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A Cech cohomological method of construction

of holomorphic vector bﬁndles

Nobuo Sasakura

(Tokyo Metropolitan University)

gy'This is a continuation of our previous papers (§] Eﬂ;

and we propose an (elementary) Cech theoretical construction
of holomorphic &ector bundles over a complex variety. In
thié note we take the universal quotient bundle over thé
Grassmann variety as our guiding model for the construction
(cf.§]“3) and the argumentsfwill be done by extending vector
Eundles to closed subvarieties of codiménsién é:é}cf. $1.1).
The content of this Qéte is very érovisional, but provides
a general method of:construction of bundles up to co&imension

35 S(for Stein manifolds and for projective manifolds up
to tensor product of line bundles). Among explicit computations
in this noté, the following may be worthwhile pointing out:
(1) An analégue of Bertini’s theorem on mbving singularity
(for divisors of a linear system) for what we call ‘Grassmann
system of_divisors)(Lemma 1.4.2), (2) Some conditions for
the locally freeness of the sheaves in question!(Lemma 1.5.1

"N 1.5.3). The above two types of results concern singularities

. N . ' . < .
of certain varieties which appear in our construstion, and



would clarify that the existence of singularities provide

the hard part of the constructionf)(3) A type of residue
theorem(Théorem 2.1), which represent the characteristic

class by the residue of certain meromorphic differential

forms. This part is based on the Cech theoretical treatment

of the characteristic class in Atiyahlllﬂ, and, in our context,
the validity.of the residue theorem (residue condition) is

a basic condition for frames of bundles in question.

2. Very many important results on constructions of
vector bundles are known (cf.,for example, Hartshorne t© 31
and Schneidert@j.ASee also Maruyama T 5 and Grauert-Mullich £ 23
for constructions in general situations.) However, a systematic

constructions of bundles by Cech methods seems to have been

not taken up for varieties of'dimension Z 2. (Note that
classical treatments of bundles as in Weil mfl and Tjurin CI0]
may be regarded as Cech theoretical.' One of our motivation
of this note is to try generalizations of the classical:

approachés in C!& , CI°d  jn terms of stratification theory.)

*) By this this manuscript may be very suited to be sent

to the proceeding of the singularity semihar.
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§1.1. Frame condition. Let X be a complex variety. Then
our construction of holomorphic vector bundles will start

with data as folldws:

. - -2, o . . X
(l.l.lrl)Dl =(X2,EX), where X~ is a codimension two subvariety

of X and EX is a holomorphic bundle over X:=%-%2.
0

(1.1.1-2) D2 =CZl,Nl:§_,§} where 2; is a codimension ocne

)
X,

subvariety of X containing Nl is an open neighborhood of
4) R . » . ~ :
Xl:leJX* and §}=(ei,..,e;),r=rank of EX’ is a frame of
. vl
EX[Ni(l—O,l).(Here we set NO X-X".)
Figure I
T .%® _.---7F¢% .
/’"\
— T NO

Let i be the injection:XCefiiand\E§:=i*EX the zero-th direct

image sheaf of (i,EX). Then our proposed method of construction

of holomorphic Vector'bundles is as follows:

(*-1) To settle data D=(D1,D2) just above.

(*-2) To investigate structures of Ez.

Because Ef is determined uniquely by B, (*¥-1) (or, more precisely,
settling conditions on D ané examining validities of conditions)
will be a basic factor. In this provisibnal note, we do not
enter into seriously (*-1). (Some arguments will be given in

§ 1.1 soon below and in § 1.3.) Concerning (*-2) our hope

is to investigate EE‘in the following devices:
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(**-1) To give conditions of locally freeness of Ef ;
(**-2) To stratify iz, to attach an open'neighborhood of
each stratum and to consruct a frame of EX in each neighborhood.

(**-3) To use frames as in H**-2) for investigations of

structures of Ei.
our results in this note give a progvisional result for
(**-1) ~—~_A**-3). Very roughly, one can handle (**-1) (**-3)

cutside of X< (cf. §1.5 and §2), and we hope that the

sing
content of the present note providés a basis for further

considerations.

2, The following proposition would show that our start

with the data D=(Dy,D,) as in (1.1.1),(1.1.2) will not lose
genefailties:

Proposition 1.1.1. Assume that X is a Stein variety or

a projective variety. Then, for a holomorphic vector bundle

Ex over X, them_i_s__a._s_o_imenaim_tm_sgbzanie:y_iz of X

_ =1 .0 1 2
and a datum D2~(X ,Nlhg ;) for le-(X ,EX).

Proof. The proof is given similarly in the both cases.
I
Here we give a proof only for the case where X is a projective

variety. Then we know that there is a codimension one variety

—

Xl such that Eili—ﬁi id a product bundle (and we fix a frame



0 » . . . : Y
e~ of EX[XLXi)' Next taklng a codimension two subvar}ety X

of Xj which is contained in Xl, one can assume  the following:

(a) the restriction of Ei to Xl:=§l—¥2 is trivial.
Assuming that Xl.is an affine vériety, if necessary, one

1

can find an open neighborhood N, of X~ and a frame gl.Of

A ) -2

EX}N . From the above arguments we see that (X" and D,:=

- 1 . C

(Xl,Nl;go,g}) satisfy the condition in this proposition.
g.e.d.

Next-assume that dim X=1. Then X~ =¢. Then remarking that

1 . . . . ‘
X7 is a compact Riemann surface or a Stein variety, we may

say -that the role of the datum D2 is as follows:



1.2, £ : .2
: Representations of Eq In §1.2 we assume thét

there is an element yéf(X,QX) such that

1

(1.2 1) X ) g reg

Proposition 1.2.1. As___g_LhéL.hOl_adm;:§_§n_QXQIESSLQn

Ww

= 2. , With elements .
(1. 2 2) hOl ' hOl W : s aé_2,+0 LhO]_ & Mr (Nl_,Q_X)
_Then E. ;__;mbgddgd_;ntnygx

(Note that (1.2. 2),;mgL;ai_;haI_th_QQeﬁflc;ents_aﬂ hOl‘—“—

1)

Proof. Define anMQX homomorphlsm T.EX‘—igx by

~c S N 5 1
. lN E IN Dg 5 . O\I = Ol'S
(1.2.3)% _ 1

_meromorphic with respect to X

"1 "0 l'

0 : a 0
o Frn, PS> % N |
i_ iy £ of igi_ s T i i
where 3 —(31,..,3r) is an e}ement Of‘QNi and e 'S = ‘Lﬁ=l Sj ej.
3 3 T = i i
Note that (1.2.2) 1mpl%¢s N, ‘%No in NlO' It is also easy
to see that T is injective. - q.e.d.

