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Expansive properties of Lorenz attractors

M.KOMURO N F T #

ABSTRACT. Expansiveness of Lorenz
attractors is discussed. We introduce two
conceptions of expansiveness for real-time

flows, which are called K- and

*
K -expansiveness, and prove that Lorenz

attractors are not K-expansive but

*
K -expansive. This means that if the orbit

topology is suited, two points of Loren:z
attractor which are not close in the orbit
topology can be separated under the flow.

Introduétion.

E.Lorenz studied in [10] the following system of
differential equations in connection with thé problems in
hydrodynamics;

X = -10x+10y § = 28X~y-X2 z =-8/32z+xy
J.Gukenheimer introduced in [3] a geometric description of
a flow which seems t& have the qualitative dynamics of the

- solutions of the Lorenz equation. This geometric Lorenz
flow has a complicated attractor. R.F.Williams described
in [13] this attractor, which is called the geometric
Lorenz attractor, as the inverse limit of a semi-flow on a
2-dimensional branched manifold. We call the geometric
Lorenz attractor simply the4Lorenz attractor. The Lorenz
attractors do not satisfy Smale's Axiom A (see [12] for the
definition). That is because the attractors have

non-isoleted fixed point, and the orbit can be "slowed



down" for an arbitrarily long time; this spoils some
uniformity in the hyperbolicity required for Axiom A to
héld. However, as Guckenheimer mentions in [3], the Lorenz
attractors seems to preserve as much hyperbolicity as they
possibly could without satisfying Axiom A. .

There is a well developed "statistical mechanics" for
attractors satisfying Axiom A ([1]). It is an interesting
problem how much of this statistical theory can be extended
to appiy to the Lorenz attractors. . In order to solve this
problem, it must be clarified whether the Lorenz attracfors
have the basic properties of Axiom A systems (ex. the
pseudo-orbit tracing property, expansiveness,
specification, etc). Auther mentioned the pseudo-orbit
ﬁracing property of Lorenz attractors in [9]. The aim of
this paper is to study an expansiveness of Lorenz
attractors.

The concept of expansiveness for homeomorphism plays
important role in the study of discrete flows. R.Bowen and
P.Waltes gave in [2] a definition of expansiveness for
real-time flows, which is called C-expansiveness ([6]).

The basic idea of their definition is that two points which
are not close in the orbit topology induced by the real can
be separated at the same time even if oné allows a
continuous time lag. The fixed points of C-expansive flow
must be isolated (Proposition 1 in [2]). The Lorenz

attractor is not C-expansive because it has a non-isoleted

e
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fixed point.

H.B.Keynes and M.Sears introduced in [6] the idea of
restriction 6f the time lag, and gave several definitions
of expansiveness weaker than C-expansiveness. When one
allows only the timerlag which is given by an increasing
surjective homeomorphuism of the real, K-expansivéness is
defined. It is unknown yet whether the fixed points of
K-expansive flow are isoleted . So it is a question
‘whether the Lorenz attractor is K-expansive. In Theorem
(IT) we will give the negative answer for this question.
The reason is not that the restriction of time lag is
insufficient, but that the topology ipduced by the real is
unsuited to measure the cloééhéss of‘two points in same
orbit. Taking this fact into consideration, we give a
définition of K*—expansiveness ,and prove that the Lorenz
attractor is K*—expansive (Theorem (I)).

The concept of Kf—expansiveness is enough to show that
two points which do not lie on a same orbit can be
separated. However it may not be the best one which
clarifies the expansive property of the Lorenz attractors.
An attempt to clarify such a concept will be mentioned in a

later paper.



§1 Definitions and Theorem.

Throughout this paper the symboles R and % denote the
set of all real nmnbers and the set of all integers |
respectively.

