Let TQ(E) be a zero of a(t,&). If (t,x-y) €
IC(a), then from (2.3)

T (E)t + <x-y,E> > 0, 2=1,---,m/2, £ > 0, E€ER".

Since 9&(t,x,y,£)=<x-y3§»+5(g)t+o((|x—y|+t)), 9% >0 on a.
small segment (0,y)+s(t,x-y),‘0 < 8 < €., On the other hand
gs_n(%)=o for 92 >0 and n odd. Thus, by (4.5), E =R,
with (t,x) in a neighborhood of the segment. Therefore the
analytic extension of EklIC(P,U) to a néighborhood of the

origin is given by Rk itself.
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The theorem, combined with Example 3.2, gives

Corollary 5.2. Let P be an operator of second order

satisfying the condition of Theorem 5.1. Then, in a neighbor-
hood of /(O,y), the inside.of the propagation cone of E,
(k=0,1) becomes a weak lacuna. |

On the other hand when the space dimension n is even we

can not expect the innermost conoid to become a lacuna.

Proposition 5.3. Suppose that the condition of Theorem

5.1 holds except that n is here assumed to be even. Then the

function EklIC(P,U) has no smooth extension to (0,y).

Proposition 5.3 and the proof of Theorem 5.1 lead to a-

criterion for the strong lacuna.

Proposition 5.4. Let U be a sufficiently small neigh-

borhoqd of (0,y). 1IC(P,U) becomes‘a strong lacuna for Ek’
i.e. Ek vanishes in IC(P,U), if and only if
i) n is odd and
ii) R = 0.

The second condition is equivalent to ang=0, j=0,.--,
m-1 because R, is itself a solution of Pu=0.

There are a few examples in which the above criterion
turns out to be of some use. Before stating them we shall
give a remark; if P has the constant coefficients and if

IC(P,U) 1is a lacuna for every y in an open neighborhood;

then one gets the following condition equivalent to (ii)



~h m/2 . . ' .
(4.6) 20 21J<?>a%pés+h‘3’<o,x,£)x§ Jere%u(g)=0,
j= 2=

h=0,:--,m-1, |a|=s-n, s=n,n+l,---.

Example 5.5. Let P=P_ is a constant coefficient

operator. Then

= (2ri) "™

By ) jp,ﬁk’<a>gk_n(<x-y,a>+x,&<s);)w<g>.

I~15
'_-J

In particular, p‘®’=0, s > k. Therefore, if n is odd, IC(P)

-

is a strong lacuna for k <mn. For k >n, E  restricted to

the (weak) lacuna is a polynomial in * (t,x,y) of order k-n.

Example 5.6. (Euler-Poisson-Darboux type) Consider the

following Cauchy problem

LAY
o

(8§—A+——L—2)Ek¥0, t
(4.7) (1+8)

ig - oy pe0 ae
2¢E = 858 (x-y), €20, 3=0,1.

There are two phase functiohs 9i'= tt|g|+<x=y, &> and we
denote the corresponding amplitude functions by {pis)} for

E0 and by {§+S)} for El‘ Then a little involved computa-

tion shows

(8)_(_1)8p(®) 2 p=5-1 ¥ (1y8I¢, (e, . 0/ (140
P+_ P . B J S-j

- 320
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~(8)_ s~(s)_ -gS s-1-j ]J
Py =(-1)"p.""=2 4.2 (-1 Cj(A)CS_l_j(A)/(l+t)

- j=0

where

Co(M) = CO(K) =1

¢, 00 = GHTHOH2) - OHE-1 )

C 0 = (GHTIOH2) - Ok(3-2) (3-1) - (5-D) ),

j=1,2,---. |

Now it follows that, if X = -v(v+l) for some positive integer
v, then pi2v+1) # 0 and 5+2v+l) # 0, while pis) = iis) =0

for all s > 2v+2.

Proposition 5.7. Let EO (resp. El) be a solution of

(4.7) and U be an arbitrary open set in R". Then

supp EO (resp.El):{(t,x)éan+l; |x-y| =t > 0},
y€U
if and only if n 1is odd and X = -v(v+l) for some non-

negative integer v such that v < (n-3)/2.

The 'if' part follows easily from the above remark. The
'only if' part can be proved by using the formula (4.6).

It is possible to look at the example 5.6 ffom a more
general point;of view, as was done by Stellmacher [7]. We will
now present it in a slightly geometrical framework.