Denote by Ly and L. the determinant bundles of Ey and E -L(E ).

Then we have the following commutative diagram:

EX
s denotes the
(1.2.4) *Ari | (e ) i nE
’ Ly ' : r-th exterior produc-

.= Ar i to be a frame of L., (i=0,1),

Note that, by taking f f X{N
i

the 1somorphlsm;(A T) is explicitly as follows:



r_, . 1 N < C

(A LﬁNl'LX{le £ — QNl 2 (det hyy)-3,
N iy 2 208 o, D vz

A )INO‘ XNy T 20 Ty AN ¥ >0

where ?;i is an element of O (i=0,1).

N,
i
Take an element L?6EI(X,EX). We mean by the divisor of 18 the

T
one of |9 é;IL(X,LX). Letting D, and D? be the divisors of-Yf

and T™Y )éiﬂr(X,EX),~we have the following from (1.2.5):

1.2.6) D, =D, + D. ,
( g = Dg * Dy
where the divisor D0 of X is defined as follows:
r ..
(L.2.7) DOle = locus of det hOI and DOlNO = that of 1

(Note that D? is the divisor of Ar?éka,gx), and treatements
of it are much easier Fhan those of D? .) Divisors like DT play
very basic role in our arguments henceforth;some propérties of
such divisors will be ihyestigated in later arguments (cf. Si;é).
Next ndﬁe,that (1;2.2) concerns ﬁhe growth property of the

matrix h with respect to the divisor Xl. We discuss here growth

01
¥
properties of hol with respect to the codimension two subvariety

2 . L : ! .
X7 . For this letting: the element hOlEE Mr(Nl’QX) be- the one in

(L.2.2), we assume that the inverse th of hOl admits the following

expression:
1 1 1

(1.2.8) th =y (x 1070 + vy th'l)' where th’O and th’l

are elements of Mr(X,QX) and Mr(Nl,QX). Moreover, c is an element

-b, -c

*h

of Z%O and x is an element of ka,g ) which does not vanish on Nl‘

X



. . . : H i
(Thus we may say that the main part of h10~is meromorphic

with respect to x and y.) Now letting X and /L denote the

. r. r ! ) . ST
gi—morphlsm.Qi >% > QX.9 th’OS and the quotient mo:phlsm.

r r, b.r .
gz-~9 QX/Y QX , we have:

1
Proposition 1.2.2. Ex is the kermel ofl&1:0§ —_— Og/yboé .
ANAAAA A AN AANA NS w -~ ~
o =1 r
Proof. Take a point p& X~ and an element Spegf’p'

Then we easily have the following;

' b ' - b ' —nb
(1.2.9) ‘xp & Ei,p = (y-hlo)Kp 0(y™) € hyg4 'Jp =0(y").

I

‘v EIRY
This implies that E_,p = (kernel oflﬂ)p. On the otherhand, for
a point pe:No(;XQXl), we obviously have:EX,p=(kernel ofxﬂ)p
;Q%,p . Thus we have this proposition. g.e.d.

Remark. Assume that X is smooth. Then, by a simple observation,
Ar—— o v

we have:

(*) EX is coherent <?%>"D=(D1,D2) satisfies (1.2.8)
. : 1 . ‘
(i.e., the main part of the matrix hlO is meromorphic with

fespect to'Xl and'iz).
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P

ﬁgéé&ﬁFramesvgf type (G)--+l. In & 1.3 we assume that

X is normal. Then we introduce the following
0

Definition 1.3.1. We say that_gé=(§l,Nng_cgi) is of

type (G), if there are elements e=(el,..,er+1) C:J?(X,EX),

with which the following hold:

(1.3.1-1) The frames_g0 and‘g} are of the formag?=(el,-,er;l,er)
1_ r i.._ .

and~f._(el"’er—l’er+l)’ and A»_i_(l—o,l) does not vanish

identically on X.

(1.3.1-2)  The closure D,(C X) of the divisor D, of e’ is

reduced and irreducible, and coincides with Xl.(Thus xt is
irreducible).

The bundle E, is_of type (G), if it admits a datum D,of
type (G). Note thatADéfinition 1.3.1 concerns essentially

the elements_gf(el,.},e ) C;ITX,EX). We say that e is of

r+1
type (G), if it satisfies (1.3.1-1) , (1.3.1-2) and}
(1.3.1-3) AF_gi does not vanish at all on Xl.

Note that, in this case, the closure X L of the divisor Dl

T
ong} satisfies:

(1.3.1-4)  (X'n Excb c %2
Also note that, by taking a suitable open neighborhood Nl of
Xl in X, the datum_22=(§l,Nl;§PLg}) is of type (G). Here we

make some very simple remarks for_gz=(§i,NngP,g}) just above.

Some more delicate computations will be given inugl.3 and 81.5.
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The datum;gf(—l;Niag})ti=0,l) and the'diviséré ?% and T T have
the similar meéning to the ones jﬁst abgve, and‘de;ote by}gx[gl]
the sheaf of meromorphic functions;ovgr X with the pole X;.
- Proposition 1.3.1;'The transitibn.matrix hiO er.(EO'E});
0_c1L : is explicitly as follows: " |

e =2"hyq
I

-1 ¢ _ - L. , .
(1.3.2-1) hy, = [P: 1 y:} ; With cej}rAl(X,QXCX j) and_yiﬁX,QxEX&]
1

: 1
{(Remark that this jmplies that |y defines the divisor Xl in X-X T.)