Let X be a compact metric space with a distance

function d. We denote
d(¥y,¥,) = inf { dlyy.,v,: v; € ¥; (i=1,2)}

_ [.t .
for any subsets Yl,YZCZ X. A flow ¢ = {w }téR on X is a

continuous map
U IXxR —X; (x,t) — V(x,t) = ¥T(x)

such that ¢t+s = wt°ws holds for every s,t€R and wo is the

identity map (clearly wt is a homeomorphism on X for each

t €R). This is often denoted by (X,y). For each x€ X and
t € R we denote x°*°t = wt(x). Also for any subsets YCX and
JCR we denote Y*J = {x.t:x€Y, teJ}.

Definition 1. Let C(R) be the set of all

continuous functions from R to itself. Define

c = {gecC(R): g(0)=0},

K = {g € C: g(R)=R, g(s)>g(t) (s>t)}.

A flow (X,V) is said to be C-expansive ([2],[6]) (resp.

K-expansive) if it satisfies the followig ;for every e>0

there exists an €>0 such that if for some g€ C (resp. ge€K)

d(x<t,y*g(t))< § for all teR, then yex*[~-¢,c].
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A flow (X,y) is said to be K -expansive if it satisfies the
following; for every &>0 there exists a §>0 such that if

for some g €K
d(x+t,y*g(t)) £ ¢ for all t € R,

[
0+e] for some t0 R.

Clearly the following relation holds in general;

then y-g(tg) € x-[ty-e,t

' *
C-expansive =—= K-expansive =—=> K -—expansive.

When a flow (X,{¥) has no fixed point, it is proved that
C-expansiveness is equivalent to K-expansive (see Theorem
1;(i) and (ii) in [2]). However it is unknown yet whether

this is true or not when (X,y) has fixed points.

Definition 2. A semi-flow ¢ = {wt} on a compact

t20

" metric space X is a continuous map
¢ + X x [0,0) —— X ; (x,t) — o(x,t) = cpt(x)

such that @0 is the identity map,bwt:X — X is surjective

+s

and mt = ¢t°ms holds for every t,s 20. This is often

~denoted by (X,9). We define a compact metric space ¥ and

vt
a‘flow v = {g }téR on ¥ by
X = {§=(xt)t€R . xtex, xt = ot S (x%) for all s t} ,
t, v s+t v S
o (X)) = (x )seR for X = (x )SGR and t €R.

The distance function on X is defined by

a% ¥ = I, 2P as®, v

t t

) y =

\
for x = (x This distans function

L/\r



satisfies d(x’,y") s &(X,¥) for all ¥, ¥ .

(We remark that this distance function d is equivalent to
the distance function g defined by

5%, ¥) = [T oIt d(x,y5at
because each x* varies continuously with respect to t.)
The flow (§;$) is called the inverse limit,ofba semi-flow

(X,¥). We denote this by (%,%5'=';19'(X;¢).

Definition 3 (geometrié Lorenz attractors [13]).

Let L be a 2-dimensional compact smooth manifold
(called a Lorenz branched manifold). illustrated as in-
Figure 1. The set of -branch points of L is the line
segment b'c'. The point b (resp. ¢) is an intersection of-
the boundary of I with an extention of the line ¢'b'
(resp. b'c’ ). We permit the case of b = b' or ¢ = c'.
‘The branched manifold‘L is embedded in R?® as a subset. We
denote by d a distance funétibn on L which is a uéual
distance function oan3; |

We suppose that a Cl semi—flow4w on L is defined as
illﬁstfated by some arrows in Fighre'i. We call this the
Lorenz semi-flow. The point e'is a”uniqué fixed point of

@. Near the point e the linearlized‘equationvhas the form
X =X ¥ =Wy (0 <y <)
There is a unique point a €b'ce' such that mt(a) does not

return to the line segment bc but converges to the point e

as t — o,
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Figure 1

We identify the line segment bc with a interval I =
[b,c] in R such that c~b = 1. Without loss of generality
we may assume that d(x,y) = |x-y| for all x,y €I.

We denote

+ _ - . 4 _
I, = (a,cl, Iy = [b,a) and I, = IOUIO.