Proposition 5.8. Let M = {x€R"'L, x,>0, 3=0,°:-,n} be

given a structure of Lorenzian manifold by the pseudo-Riemannian

- 11 -



. n Xk - ~
= ((I)[xk )aij’ kkélR, where 6ij = -1, 1 or O

according to 'i=j=0, i=j>1 or i#j respectively. 1In order

metric 813
that the Huygens' principle is valid on M, i.e. that the wave
equation EjM on M provides the strong lacuna inside the
propagation cone of the fundamental solutions E,, k=0,1, for
any y, the following condition is necessary and sufficient:

i) n 1is odd and ii) either -E%?lki or E:lki—l becomes a

=~

n
non-negative integer vy such that Evi < n23
0

6. Asymptotic Behaviors.
Littman and Lui. [4] discovered the following interesting
asymptotic behavior of a solution for the wave equation: Let

u be a solution of
2 P
(Bt-A)u =0
— 3 =L © n
u=u,y, 9 .u=u;, t=0, uo,ul€C0(1R ),

then 1) wu has the asymptotic expansion

u(t,0) v J 'ajtl_n—j, .

j=0
ii) if n is even and u(t,0)=0(t "), t » =, then u(t,0)=0,
t>0. |
This example made up a Qore(in their work where they drew
a similaf conclusionfor the strictly hyperbolic, constant-
coefficient, hbmogeneoﬁs, operators P(Dt,DX) with elliptic
P(0,8).

We can generalize their result to the case where P(D) is

- 12 -



assumed only to be a constant-coefficient, homogeneous,
hyperbolic operator having the innermost conoid. Then the
asymptotic behavior at i) and 1ii) is replaced by similar
ones taken in the direction of any ray lying in the cone.

In what follows we will state another generalization of
the above example. ThebEuler—Poisson-Darboux equation is

again considered;

c
]
o

(6.1)
u=u, t= 0, quCO.

We already know the exact form of the fundamental
solutions, and when A = -v(v+l) with some non-negative
integer v, the expression (4.5) has only a finite number of
terms and therefore is valid globaly. In this case it is not
difficult to compute the asymptotic expansion of wu. In the

following propositions we always assume the above condition of

AL

Proposition 6.1. For any XOGSKJI and 0 < § < 1 there

are holomorphic functions aj(w), bj(w) defined in the open

unit disc of En, such that

uxgtat,t) v § (a (@)+b, (a)log £)t " 1707,
3=0 J J

n

la] < 6, €R®, (v > (n-1)/2)

.

vy aj(a)tv+1—n_j, la] <8 (v<(n-1)/2),
j=0

- 13 -



as t > >,

Proposition 6.2. Let o€ R", la] < 1. The following

asymptotic expression holds with some polynomials aj(x) and
bj(x) of order up to j; for any conpact set K of R® one

has

v+l-n-j

u(xtat,t) v § x €K,

.

(a! (x)+b! (x)log t)t
3 J J

0
(v > (n-1)/2)
oY al)e’td ) exR (v < (n-1)/2)

j=0 7
as t ~» ®.

Proposition 6.3. Let n be even and v < nil. If

u(xgtat,t) = o(t ), t » » with some «a €R", |a| <1, then

u(x0+at,t) =

11
o
ct
v
[en]

This proposition generalizeé (ii) of Littman-Lui's example.
It was also shownin [4] that if u decays faster than any
negative power of t 1in a semi-infinite cylinder as t » =,
then u vanishes identically, provided that the initial data
of u have compact sypport. We will be able to give an

affirmative answer in our case as well.

Proposition 6.4. Let n and v satisfy the condition
of Proposition 6.3. Let cxé]Rn with ‘Idl < 1. If a solution
u of (6.1) has the asymptotic behavior u(y+at,t) = o(t )
as t » o for any y in an open set of R"™ then it follows

that uy = uy = 0.

Proof. The hypothesis implies that in Proposition 6.2

- 14 -
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aj(y) =0, j=0,1,---, when y 1lies in the open set (we have
v < (n-1)/2 in this case.) Since they are polynomials, it
follqwg that aj=0. This in turn means that u(t,x+dt)=o(t-m)
for all x€R". Proposition 6.3 enables us toconclude that
u(t,xtat)=0, t > 0, i.e.- u(t,x)=0 for all (t,x), t > O.

Therefore, obviously Uy < ug = 0. This completes the proof.
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