,groof. Remark that the first (r-1)-terms of gg and;g}‘are
AN . :

and, for the proof of (1.3.2-1), it suffices to

(el,-.,er_l),

see that

- o1 9\
{1.3.2-2) er = e [Y -
'1

But, because 4r e~ does not wvanish on X-X ~, we have such an

' “ ) - 1
expression in X-X 1, by understanding that c EEP;‘l(X—X l,‘OX)

andAyéngx—X l,ox). on the otherhand, taking a suitable open -

1] 1
neighborhood Nl of X L in X, one can write:
’ N ! ) ' ] ) .
(1.3.2-3) e .1 = (cl e+ Sesetc 4 er_l)+ Xwe with elements
1 ]

¢yr--sC _; and x&€lHN;,Q.),

and one can also write:

-1 ! R
-4 —_ o = - * 2 a0 - e —
(1.3.2-4) (-1) er X (cl el+ +cr_l e 1 er+l)

1

1
.Because x defines X ~, we have this proposition. g.e.d.

/o



Let the elements ¢ and y be as in (1.3.2-1) and denote

v . ' Co r
by N, the open variety X-X L i (: ) -

Then, letting }Lthe‘go . QNO
-morphism: O0 3V —> \,or 1 = £Ir l,_c_j-g and i_/ the quotient

morphisng0 r-1 ——%’QO /Xgor 1

as follows:

, one can rewrite Proposition 1.2.;

Proposition 1.3.2. EX‘NL_is_isomoxphic_to_thé_ksrngl
M’\M/\—‘\Wl .
0

YA 1 Tr—1 | I
of :(_'}L:Q\.Or——‘7 Qor /Y,Q,Or 1

Assume that there are elements y and X‘EEI}(XLQK) such that

(1.3.2-1) v and x generate the ideal of E; and X l.
Theh one can write:
- = « L J : !
(1.3.2-2) c=x -¢ , with ¢ el * (X’*-X)
Then, letting JL be the O, ~morphism: QX 53— Q I:xIr l,é] AR

and Y the quotient morthsm;Qi s Q§ l/ygi—l, one can

rewrite Proposition 1.2.3 as follows:

Proposition 1.3.3, The direct image sheaf Ez _is isomorphic
r-1

to the kernel ofjﬁl;g% ——-470 /yO

(Note that, writing & as (SJ)J _] ¢ we set § =(:§j i Then

S is in the kernel of Y-/L if and only if:

r-
j=

! | )
(1.3.2-3) x- &+ g callmod.y) .

The above simple proposition will be a starting point for our

explicit computations done for Eg-from now on.

//



Next by a simple computation, we see thatvthe‘injection;
t:EX-f?Q§(as ini(l.2.3))=is given explicitly as follows:

(t- : ’ 1 : ‘l- l * T  | z ' 3 {
jx-x'1:Eg x-x'1 Z # 8 T x-x'1 Fhpp0 %

) - . 0.0 r 0
Tx-xliFxix-x1 2 &' T % 12 Yy .

where hOl = YIr—l' —S .
0 X .

Moreover, let fj be the element of E%X,EX), whose i-th

(1.3.3—1)

component = 1 or 0, according as i=j orﬁ j. Then we easily

have:
s . ' . . . _, <
Proposition 1.3.4. T(ej)—ygj(légjéxﬂ and Tﬂerfl)—( %
Thirdly let e denote the element (el,..,g ""e}+l)€5

r+l-j

Lir(X,EX) (0£j<£r). Then we easily have:

pProposition l.B?S.fIhe_ng;ura 2%(1&__7 of the divisor

(ﬁf~§3)0 is_as follows:

X = X. = X ={c < LA -
(1.3.4) Ky =(v)g, Ky=(x)g and X, 5 =(c)) (1852 x-1).
Now we define a subvariety ¥ of X by

2

(1.3.5) = NI F (< .
4

Rrapasition 1.3.6. The direct image sheaf Fe is locally

free over X-Y.

. Proof. For a point p Q{E it is clear that Ei’b is
Oi,p—free if.and only if:

- : e r r-
(1.3.6) there is an element_fI—(aj)j=l < Effp such that
the divisor Dg of ¥ dces not contain the point p.

r+l-k

Thus, in ilil, it is clear that e is a frame, and we

have this proposition. g.e.d.

(2
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Remark, In arguments henceforth, we take_§f+l~k
N AaanS

a standard frame of i—i&;

to be

The«.locally freeness condition of EX"p(p € ¥Y) will be
discussed in 81.5(in a more detail).

Remark, Assume that X i§ the Grassmann variety of subspaces

X

bundle over X, we have the following exact sequenée of the

of dimension d in Qﬁ. Then letting Tz = XWQS be the trivial

universal bundles:

X /

(1.3.7) T~
where RX and Qi-are the universal sub and quotient bundles.

1 1
. . n ~ ~ ~
Now take a basis e =(el,..,en) of C7, and let & =(el,.,§n)

0—5Ry —3 Tz (=Xxg) ——3 0z —50
X

be the corresponding&elements of jEYi,Ti). Moreover, let

X ~ A LNz _ A (y - ~ .
él(el,..,en) denote (&) e* (X,QX), and we set & (el,.,er+l).

Then, from the Scubert calculus (cf.Musilit 1), we easily.

have the following:

(L.3.8-1) §§(= ArelA"Ner+l—jA"ﬂ\€;+l)0 represnts the
first Chern class cl(QX) (0£j<r),
and |
(1.3.8-2) Y:= ﬂjio i% is the Scubert éycle of codimension
2(in‘§) such that

?{éﬂ i% = ¥ U?‘g , with f?) =\ €1a-48r-1)0

/3



(= represnting cycle of the secind Chern class cz(Qg)),

also, for each j=1,..,r, we have:

. -1 =1 _ = U =2 . 2 - o\l ~ ~
(1.3.8-3) XO N xj Y Xj , with Xj ( A el””@r—l—jndér—l)ﬁ

5emark. The above example of the universal quotient
pundle would show that it is not, in general, legitimate to

take the following as a generic condition:

(1.3.8-4) codimi-?_= r+l

Some other explicit computaions for the universal quotient

*
bundles will be given in_§1.5 and in Appendix I.)

*) This appendix is not included here. ..

[ 4



§ l.4. Frames of type (G)-<:<2. Here we confirm some

. ) :
situations, where the‘bundles of type G appear. First we
remark that the most typical exa#mpie of ‘bundles of type G~
(in our sense) is provided by the universal quotient bundle

over the Grassmann variety. I8tting X denote the Grassmann

variety.and Qi-the quotient universal bundle, we have:

Lemma l1.4.1. There is a codimension two subvarietvlg

_Qflg such that

(1.4.1) is of type (G).