Also we set the following notation;
[a,e) = a*[0,x) the positive half orbit of a,
[a,e] = [a,e) V{e}, |
arc(e,b] the orbit from e to b (not including e),
arc(e,c] the orbit from e to ¢ (not including e),
arc{b,b’] the ofbit from b to b’',
arclc,c'] the orbit from c to c¢',
[b',c'], [b',c), (b,c'] the subintervals of I=[b,c].

Define a map T:I)— [0,°) by

T(x) = inf {s>0: x*s eI} for all x €I,.

That is, T(x) is the first return time of xe—IO to I
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under ¢. Clearly T satisfies that

T(x) — o as x — a+0, and

inf {T(x): erO} > 0.
Define a map £:I — I by f(a) = b and
£(x) = o ¥ (x) if x # a.

The map f is called the return map of ¢. We assume that
the return map f has the followeng properties;

Standing assumption

(1) £ has a single discontinuity a, and is C1 strictly

-

. . + -
- increasing on I0 and I0

(2) f(a-0) = c, f(a+0) b, £(b) < a < f(c);

(3) £' > 1.

( We remark that the condition f' > VY2 is assumed for the
return map £ in [13]. Under this condition it is proved
tﬁat the return map £ is loéally eventually onto. 1In our
paper, howeVér, only the conditioﬁ f' > 1 is enough.)

If we have a map £ as above, then a Lorenz branched
manifold L and a C1 Lorenz semi-flow ¢ which hés the return
map f are uniquely determined up to the topological -
equivalence. Here a semi-flow (Xl,ml) is topologically
equivalent to a semi-flow (Xz,mz)‘if there’exist a
homeomorphism h: X, — X2~and a continuous map
c:Xlx[O,w)-——+ [0,) such that o(x,°*):[0,®)— [0,®) is a

surjective homeomorphism with o(x,0) = 0 and

and t€[0,®).

wz(h(x),c(x,t)) = h(ml(x,t)) for all X €X,



Thus we denote by (Lf,mf) a Lorenz semi-flow on a Lorenz
branched manifold with the return map f£f. We call the
inverse limit

Y N .

the Lorenz attractor with the return map f.

Our theorem is 'stated as below.
Theorem Let‘(ﬁf,$f) be a Lorenz attractor with the
return map £. Then
. N . * . "
A1) (Lf,¢f) is K —-expansive, but
Noov . .
(11) (Lf,¢f) is not K-expansive.
The following property of the return map‘is'bacic for

the proof of Theorem.

Proposition 1. Let f:I— I be a return map

which satisfies‘(l) ~ (3). Then tﬁere exist a constant al

with 0 < «a

, < 1/2 which satisfies the following;

v
N~ K

(4) for x,ye€l with d(x,y) §a1, f(x) = £(y) implies x

(5) for’er0

and yelg, d(x,vy) §a1 implies d(f(x),f(y))z=

(6) for xeI-|J ;o £ "(a), if d(f"x,f%y) S o, for all nz
then x = y.

Proof. - The maps flIB:IB-——*—[f(b),c) = [b',c) and
f|IS:IS-———a—(b,f(c)] = (b,c'] are homeomorphism. Thus
for each x€[f(b),f(c)] there are two points xle Ia and
x,€ I, such that f(x;) = £(x,) = x. Then

S SR ‘
aj = 5 inf { d(x;,x,): x € [f(b),f(c)]1}

-~



is positive because'd(xl,xz) =;d(xl,a) + d(a,xz)‘varies

continuously with respect to x €[f(b),f(c)]. Then for each

l

x,y€ I with d(x,y) éai;‘f(x) f(y) implies x = y. By (3)

there is.a{>0 such that

f(a~s) > 3/4 and f(a+s) < 1/4 for all 0 < s < af.

Then for X€I6 and yelg, d(x,y) g u{ impliesad(f(x),f(y))g-%.

