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' IN DISSIPATIVE SYSTEMS
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ABSTRACT

Collaqfe of tori in dissipative systems are investigated
with the use of mappings. First, phase instability of a
two-torus is studied by the circle map. Similarify and
scaling progerties of lockings are summarized.,
Supercritical behavior on the disordering property of chaos
and on the speed of the collapse of a torus is characterized

y the crossover exponent. SecondI{ amplitude
instabilities of tori, such as fractaliza {on and torus
doubling are briefly shown. Lastly, stability of a three-
torus is shown by the numerical study on the coupled circle
map, Chaos appears even for a weak-coupling. The mechanism
of its onset 18 discussed.

1. Introduction

Appearance of chaos thrdugh quasiperiodic motion has been observed
in a variety of dissipative nonlinear systems, such as Rayleigh-Bénard
convection, Taylor instability, and Josephson junctidn. Though the
studies in Hamiltonian systems have made clear the various aspects on
the collapse of a KAM torus, the collapse of a torus in dissipative
systems has not yet been well understood and the mechanism of the onset
of chaos has remained to be an important problem in nonlinear science.
We can classify the mechanism which has been known so far, as follows:
A) From T2

1) Phase instability ===> " chaos through locking (circle map)"
2) Amplitude Instability
a) Fractalization ===> " onset of chaos through fractal torus"
b) Doubling of Torus ===> " a finite number of times of doubling"
c) Torus Intermittency
B) From T3 > " Stability of T3 and double devil's staircase"



; In the present paper we study the various instabilities of two- or
three-tori and study the mechanism of the appearance of chaos. The
construction of the paper is as follows:

In 82, the phase instability of T2 is studied by the circle map.
After summing up the previous result for the circle map, we investigate
the supercritical behavior after the collapse of tori. We characterize
the chaotic motion by introducing the notion of "disordering". Speed of
the collapse of a torus is also studied.

In 83, the amplitude instabilities of T2 are briefly summarized.
Especially the fractalization and doubling of a torus is explained.

In 84, stability of T3 is studied with the use of the coupled
circle map. The large difference between T3 and T2 is its stability.
Though, T3 stably exists for a finite coupling, chaos appears in the
neighborhood of T3 even for a weak-coupling system, The measure of
various attractors in the parameter space and the onset of chaos are
investigated.

Since the pages are limited, details are omitted, which are seen in
the references and in the PhD thesis by the author (1983, Univ. of
Tokyo). |

2, Phase Instability

a) Circle Map
If the instability in the phase motion of a torus is a relevant
mechanism of the collapse of tori, a one-dimensional map for the phase

motion is a useful tool. The typical model is the circle mapz)'lz)

x_,1=x_+Asin(27x_)+D. (2.1)
n+1""n Xn

For A<AC=1/(2n), the map is invertible and the attractor is a torus or a‘
cycle, while the attractor is chaos or a cycle (window) for A>A.. The
rotation number of the map is defined by %}g(xn—xo)/n, which is rational
for a cycle (locking) and irrational for a torus. The rotation number
as a function of D forms an incomplete devil's staircase for A<AC.

Following aspects have been elucidated by recent studiesz)‘lz).
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1) Critical phenomena at A~A_-0: A torus is approximated by a sequence
of lockings with the rotation number which is obtained by the continued
fraction expansion for an irrational rotation numberlg). The
convergence of the approximation in the parameter space D and in the
phase space x shows a remarkable change at A=A.. The scalings for the
convergence rate are characterized by two exponents, which take
nontrivial values at A=AC2). The values are consistent with the RG

3)1’)a la Feigenbaum's theory for the period-doublingl3).

theory
2) A "period-adding" sequence of cycles (lockings or windows) is easily
observed in numerical and real experiments, since it has a large
stability. Let us take a sequence of\lockings with a period (pn+r) with
the rotation number (qn+s)/(pn+r). If we define A, (Anf) by the
parameter value at which the (pn+r)-cycle appears (disappears), -scaling
relations An—Aor.n'2 and Anf—Adxn"B hold. Furthermore,
the sequence has a similarity, which is expressed by the existence of a
fixed point function for the scaled Lyapunov exponet.. The scalings are
explained by the tangent bifurcation theory14), while the form of the
scaled Lyapunov exponent is derived by a phenomenological theory based
on the fixed-point function ansatz. The similarity of the period-adding
sequence is seen both for A>A. and A<A.. The difference between the two
regions are expressed by the form of the scaled Lyapunov exponents).
(The period-adding sequence appears not only in frequency lockings but
also in a variety of systems, for example, in connection with the
intermittent transitions), homoclinic orbitsls) and crisislz). The
framework of the similarity theory in Ref.,5) can easily be extended to
these cases.)