%) x-%2
Using the notation in Remark in § 1.3, one can take X X n i

Some detailed arguments on the univesal bundle Qf is giVen‘

*)

elsewhere .
Assume that X is a p%ojective variety. Then Lemma 1.4.1 and
‘a generic position argument in Kleiman) implies that following:

T 1
Lemma 1.4.2. For a bundle E- over X there are a codlme nsion
A W |

two_subvariety §2.9§ X and an element m65v§+0 such that

(1.4.2) (E <31r )IX 2 1s of type (G),
where- L'- w_,llnﬁ—bund-m r'n'rrocmnn-lnn ta _the hy ype
plane cut.

A similar fact holds for a holomorphic bundle over a Stein

variety, without taking the tensor product with line bundles.

AS
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Lemma 1.4.2 and the remark soon below would 1neure generalltles
to work w1th bunales of type (G) ln‘ou; constructlon of
holomorphic bundles.‘ | |

3; Here we fix elements s t<€‘g+ satlsfylng s> t, and,

for each index I=(ll,..,lt):l=;ll<~-<]. s, we £fix an element

=
flﬁifli,gz). Let Mst(g) denote the g-vector space of sxt-matrices

with coefficients in C and we identify-Mét(C) with’EfF,,For an

element A€ M__ (C) we write AI for the submatrix of A consisting

st
of I(=(il,..,i ))-rows of A. We then define an element F &

I (&xcSt, 0 st -

Q) 1 Qy =structure sheaf of XxC ; by
I

Let i, be the injection{i(:: XXxiay ) < X X th, and let D,

* A . —
be the divisor iAF(of X). Denote by F the collection {fI} I

(1.4.3) Fpa) = X (et 2t Fo(p) .

and we set:

(1.4.4) 3£}=base locus of F) = QI

Now take a p01nt p €X and an element A &€ C c®

(fI'O)red ‘

t. Then, taking
a suitable open neighborhood U of A and a proper subvariety

V of A such that the following hold:

Lemma 1.4.2. For each A. é U-V  we h ave:
NV —— e N

))24,

(1.4.5) codimg ((Dx,p sing (X p’sing VE
where ié,. degggg_;ne_germs~o£ X,.. at p.

(We may say that the ststem iD }

A ecst is a Grassmannian
cs : :

system of divisors, because D, depends only the Grassmannian

coordinate determined by A.)

/¢
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Here we give the key points of the proof of Lemma 1.4.2(and
the content soon below may suffice to claim a regourous proof.)
Our basic idea is to reduce Lemma 1.4.2 to the original
Bertini’s theorem on the méving singularity of the divisors.
(in a linear system). For this letting A= [a%] Cléj.is,lgjét),

we expand al as:

I I), where

i
- _ > S _ t+v Vv A
(1L.4.6-1) det A = Z‘v=l (-1) .at - i

I I v
l&f;j%\% )=(iv,t)—cofactor of a—, ‘

. y «
and substituting this to (1.4.3), we write ¥ (p,A) as followsi

A
,t(

s av
v=1 t t-1

submatrix of A consisting of the first (t-1)-rows

), where A is the

(1.4.6-2) F(p,a) =X F_(p,A el

Note that (1.4.6-2) is linear with respect to (az)vil,_and[
in order to apply the: Bertini’s theorem to this linear system,
we define the following ‘base locus’for Ay GE'Ef(t—l):
_ S

(1.4.6-3) B ) =0, Frg) g
Also, for our proof, we set:

' 9F_(p,A )J

' _ z . v "e-1 <

(1.4.6-4) Rk(At—l) -{p =<4 Xreg’ rank of[. g_xu { = k},

) are coordinates of X at o

where (Xl"”xdim‘i

and we also set:

(1L.4.6-5) SéAt_l) =closure of RﬁJAt—l) in X.
Letting the point p be as in Lemma 1.4,2, the key points of
*
the p:oof are as follows ?2
*) ,**) See (%] for an analogue of Lemma 1.4.2 in an algebraic

situation. The proof is given similarly to {X¥].

/7



127

(L.4.7-1) Each irreducible component B(At- ) ,. of B(At_

-1'p"J l)p

t—l)p’j»d; Bp,‘we havef
Bl 3575 o= Ry Bey)y -

(L.4.7-2) For each irreducible germ VP at p satisfying VPA;B

satisfying B(A

P
we have:
v, é; Ry (A 1)y -
(In the above B _,... denote the germs of B,.. at p, and the
: s (t-1)
element A _; €C, »
By a simple observation we have the following from the above:

is understood to be chosen generally.)

) N (8(a

sing t—l)-(x

(L.4.7-3) (

D, URl(Aﬁél))p‘is of

sing
codiemnsion =Z2 in B(A__y)-
On the otherhand a simple computation also leads to:

-_— 3 .. Z
(1.4.7-4) _codlmxp BA 1), =

2 .
Thus from (1.4.7-3) and (l.4.7-4) we have Lemma 1.4.2.
‘Next recall that a basic fact on refléxive sheavs

(cf.Siu-Trautmann € 1) implies:

(1.4.7-5) cod}mi S(Ei)'; 3, where S(Ei):={ ) é-X;EX--,p is not

Qx,p—free } .
This and Lemma 1.4.3 will insure that there are generalities

to start with bundles of type (G) in local situations.

/8



§ 1.5. Locallz freeness conditions. Here we assume that

X is smooth and that the datum D= (X Nl,eo,e ) is of type (G)

(cf.Deflnltlon l.3.l).‘Let.Xl and X 1 be the extensions of

—_— * ’
(/\r_g_o)o and ‘(iAr _e_l) to X. Without loss of generality ) we
assume that

=2 _ =l p. ='1
(L.5.1) X = T N X.og -

0

P | —
Letting _Q-}-([X l] be the sheaf over X of meromorphic functions.