Put a; = min {ai,a{}, then this clearly satisfies (4) and
(5). To see (6), let x&I-|J ., £ ™(a) and ye I satisfy

d(fnx,fny)g o for all n2 0. Since a a{, for each n2> 0

1 18

either fnx, fnyéla, or fnx, fnyéI;
1S

and since f' > 1,

holds. 1If x # y, then £lx # fny for all n2 0 because a

. , . + -
al. Since f is continuous on I, and I

1 0

Ol

d(f%,£fy) — = as n —s .
This is a contradiction. Therefore x = y.

§2 Preliminary.

Let (Lf,mf) be a Lorenz semi-flow with the return map'

f. For each x€L. and t€ R we denote

f
-cp*g(x) | if £t 2 0
{y Lg: wgt(y) = x} if t < 0.
If x €L~[b',c'], then x-(-t) is one point for t>0 small
enough. If x €[b',c'], then x*(-t) is a finite set of
points having more than two points for any t > 0. For
subsets YCZLf and JCR we denbte | |

Y3 ={ z:zext, x€Y, t€ J}.

13



(P.1) Recall the map T:Ij;— (0,®) as in Definition 3.
Define

C(x) = x+[0,T(x)) for all X €1,,

T (x) = 07U o(elx) for xer - U§ 't £7M(a) and n 2 1

'"(where To(x) = 0),
Lg = [{x*t: t €[0,T(x)), xelg } (o = +,-) and
+ -
Ly = LyYL, -
(P.2) Put

= 1 .
q0“4lnf {T(X)-XGI > 0.

Define a continuous map z: I'[-qy,9,] — I such that

C(X.t) = X for all xe€el and te[_qolqol'

We define the line segments 3" and 37 as follow (Figure 1);

J = papz such that J N C(x) = {one point} for all erO
where paearc[b,b‘] , pa'(ZqO) = b' and

pIG arc(e,c] , PI'(ZqO)‘= c,

J+ = pgpI such that J+r\ C(x) = {one point} for all xEIg
where pgearc[c,c'], pE‘(ZqO) = ¢' and
+ +
pléarc(e,b], Py (2q0) = b.
And put J = g¥UJ”. Define a map G:IO——" (0,») such that
0(x) = inf {£t > 0 : x-teJ } for x€1,. -Set

0

/ol



L] = {x*t : t€l6(x),T(x)), x€Ij } (o = +,-) and
— + -
L1 = L1UL1‘

(P.3) PFor each subset YCLf and >0 we denote

: d(x,Y) S e}.

B(Y,e) = {x€Lg:

Take a constant oco with 0<OLO<OL1 which satisfies the

following;

+
(1)  B(J,05)NB(I,ay) = 8,

0

T

(i) B(I",ap) NB(Ly,ay) = 2,

o)
(iii) B(J%,ay) NB(la,el,a)) = 2,

(iv) B(I,ao)nB(e,a ) = &,

0
(v) B(J,ao)r\I'[-qO,qO] = ¢ and

(vi) B(I,ao)c I-[—qo,qol.-

(P.4) For x €I and € €(0,a we denote

O)
Y(x,e) = {y€B(I,e): tly) = x}.

If xe€[f(b),f(c)] then ¥Y(x,e) is "Y", and if x ¢[f(b),f(c)]

then Y(x,¢c) is "I". For each x €[f(b),f(c)], define
+ + - -
Y (x,e) = Y(x,fs)f\L1 and Y (x,¢e) = Y(x,e)nLl./
§3 Proof of Theorem (I).

Let €>0 be given. Take a u>0 such that

(7) ® £ min {qore}l
(8) C1e[-2%,2n]1C B(I,04),
(9) d(x,x*t) £ 0.0/2 for all xGLf and t<€ [0,n].
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There exists a >0 with 5(‘0.0/2 such that
(10) B(I,8) C I*[-u,n] and
(11) d(x,y) ¢ 6 implies d(z(x),z(y)) s oy
for all x,yeI'[—qO\,qO]..b
In this section we 'denote’simplyff and Lg by T and L
respectively. Let ¥el be given. Suppose that ?ei and

g € K satisfy

d(%¥-t,y°g(t)) s 8 for all teRr.
We shalll show that

yeglty) € x'[to—e,t0+e] for sgme ty € R
by a sequence of lemmas.