3) The measure of the lockings in the parameter space D becomes unity
at A=A.. They form a complete devil's staircaseg).

4) The windows for A>AC show a similarity structure, which is analyzed

7

by the locus of superstable orbits‘/ and the above period-adding study.

5) The number of the attractors is unity for A<A., while it increases
up to two for A>A. and bistability can appears)s)lzx
In the subsections b) and c) we study the property of chaotic

orbits for A>Ac.
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b) Disorderings

The remarkable difference between chaotic and torus orbits is
whether the orbit is ordered or not. For a torus orbit, two nearby
orbits do not change their order, i.e., xn>x'n if x0>x'0. On the other
hand, two nearby orbits change their order for a chaotic orbit, if the
orbits fall on the interval I={x|f'(x)<0}." We define the disordering

ratio by d= [ p(x)dx where p(x) is the invariant measure. Since the
xel

disordering property is brought about by the interval I, it is useful to

introduce the following induced map F(x)17)in\the region I;

F(x)=f(x); k=minimum integer such that £K(x)el (2.2)
17 .
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Distribution of disordering times P(n), which is obtained from 50000
iterations of the circle map with the same parameter as the ones in
Fig.l. (Initial 10000 iterations are dropped.)



It is also useful to introduce the disordering time distribution P(k)
for one orbit with a long time average, i.e.,

P(k)=[o(x)dx/ [o(x)dx, | (2.3)-

erk xel :

where I) (CI) is the region such that £%(x)el and f®(x)4I for m<k.
An example of an induced map and a disordering time distribution is
given in Fig.l and Fig.2. We have obtained the induced map and the
distribution at various parameter values A and D. The following points
should be noted.
1) Chaos with the disordering ratio 2/(3p) appears through a period-
doubling cascade from a p-cycle (see for the phase diagram Fig.3). As A

is increased further, disordering times pxn (n=1,2,3 =) succes‘sively
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Rough phase diagram
1 for the circle map,
‘Numbers in the
figure denote
periods, while chaos
exists in the region
without numbers.
Small structures,
such as cycles with
periods larger than
26 are omitted.
(Initial values of
4 ~ the map are x0=0.5.)
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16)

appear till the crisis of a p-band chaos occurs, where P(pn) shows

the behavior of ¢

, with ¢ a constant,
2) As A is increased further beyond the crisis point of a p-band chaos,
a new disordering time (e.g” q) appears. In this case, disordering
times with pn+qm (n,m=1,2,3," ) are apt to exist. Thus, the chaos in
that region can be regarded as the mixture of p-band chaos and gq-band
chaos, each of which appears from a period-doubling cascade and is chaos
with the type of the logistic map. As the nonlinearity A is increased,
various disordering times appear and various baﬁd chaos mixes,
3) The disordering time distribution P(k) decays exponentially as a
function of k, which is due to the Markov property of the map. The
decay rate is related with some average of f£'(x). Thus the decay rate
increases as the increase of A,
4) It is also important to construct a symbolic dynamics from the above
induced map.ls)
c) Supercritical Similarity

Though the critical phenomena just below the onset of chaos from a
torus motion (i.e., A+Ac-0) has been investigated extensively, the
critical property just above the onset of chaos has not yet been

studied. In the present subsection we consider this problemlz).

D ——D(p)— A
7 c

Fig.4 ‘
Schematic representation of
A the Arnold tongues for A>A..
Each p-cycle period-doubles
and  chaos appears, The
scales of the tongue are
characterized by SA(p) and
sD(p).
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Let us look at Fig.3 in more detail. Chaos appears as a period-
doubling from a basic cycle p. Eac¢h of the doubling cascades in the
parameter space shows a shape like Fig.4, which is similar for various
basic cyclés. The similarity is characterized by two scales (one for A-
A, and the other for D) shown in the figure as SA(p) and &D(p).

In order to consider the onset of chaos from a torus with a
rotation number r, we make a rational approximation for r using the
continued fraction expansion ry=1/(ny+1/(ng+1/-+1/n}) and consider the
period-doubling cascade from the rp-cycle. For a torus with the rota-
tion number r, let us define &A, and 8D by SA(rp)and 6D(ry). The onset
of chaos from the torus can be understood as the doubling of the rj -
cycle with the limit of k>, Since ¢§A;~0 as k»», chaos appears immedi-
ately at A=A_ for the torus. The measure for a torus in the parameter
space D, however, vanishes as A»AC. Thus, the measure of chaos in the
parameter space increases rather slowly as the increase of A.