. .
with the pole X l, recall that the transition matrix h for

10
Le_o,e_l) is explicitly as follows:
T cl ) * 3z
th = [O ,»y-i. , with v €[ (X, LX ]) and
(1.5.2)
1
e = ePr (onX .

We assume that there is an element xéf’{i O}’i) such that

_y' =y/x andg' = ¢/x , with ye& F(X O—-) ‘and
- r-1 r-1
—9_(cj)j=l e [ (X,AQ,—X) .

(In view of Lemma 1.4.2 this assumption has generalities in

(1.5.3)

the local situation.) Let T be the injection:E—i (_;QS]';, which
. ) 1] N . ‘
is defined by (1.3.6.1), and we write E}—< for T (Ef'() . Moreover,

let W be the quotient morphism:g— —> QO<1- Taking a point

“X
z1 r . . !
p € X*, recall that an elementd =(J. )j -1 & ‘Q)_('p is in E‘X'p

if and only if the following holds(cf.(1.3.6.2)):

(1.5.4) %-(3) =+ ? +c =0, _where %X=4(x) and € =& (c). Moreover,

r-1 r-1
= =0 (T
¥ ‘le) (F307) .

and §_=wW (%) .

——r r

Now we will give some conditions for locally freeness of Ez,
by analyzing the very simple equation (1.5.4). Our basic idea -

in the analysis is:
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1

(*) to discuss structures of E‘Xp for each p ¢ i.(\ireg

and to use results of the discussions for the structure of
1 _
).

=2 . =
,§(p e X° N xsing

Ex

As will be seen soon below, the struéture of Ei'p is given
2 1

reg.'We hope to discuss the structure

=1
n Xsing

nx
2

explicitly for P ¢
of'Eiyp for each peX (cf. the end of this section).

Now let Fil denote the Qxi(=structure'sheaf oﬁ:il)—submodule
of 9;1’ which is defined by (1.5.4). We determine the structure-

as follows:First we write the irreducible decomposition of ¥

in the form:

a da
(1.5.5-1) 32-_-xll, .-+ %", with a, €2, and ¥, < Og1p

vanished at p and is irreducible(l £ i £ u),
and write Eg(l.é j% r-1) as follows:

b, (3) b (3) ' . . . ,
(1.5.5-2) 63 = §i;~ . Euu Y with by (3),..,b (3) €2 4

o _ ,
and cj E}Qil’p is not divided by xt(lx t £ u).
Define a subset I(j) of {1,..,u? by

(1.5.6) t € I(3) & a, = bt,(j) B

and we set:

! _ -1 s ,& . .
(1.5.7) I = \)j=l Ij , and bi = mlnjé;I bi(j)(l & I).

: , r e
Now define an element 7L€F}—(l,vp( C Qil’p) by

a.-b, b. (j)-b, b, (j)-a
_ —_— ~ 1 1 _ ~ 1 1 ~ 1
(1.5.7) '%r—( o1 % ), and Zj-(ﬂielxi“; )(:?iﬁlxi:
{Ej (1€ 3§ £r-1). (Here %, =j-th component of 7% .)
+

REEESEEEiEEJE;E;}' Fil'p is spanned by the single_element 7.

Proof. First remark that , for each element

N
<>

¥
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jE:{l,..‘,r—l} ; we 1'1ave:§-:?;i + héj‘/fr = 0. This implies that

~ ~a i ‘ A ‘
if‘iéEIj then we have Sr,EiO(mOd-Xil *), and by (1.5.5.3)
we have:‘

a.-b,
~i

(ot an I 1 . T
- - - = M . . . 7 2% e > 1 7 -
(1.5 8.1) T 54 - (4 a1 %5 ) with an elementd 971 o

By substitﬁting this to the eéuation:%&ﬁ + ggiir =0 we have:
(1.5.8.2) -(_).gj '=(IiéI &'?i(j)—bi ) . (Iic‘;l ;{?i(jl)—ai )“-Eji )
Thus we have the (only if’ paft of this proposition. But it’

is easy to check that the element i satisfies (1.5.3), and

we have the present proposition. g.e.d.

As before, let fjrbe the elemeﬁt of.ETE,Qé) whose i-th component
=1 or 0 according as. i=j or&j(ls j f__ r). Moreover, take an

element 7L€ QE,P such thatw (1) = :’Z Then from Proposition 1.3.4

and 1.5.1 we have:

Lemma 1.5.1, _The stal}g_EX,p %§_generated<over ngp by
=N ‘_C_:_ =9 ;
v £ L)), ("2)(=T(e,,y)) and T .

L
We derive a condition for the OX’ -freeness of E-, from
~X'p . X'p

Lemma 1.5.1. For notational concordance we write x and y as

c_ and c )

=1 s
and we use ﬁhe symbol Xj for the divisor (Cr+l—j 0

r+l’

(0£j=r). Thus we have:

sl _ 71 -2 _ 5l =1
(1L.5.9) X" = XO and X© = XOQ Xl’red
Then setting
' = =1 =2
(1.5.10) ¥ = N.° . Xi( c X
n J= 0 Fead, } )



recall that Proposition 1.3.7 implieé:

(L.5.11). E is locally free .

-Y

denote W/ (cj) we have:

X]
Next letting .

at Nl
w.

) ATl ' : '
Lemma 1.5.2.' Take a point p & Y(\Xreg . _Then EX'p is Qx,p-ﬁree

if and only if, for an element jé—(_l,.'.;,rﬁ}- , we have:

-v

(1.5.12) S = 0 (mod. c ) in O—,p‘ (1€ k2r&d).

Proof. Let n‘EE}?’p Abe as in Lemma 1.5.1, and let D, 5%
i . 3 ~ A . .
denote the divisor of (el,.,ej{.ek,.. e 10 L) (1Si<k S r+l).

By Lemma 1.5.1 we have:

, :

To analyze the above condition, we first remark: - .-
a ~ ] : ;l

(1.5.14)  WTee ) = (L %9 g x40 |

‘and elf\-» )\eji\--l\ek!\-- A'er:!-l = 0 on -{’ unless k=r+l. ,Th‘fls the

condition in (1.5.13) is réwritten in the form:

(1.5.15) Ny 5o, Dyrpygm B P

Writing 7, as w’j)jil we get the following from Proposition 1.3.

and (1.2. ):

(1£73 r).