Lemma 1. If for ye L
d(e*t,y*g(t)) £ ¢ for all t 2 0,
then y e [a,e]f\B(e,S'). | ‘
Proof. Suppose that y &€ [a,e]. Then there is a

t0 2 0 such that y’g‘(tO)EJ, because g is surjective.

Since B(J,aO)(\B(e,aO) = g,
d(e'to,y'g(to)) = d(e,y'g(to)) > ap > §..
This is a contradiction, thus y<[a,e]. Since g(0) = 0, we

have y €[a,elnB(e,d).

Lemma 2. If for §€,ﬁ
d(e*t,y°g(t)) £ ¢ for all te€ R,
then ’y\' = g, where & = (e)te(Re L.



Proof. For every t 2 0 we have
dle-t,y’-g(t)) s d(8-t,¥-g(t)) < 6.
By Lemma 1, yoe [a,elNnB(e,8). Suppose that y0 # e. Then
g(so)
there is an s, < 0 such that y =a € I. Thus

0

g(so)

d(e,a) = dle,y ) S d(&+sy,¥-g(s,)) S 8.

This contradicts the fact that

B(e,ao)r\B(I,aO) = ¢ and § < ag-

Thus yo = e, so that ; = 8,

Lemma 2 states that Theorem (I) holds for Q = g.

. . \, 4]
From now on, we will consider the case of x # e.

Lemma 3. Let x6I, and z€ I be given. If

0

d(x*t,z*g(t)) £ a for all t€[0,T(x)],

0
then z-g(T(x))eiB(I,ao) and z(z*g(T(x))) = £(z).
Proof. Since x°*T(x)€ I, clearly z°*g(T(x)) belongs to

B(I,a Since there is an s €[0,T(x)] such that x°*s€J

0).
and since z*g(s)e-B(x°s,a0)C B(J,ao), we have z*[0,T(x)] &
B(I,ao). Thus g(z°g(T(x))) = £(z) for some n2 1. Suppose

z(z*g(T(x))) # £(z). Then there is an n2 2. such that

zlz+g(T(x))) = £%(z), thus there is a t; € [0,T(x)] such
that z~g(t1) = f(z) (i.e. g(tl) = T(z)). Since

). Thus

d(x'tl,z'g(tl)) < ayy x'tlézB(I,ao

t, € [O,qo] LI[T(X)—qO,T(x)].

/ £



cO

1

In the case of tié[O,qO], there is a t€{0,tl] with

z*g(t) € J because g(tl) = T(z). It follows that
x*t € B(z-g(t),a,) C B(J,0p).

Since x°t€x-[0,q0] C I°[-q0,q0], this contradicts (P.3 v).
In the case of t, € [T(x)—qO,T(x)], there is a te[tl,T(X)]
- with z*g(t)€ J. Because, if z~[g(t0),g(T(x))]r\J = ¢, then
z+[g(ty),g(T(x))] C B(I,ap), thus £(z-g(T(x)) = ¢(z°g(t,))

= f(z). This contradicts our assumption. Thus
X+t € B(z'g(t),ozo)C B(J,OLO).

Since x-*te x~[T(x)-q0,T(x)] C f(x)'[~q0,0] C I'[—qo,qol,

this contradicts (P.3 v). Therefore , in any case we have
g(z-g(T(x))) = £(z).
Lemma 4. Let XGIO, Y€ L and h€K be given. If

~d(x*t,y*h(t)) £ § for all t€[0,T(x)], then

y-h(T(x)) € B(I,d) and ¢(y+h(T(x))) = £(z(y)).