JIN

n
(1.5.16) Dj'r+l:"l_, (Lj)O
Thus we rewrite (1.5.13) as follows:
(1.5.17) Eg is %? -free if and only if one of 7Z (1= jﬁr)

does not va'nJ.sh at p.

But from the explicit form of ”Z, (cf. (1L.5.4.3)), we have:

22
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(1.5.18-1) °Zr =0 at p(*» b, (j) Ta ;1 £] sr-1,1£1i £ s).

é‘;é\; = O(mod.c’:‘;).(l <j €x).

Also, for an element j e{l,..,r-17 we easily have:

(1.15.18-2) ’lj%o' at p & (I=¢,and €;=8, ¢, with a unit ¢),

or (I%¢, b, (j)=b, (i€ 1) and b, (j)=a, (i & n)e & ;ounod.‘éj) .

Thus we have:

k

From the above we have this lemma. g.e.d.

(1.15-8-3) Dj,r+l;f§p<é96“ E.O(mod.%3)(l <k £r).

The following is easily derived from the above lemma and

shows that the variety Y has a very restricted property.

Corollary 1.5.2. Aﬁ@_g_thﬂh‘fﬂil ¥ 75 and Eg, 5 =1
reg Xl X-X=,
sing
is locally free. Then we have: -
(1.15.19) (¥ X— ). is of éggimensiqg one in_il .
reg K reg

The arguments hitherto concerning the locally freeness conditions

are purely local in the sense that they are given for each point

on Xreg’ Here we give conditions of more global nature:For this

. =2 ' ~ =1 —2 ‘
letting Y. 4 . i
g 3 enote (Cj)o’red‘lxre , we assume that Y. admits the

g ) (L)

irreducible decomposition, and we write it as follows:

=2 _ =2 =2
l.5.20"‘ . = e ® o o O
( 1) Y Yoo U U‘ Yj’s(j)

3 Tl
Then the following is easily checked:

Proposition 1.5.4, For each ue&{l,..,s(j)} —there is an

glement m (3) &€ 3, such that

m_ (3) _ m (3)+1 4 - -
) but = O(Ij’u’p ) for each p € Y.,

N

(1.5.20-2) ‘Ej:—‘_O(

I-l 7
jup u

(-

37
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;ﬂé;g_Ij denotes the ideal of Y2 S(j)

v

We write (1.5.20—1)»and (1.5.20-2) symbolically as follows:

(1.5.20-3) (G, )01 e (¥

reg 1

32
) (]) Y*‘r

."

Tt Mg s (3)

Let ?l,..,§; be the set of all irreducible subvarieties of iiég

that appear as the irreducible component of ??(léjjélr). Assume
that the indices in (1.5.20—3) are so chosen that

(1.5.20-4) (¥t =m ~,(j)?2+-- +m_ (j)’s“zz) +(ms+l(j)"f§.,s+l *

reg

e m (J)(j) 3 S(j))

We will give a locally freeness condition, by using the above

expression: For this take a subset I=(il,..,iu) of (1,..,s) satisﬁé@\
-fying

| w2, .2 v A

(1.5.20-5) ‘YI(.-Yiln...,nYiu e

For each k EE{l,...,r}‘we set:

(L.5.20-6) mI(k) =(mil(k),..miu(k)) ;- :
. 1 1 !
- = if o < - < (
and we write mI(k);z.mI(k )‘lf mil(k):: mil(k ),.--,miu(k)__ miu‘k J,

We say that j.EE{l,..,r}-is of type I, if mI(j)§§ mI(k) for all

~ ! ~
l{é{l,..,r }. Define a Zariski open set’YI of YI by

(1.5.20-7) Y. = Y. —U_.__%
. - Yp = Xy I'p1 T

Propositjon 1.5.5. We have the dlSjOlnCe unlon_Qf Y as foll-

~OwWS ¢
M

~'

(1.5.20-8) Y = Y, , where a subset I of {1,..,s} satisfies

(1.5.20-5) =22

24
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E@mof, For a point p ey we define a subset I(p) of {1,..,s’
,.»W-—'r"‘/ ' ) R b
B
Q_”s 20-9-1) - I(p) =_{j G{l,v.‘,S’r:gj > P}"-
. 4 ’ _ :
gmb subset I(p) is also characterized by

o

(1.5.20-9-2) Y_. .Dp , and I(p)=I if Y. 2p .

I(p)
and we see easily that, for a subset I of'{l,..,s} satisfying.

(1.5.20‘—5). and .YI ﬁ\¢ ;, we have:

(1.5.20-10) Y = {p, & ¥:Ilp)= I} .
From this we easily have (1.5.20-8). qg.e.d.
Now using the stratification (1.5.20-8) of ¥, we will give a

1 . For this taking a subset
sing -

locally freeness condition of E§|§—§
I of {l,..,s‘}, we set:
(1.5.20-11) T, = {j ELL,...,r); 3 is of type I }

Lemma %.5. N Efli—il is lOéaily free if and only if the
sing

following holds for each subset I of {l,..,s}-satisfying;(1.5.2048)

and‘yi %¢ .

S 42 -7
- L _@E
(1.5.21-1) T: 3 515 , and quéiﬂl e T, T ) # where the

~J&

_§nb2§;;§§y_Yj of ?; is defined to be the second component of

the expression (1.5.20-4).
Broof. Take a point p € Y and we set I=I(p)(<3{l,.-,s ).
By Lemma 1.5.1, E—, is OX -free if and only if there is an

index j&{1,..,r } such that

(a) E@EEO(mod.E;) for k=l,;.,r .

From a simple observation we have:

iad 43
(b) J & T; and‘Ij’ X p

28



This implies the following implication:

¢ . ‘ >, P/

() Ei'p is gi’p free for each pesYI é?il.S.Zl—l) for I .

conversely, assume the right hand side of (c). Then, for a
o JOR B )

I such that péYI —Yj .

O(mbd.E'j) (l£k£r) at p.

1 .
point p & YI’ take an element j & T
But from (1.5.20-4) we have:?:'k?..

Thus we have the converse of (c). This, toghether with the

disjoint union (1.5.20-8), implies the lemma. q.e.d.
Examples. The simplest case may be that there is an
irreducible divisor Y such that

(1.5.22-1) ("c’j)' =Y foralll £j£ r .