Proof. From the fact that x*T(x)€ I and
d(x*T(x),y*h(T(x))) £ §, it follows that y*h(T(x))€ B(I,S§).

Since y&€B(x,8)C I+[-u,n], there is a t€ [-»,u] such that

c(y) y*T. Using (9), we have

WA

d(x-t,z(y) h(t)) d(x+t,yh(t))+d(y-h(t),y-(t+h(t))

A

<
§ + a0/2 s

for all t&€[0,T(x)]. Since z(y)e€ I, by Lemma 3 we have

z(y)-h(T(x)) € B(I,ao) and z(z(y) *h(T(x))) = f(z(y)).



Since y*h(T(x))€ B(x*T(x),8) C I*[-u,n], y*(h{(T(x))+1) €
1-[-2%,2x], so that z(y+h(T(x))) = z(y-(h(T(x))+1)).
Therefore z(y *h(T(x))) = g(y(h(T(x))+1)) = ¢g(g(y) -h(T(x)))

= f(z(y)).

Lemma 5. Let n20, X€ I--Uz)1 £73(a) and Y€ L be
given. If d(x-*t,y°g(t)) s § for all tG[O,Tn(x)], then
y'g(Tj(x)) € B(I,S), C(y‘g(Tj(x)) = £3(z(y)) and

a(3x, 3 (c(y))) € @

1 for all 05 j<$n.
Proof. The induction with respect to j.
Since d(x,y) £ § and To(x) = 0, we have

y+g(Ty(x)) = YEB(I,8), tly*g(T,(x))) = t(y) and

dx,zly)) € a (by (11)).
Thus the ésseftion is true for j = 0.

Suppose that the assertion is true for j = i.  Define
g9;€ K by g,(t) = g(t+T,(x)) - g(T;(x)) for all t&R. Then

d((fix)'t,(Y'g(Ti(x)))'gi(t)) =

d(x-(t+Ti(x)),y°g(t+Ti(x)))é $
for all tE[O,T(fix)]. By Lemma 4,

(y+9(T (x))) g, (T(£'x)) = yg(T,, (x)) C B(I,8) and

cly=g(Ty,; (x))) = £lcly-g(r, (x)))) = £ (zy)).

Since d((fix)'T(fix),y'g(Ti+1(x))) < s,

ace x5 Ny )y < a, (by (11)). Therefore the

assertion is true for j = i+l, and so for all 0 < 3j<n.

/6



Lemma 6. " Let xeI- UnZO f—n(a) and y€ L be given.

If d(x°t,y*g(t)) £ 6§ for all t 2 0, then yéYk(x,G).
Proof. By Lemma 5, we have

acetx, % (c(y))) s for all n 2 0.

1
By Proposition 1(6), it follows that x = z(y). Thus

Yy € B(X,S)/\X'[‘qorqo] = Y(XI(S).

Lemma 7. ‘Let y€L and h€&€K be given. If

A

d(a-t,y-h(t)) § for all t 2 0, then y € ¥Y(a,§).

Proof. Since d(a,y) s 8§, y€B(I,8)CI-[-n,u].
There is T € [-u, %] such that z(y) = y*1. Suppose g(y) # a.

Then there is a t

0 > 0 such that y'g(to)ﬂe J, so that

dlasty,y-glty)) s § < a4.

0
Since a‘tye [a,e) and B(J,ao)nB([a,e),aO)'= %, this is a
contradiction. Therefore ¢(y) = a, 'so that y €Y(a,§).
Lemma 8. Let x& (J 50 £ ™a)C I and yE€L be given.

If d(x-t,y°g(t)) €8 for all t20, then yevY(x,8).

Proof. Let n20 be the minimal integer such that
(x) = a. Since d(x-t,y-g(t)) $8 for all t€[0,T (x)], by

Lemma 5 it follows that@(y‘g(Tn(x))) = fn(c(y)) and

d(flx,fl(c(y))) < for all 0<1i<n.

1
Define gne K by gn(t) = g(Tn(x)+t) - g(Tn(x)) ‘for all t€ R.
| Then d(a-t,(y'g(Tn(x)))'gn(t)) =

d(X‘(Tn(x)+t)IY'g(Tn(x)+t)) <8 for all t20.

'/



Thus by Lemma 7 we have
a = c(y-g(Tn(x))),‘

that 1is, fl(x) = fn(g(y)). Using Proposition 1 repeatedly,

we have x = g(y). Since y€B(x,8), y€Y¥(x,6).

0¢ 1.

Lemma 9. Suppose ¥el satisfies ¥ #-g and x
1f a(g‘t,y'g(t))é § for all t 20, then x0 = yT for some

T € [-u,nl.

Proof. Notice that

a(x-t,y%g(t)) § dA(X-t,¥-g(t)) $ 6§ for all t

nw

0.

-n

Using Lemma 8 when xoe[ano f "(a), and using Lemma 6 when

x0 e I- Unso £ ™(a), we have yoe v(x%,6). Since B(I,8)C
I[-»,n], there is a T€[-n,n] such that x0 = yO-T, thus we
have x0 = yT.

For gesﬁ with xoe I we denote

T_;(¥) = sup {t<0: xte 1}.
Define recursively, if it is well defined, SO(Q) = 0 and
3" A" "
= . i 2
S_i_l(x) .Tfl(xvs-i(X)) o for‘each 120,
Yy i N
and T_i(x) = ZO Sj(x).
’ - v v . 0 .
Lemma 10. Let n20 and x€ L with x" € I be given.

Suppse that T_i(g) is well defined for all 0 =i £n and

that d(X+t,y+g(t)) 6 for all t 0.

0 S sS+T

If x° = yT for some t€[-x,n], then X° =y for all

selr__ (%),0].
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Proof. Suppose that there are 0 £ i < n and

s E[T—i—l(g)’T*i(g)] such that x© = yt+T for all

t:G[T_i(g),O] and x° # ys+T. Since

X%+ (T_; (X)=s) = x =y =y

it follows that

+1 -

either x° € Lg and ys € ‘LO P
- + +
or x° € L0 and ys're LO.

Thus there exists the maximal t E[T—i-l(g)’T—i(g)) such

)

that either xT€ J or yg(t‘e J holds.

t g(t)

€ L

— o+

If x G.Ji we Have y , and if yg(t)é Ji we

have x° € L; . In anywcase we have d(xt,yg(t)) > ay > §

because B(Jt,ao)r\B(Lg,ao) = ¢. This contradicts the

A

g(t))

assumption d(xt,y a(§°t,§-g(t)).g S .

Lemma 11. Let §,§ € T satisfies that

d(%+t,¥+g(t)) s & for all t £ 0, and

x” = b and x° € arc(e,b] for all s £ 0

(or xo = ¢ and x° € arc(e,c] for all s £ 0).

1f x9 = y' for some 1 €[-u,n], then x° = yS+T for all s<0.
Proof. We consider the case of x0 = b._ Suppose
x> # ys+T for some s £ 0. Since xs-(—s) = x0 = y? =
yS+T-(—s), there is an s'€ (s,0) such that
x5 e c1(L‘5) and v TTe Cl(Ly)

/7



where Cl(Y) denote the closer of Y in L. There exists the

maximal t € (-«,0] such that either xte g or yg(t)e J-

holds. 1If xtE:J+ we have yg(t)e Cl(KI), and if yg(t)e J
we have xte<:1(LI). In any case we have d(xt,yg(t))>ao>§
by the choice of a, ;(P.3 ii). This contradicts the
assumption d(xt,yg(t)) < a(k-t,§'g(t)) < 6, thus the
assertion is true. The proof in the case of x0 = C is
similer.

Lemma 12. Let §,§€Eﬁ be given, and suppose'xOE»I.