0'red

In this case we see easily that E is locally free.

xIx-xt

~ sing
Next assume that each (c_j)0 can be written as follows:
IR | an !
(1.5.22-2) (’é’j)0 = ¥ +7Y,, where ¥ is irreducible and
A ot ’

Yj does not contain Y .
Then Lemma ‘1.5.3 can be rewritten as follows:
(1.5.22-3)

) . L Al 2

[ 1 Ve =

EXIX-Xl. is locally free<&™ ﬂj Yj ? .
sing .

>We summarize the arquments hitherto - in the féllowing diagram:

(1.5.23) X D X e 7 =Yaxi,
\

ﬁ sing
Ei is‘locally The locally freeness condition
free is given explicitly

We hOpe to discuss the locally freesness of Ei for %, by our

arguments (Lemma 1.5.1~1.5.3) in an another place.



Remark. Using the same notation to Remark in & 1.3 for

. — : N\ - O~ N
Scubert palcglus,‘we wrlte(pj)o_(elA"ﬁer+l—j'\“°§r+l)0 ’

and we rewrite (1.3.8-3) as follows:
. - ~

-~ _ A N2 . I "
(1.5.24)‘ (cj)O = Y k}Xj, with Xj _(elA“Aer—l—jA‘A e 1o -
Also from Scubert calculus we have: ‘
=1 _ r A _ r -
(1.5.25) Xsing - (\j=l(el,\,- f\ej,\___/\er)o(" nj=l Xj ),
=1 _
and codlmi Xsing_f 4.

[avd

Note that, in this case, one can change the role of (31,..,cr+l

)

to (5011),..;5;kr+1)) for any permutaion ¢~ of (r+l)—létters,
and using the notation in (1.3.8-1), we set:

_ r =1 _— ~ (ST S
(1.5.26—1) W.— (\j=0 Xj,sing(— lé J< k §r+l (ell.--/\ej M‘-ekf"/‘er+l)0‘

This is a Scubert cycle of codimension six.
From this and Lemma 1.4.2 and 1.4.3, we say that our local
freeness conditions (at the present moment) are applied for

Stein or projective manifolds up to codimension< 6.

27
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$2. Residue conditions,

Recall that our construction of holomorphic vector

0

bundles start with a datum_g;(il,Ni;g ,g}) as in Definition 1.1.1.

Then letting EX be the direct image sheaf in question and

X

assuming that E;:is’locally free, the following two procedurés
may be 6ur basis for invéstigatiohs of global properties of

the bundle Ei:

(*-1) To stratify the codimension two subvariety 22 suitably
and to attach a suitable open neighborhood to each stratum,

and

(*-2) to attach a suitable. frame of Ei-in the neighborhood

of each stratum.

Now the residuexEOndition in the tiﬁle is spoken in
terms of the frames aszin (#;2) and concerns explicit
determinations of the characteristic classes in the sense of
‘Atiyah T 1; we may'regard the validity of the.condition as
a basic factor in our procedures (*-1) and (*-2)

1, First we recall very gquickly the theory of Atiyah

S
on the characteristic classes{[{11) in a convenient form
for our explicit computations from now on: Let M be a

complex manifold and EM a holomorphic bundle over M. Moreover,

28



let N = {I?IA})GAbe an open covering of M sqch that EM[ N}\ is

we let

trivial for each 3¢\ . Fixing a frame e, of Ey|n. ’
' A

h. 0 denote the transition matrix for (e} 1€ ) T ke -Letting

A
& denote the collection {e, ;1 <€A}, we have ah element
(Atiyah class) @ = @(N_,_e_) E gt (_I}I_,End(EM)beb]&), where, for
each (), W) e/\x/\ , the compo'nent »@Akvof fis as follows:
(2.1.1) D= an .07l ' |

Mo M T A |
(Recall that this is the obstruction for the existence of

(e P myon, ,End(E,) L)) .

. holomorphic connection for EM(CIJ). Also we recall the
following (p.191,C41): let €& be the element of Hl(M,End(EM))
which is defingd.hw'e. Then, by means of Dolbeaut isomorphism,

o~
® corresponds to the curvature form @< gi’1

; (%End (EM) )

of a suitable connection form of EM‘)

Next let Ip be a polynoméﬁﬂ of degree p:Mr(g)-—a G, which is
invariant by the adjoint action of GLr(QU, and elt Tp be

the corresponding QM—morphism:

(2.1.2) End (E,) X’\p - X End(E,) — 0,

Then, one can attach to 4§ an elementcup=(LP(N,e)€£ ngglﬂgﬁ)

—— 7 —

by means of the map .i%oas follows:
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z! (¥, End (EM)eﬂ.}ﬁ) 2P (N, End (2 )f@p‘@ (SLy )@P )

‘\:'fp d / Toff Upe
N

P §e) P =
z(N,ﬂ,)aco =I (6)
Bp

where (P and Rp are the cup and exterior products. Then
the characteristic class of Atiyah([1]) is defined to be

the element ﬂfPGEHP(M,ﬂbﬁ), which is determined.byAcoP =1 (9)

p’0
é‘Zp(ﬁJJbﬁ), with the basic invariaht polynomial Ip’O of
degree p. |

In our context, the pair (N,e) will be a basic datum

for investigations of global structures of EM’ and the element

w = dN,e) & zl(gJ %écg End (E,) ) may-bé a most basic
invariant of the pa}r N,e) from the view point of de Rham
complexes.

EJ Now let us return té our original situation:Assume
that E, is locally free and that there is a stratification
S of X in such a manner that
(2.2.1-1) SO=X—Xl and Slzéxl—X2 are elemeﬁts of .S {and
so thevcédimension two subvarietyy-i2 is the union of strata
of 8),

and, for each stratum S of S, we have:

(2.2.1-2) there is an open neighborhodd N, of S in X such

S
that EXle is trivial.
We fix a frame_gS of EX]N for each S €S, and we write
N and e for the collections {NS;S étg_}and {gs;s s7.