If,a(k't,y'g(t)) £ 8§ for all t€e R, then § k'[—n,n].

Proof. Since d(X-t,y+g(t)) ¢ & for all t 2 0, by

Lemma 9, there is a 1€ [-»n,n] such that x0 = yT. And since

a(k-t,§°g(t)) £ 8§ for all t £ 0, using Lemmas 10 and 11 we

have x° = ys+T for all s £ 0. Since x° = xVes = yles =
yS+TA for all s 2 0, we get X = (xs)S€|R = (yS+T)SGP = §'T,
that 1is, § € X [-n,ul.
Lemma 13. Let X€L be given, and suppose X # 8.
If d(x-t,y-g(t)) £ § for all teR,
then y-g(to) e ><'[t0-£,t0+e] for some t,€ R.
Proof. By ¥ # é, there is a toéiR such that
t0 v N W N
X € I. Put z = x-to, w = y-g(to) and
hit) = g(to+t) - g(to) for all te R.
Then d(Z-t,W-h(t)) = d(X-(t+t),¥-g(ty+t)) s § for all teR

o
QO



t 0 ' A, a,
and z= = X € I. Thus, by Lemma 12 we have w = z*1 for

some T €[-u,n}, so that
Voglt,) =w € Z-[-u,u] C (X+t,)*[~e,e] = Xelt -, t +e].
0 , 0 0 0
This prove Lemma 13.

Lemma 13 implies that Theorem (I) holds for ; # 3. By
combinig Lemma 2 and Lemma 13, the proof of Theorem (I) is

compléted.

§4 Proof of Theorem (II).

We must show that there is an € > 0 such that for any
§ > 0 there are g,;&ﬁ and g €K such that

§ & X-[-c,e] and

Y

d(%-t,y+g(t)) S 8§ for all teR.

To do this, put €¢ = 1. Let § > 0 be given.
There is a %‘eﬁ such that

zO = b and z° ¢ arc(e,b] for all s

A

0.

. There is an integer N > 0 such that zn>N 2" b < §/4, where

D is the diameter of L. Take a y > 0 such that

u+s _v+s

b ,2V 78y < §/6

d(z ,zv) < 4y implies a(z

for all se€R with |s| € N. There is an s, < 0 such that

0

0
Z ’(_OO_IO]C B(ele)-

< s, such that

Moreover there is an s 0

1

51
z “°(-»,0] C B(e,y).



o
ng

Take 9{',9"6 f.' such that

S, . S,=2¢€

0 1

X =z 1 and y0 =z

Since yo & xo'[—e,e], 9/' & k'[—e,e]. Definé g€ K by

£ ' (t s 0)

g(t) = (so-sl+2€)t/(so-sl) (0 < t évso—sl)
t +,2€ T (so—s1 < t)

Let t€ R be given. 1In the case of t £ 0, it follows
that

+t sy :
X =z € z " *(-»,0] C B(e,y) and

- s, +t-2¢ . s i
yg(t) = yt = Z 1 € z 1'(-‘”10] C B(ele)‘

Thus d(xt,yg(t)) < 2v.

In the case:of 0 < t £ s —sl, we have

=70
S . s
xt = 2 0'(t--so+sl) € z 0°(—°°,0]C B(e,2y) and
s,=2e+g(t)
yg(t) = Z 1 =
S0 | S0
z '(g(t)-so+sl-2€) € z “*(-»,0] C B(e,2y).

Thus d(xt,yg(t)) < 4v.
In the case of so—sl £ t, we have
s

t 1+t g(t)

sl+g(t)-€
X =z and y =z

Thus d(xt,yg(t)) = 0.



In any case we have d(xt,yg(t)) $ 4y, so that

d(X-t,¥-g(t)) S Z_g»z'lnl a(="tE, yrIE)y 4 g2
< zﬂN 2 Inls/6) + 6/2 < s.

for any t€e R. This complets the proof of Theorem (II).
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