— —_—

y
S
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Henceforth in §2 we assume that X is smooth. Then we_have
End (Eg)efly) and the

p
5%24. Now

the element e 6(N = ) & Z (_S,

characteristic element (ﬁp—wp(ﬂs,gs) = Zp(_s,

take an element_gf(so,...,sp) & wvh, where codimisl =i (02isp)
. . N e . P ~ ,

and let iy be the inclusion:Ny: {NSJ }j=0 —s N and we

set:
(2.2.2) wP —LU wP € zP U,Q,p) ~ [ ﬂ 2o Na3 5N

Now we introduce a condition for this element tug
concerns the boundary behaviors ofcug around the main body

sP

. which

-

of_Q:To formulate this condition, let N denote s7n sP

sJ|

0< 3 - P : »
(0<£j<p) and we set N {NS3]p} =0 Remark that

Ulp
P ) : : :
ﬁj=0 NS NSJ’P and we may regard: |
P < gP Py ( A P , P
(2.2.3 wf € Py, R (== FoaB gy k.
Next define a subset N {stlp} ?;é of E#lp , and for

an abelian sheaf F, over Nsp , we define a relative cochain

complex C (N ; E) by the following exact sequence:

Ulp

(2.2.4)" 0 — C [E) —> ¢ Ny, /) —> CF N JEF>0
) cp ™ UIPJ Wy 7E) Ny o B>
Remark that gglp consists of p+l-elements, and we have:
P ~/ P .
csp@mp,g) c* @y, E)

(2.2.5) \5 B N\&\,

~ p
P@U]p B — 2 (NUE)

i
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'and we may regard:
P p ‘ p
(2.2.6) a)g S ZSP(N~\p"Q‘X) .

Now assume that there are elements_§=(fl,.,fp)e:f(Nsp;Qx)
such that ‘
(2.2.7-1) SP( C:NSP) is the (set theoretical) locus of £
and 7

.2.7-2 . =3z i i := (\,P iy
(2.2.7-2) fJ(l__j_ p) does not vanish in NUlp ﬂl=0 NSJIP
. = .. ’ P p
Then settlng dlog_gf dlog flA . _[\dlog fp & ZSP(NUlp’SyX)

we make:

Definition 2.1. We say thatccg satisfies residue condition

with respect to £, if one can write:

~2.2.8) a)g = a dlog £ + Sq)pal , with éivelement a-€ C
_ v oP-lie a-1 P |
and an element W~ € CSp | (NU]p’ ,,SLX) N

If N is a sufficiently small neighborhood of Sp(in X), the

SP
residue condition (2.2.8) concerns a boundary behavior of

the differential form ng around the main part‘Sp of U.

We like to take the residue condition just FiGure I
"-._‘\ N

above as our basis for determination of the . a SP

( .
characteristic class of Ez(in terms of \ sP B

S - -

de Rham complex). Here we make a simple

remark on the condition (2.2.8)°

21



Lettingéi% denote the (abelian) sheaf of d-closed holomorphic

differential forms over X, we have the following diagram:

: P é m2P (y o

(2.2.9) \L&

where M denotes the symbol of ‘hyper-cohomology«D. Note that
the two cohomology groups in the top line in (2.2.9) are of
topological nature whilr the one in the last line is of
complex analytic nature. Now lettlngfvp be the element of

HP(NU]p,IL—) which is determined byayp, the residue condition

(2.2.8) insures:
(2.2.10) Qr% & image of !

and insures that the complex analytic element u)g is endowed

—

with a topological meaning:

_3- Now assume that our bundle Ex is of type (G), and let

E:(El,--, r+l)(:~P(X Og) be as in § 1.5. We assume the following

] )
generic condition for c¢:

(2.3.1-1) X9*ro(c

r+l""cr+l—j)0’red (0= j£ r) is of codimension
j+1(if j+1 £ dim X),
and we set:
(2.3.1-2) 'L = %I U332 (0552 1)

41
Also attach suitably an open neighborhood Nj+l of xJ to each

j. Then setting

33
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(2.3.1-3) ¥ = ﬂj I

we remark that {x3+1§jV{x% ,X0=§4§l, gives a stratification
v ‘A
T3 =(el,..,e

) (0£ j€«min (dim X -1, r)),

0’red

of X-Y. Letting e er+l) be as in the

r+l—j'

n/r+l -j

end of § 1.3, we recall that is taken to be a frame of

. Setting N= IN
j*l

element P (N,e) & 2B (mUl,p,Q}FZ’) with U=(xP,..,x°%) (p min(dim X-13

and e= (e

—r+l—j) , we have the

Ex|w 411 5

hen remarking that (c +l)0 n-- ﬂ(cr+2—p)0 = XP we have:

\T,\fﬁga%f/fki-,l/- ﬂ;ha__alemanta}’m e) satisfies the residue
condition with respect to (€ rl- k)p -

This is essentially very elementary, but requires some

long computations. Details will be given in &n another place.

2



144

References

1.M.F.ATiyah, Comple% analytic connections in fiber bundles,
Trans.Amer.Math.Soc.7.181-207(1957)

2.H.Grauert-G.Mullich M Vectorbundei vom rang 2 uber den
n-dimensionalen komplex-projectiven Raum. Manuscripta.math.
16,75-100(1975).

3.R.Hartshorne, Algebraic vector bundlesion projective spaces,
a problem list. Topology, Vol.1l8, 117-128(1978)

4. S.Kleiman, Geometry 6n Grassmannians and applicatiéné to
splitting bundlés and smoothing cycles. Publ.Math.I.H.E.S.
(1969)281-297

5.. M.Maruyama, On é family of algebraic vector bundles,
Kinokuniya, Tokyo,95-146(1973)

6. N.Sasakura, Cohomology wiﬁh polynomial growth and cémpletion
theory, Publ.R.I.M.S, 171-352(1981)

7. : , A type of comparison theorem in polynomial

growth cohomology, Proc.of Japan Acad. 297-301(1983)

8. Y.T.Siu-G.Trautmann , Gap sheaves and extensions of
coherent analytic sheaves, Lect.Note in Math.Vol.173

9. H.Schneider, Holomorphic vector bundles on Pn’ Seminaraire
Bourbaki 530(1978 ™ 1979)

10. A.N.Tjurin, The classification of vector bundles over
algebraic curves of arbitrary genus., Izv.Acad.29,657-688(1965)
1l1. A.Weil, Generalization des fonctions abeliennes,'J.Math,

pures Appl.17,47-87(1938)