As an example we consider the torus with the rotation number (/5-
1)/2. The rational approximation is given by F/Fi,1» vwhere F is the
Fibonacci sequence. Numerical calculations show that

SAy<Fy

Dy Fy, T .‘
where v and y take the values 1.055(+0.01) and 2.165(+ 0.01)
respectively. The value y agrees with Shenker's valuez), though the
definition is a 1little bit different. For the golden mean torus, the
similarity of the "tongues" in Fig.3 and Fig.4 is characterized by the
above two exponents.

The value v agrees with the crossover exponent found by Shenkerz)
for the subcritical region. If the fixed point of the RG3)4) is a
saddle, it is expected that the critical indices for sub- and super-
critical regions take a same value. Thus, the above agreement is father
natural, The important point is a new interpretation of the exponent v.
It represents the speed of the collapse of a torué, as is seen from our
definition and'the arguments as follows.

Let us consider the disqrdering property again. When the F;-band

chaos shows a crisis, the disordering time distribution obeys



P(nF, )<P(F )" I
where b is the instability exponent b?;q‘(xi)(xi's(i=l,2{"',Fk)are
the unstable periodic points which cause the crisis). According to the
similarity in the present section, b is expected to approach a constant
value as ko, Thus, the decay rate of the disordering time distribdtion
is given by -(l/Fk)log b. As A goes to A,, ‘the above study of critical
phenomena shows that F, may be replaced by (A-Ac)dv in the parameter
space. Thus the slope of the distribution goes to zero in proportion to
(A—Aci), as A approaches A.. The vanish of the decay rate for the
exponential damping at the critical point is universally seen in
critical phenomena in general,

If the similarity argument is valid, the chaos with F-band is
similar to the chaos with the Fk+1—band, and the Lyapunov exponent is
proportional to l/Fk. Thus, the scaling behavior with (A—ACY) is again
expected for the collapse of the'golden mean torus.

In computer experiments (and of course in real experiments) it is
rather difficult to tune the parameters D and A in the supercritical
region so that the rotation number is the inverse of the golden mean,
The detailed numerical check for the above critical phemonena,
therefore, has not yet been carried out, In Fig. 5, the disordering
time distributions are shown, where the rotation number is close to the.
inverse of the golden mean (though the rotation numbers in these two
figures do not coincide with each other). The decrease of the slope as
the decrease of (A-AC) is clearly,seen, though, of course, the
distributions are not similar in the rigorous sense. The decrease of
the slope is roughly proportional to (A—AC)1 (cf. v =1.05+). Thus, the
above argument on the critical phenomena gives a rough estimate for the
decrease of the slope, even if the parameters are not correctly chosen
so that the similarity holds.

Figure 6 shows the increase of the Lyapunov exponent as a function
~ of (A-AC). The max L in the figure represents the maximum of the
Lyapunov exponent L(D) for 0.606<D<0.607, where the rotation number of
the map is close'to(VS—l)/2. Numerically, the max L was obtained as
the maximum of LUL6O6+21x10‘5) with i=1,2,...... »00 . If the small dips
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Fig.5 Histogra? of the distribution of disordering times P(n),which is
obtained from 10’ iterations of the circle map. (Initial 10 iterations
are dropped.)

a) A=A_+0.0008 and D=0.6065; Longii,udinal axis is the summation of P(n)
for the interval (nx104,(n+1)x104), _

b) A=A_+0,0001 and D=0.6066; Longigudinal axis is the summation of P(n)
for the interval (nx107,(n+1)x10°) '
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* Maximum of the Lyapunov
.. exponent L(D) for
L ' 0.606<D<0,607 as a
2,4(5"._ : function of A, Lyapunov
. . exponent was calculated
. from the data x_'s of
164__ th4e map 4(2..1)n for
s . : —y 107<n<6x10%, with the

10‘3 initial value x0=0.5.
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afe neglected, the increase of max L is roughly proportional to (A-Aé),
which again justifies the above argument on the supercritical behavior.

Owing to these considerations, the exponent v may be regarded as
the index for the speed of the collapse of a torus and the development
6f chaos. Shenker's numerical result for the subcritical region shows
that Vv depends on the character of the tail of the continued fraction
expansion of an irrational rotation number. His result shows that the
exponent v for the rotation number with the tail 1/(241/(241 /- is
1.0476"""2), which is smaller than the exponent for the (inverse of the)
golden mean, Thus the golden mean torus collapses faster than the torus
with the rotation number 1/(2+1/(2+1/---- , which is contrary to the
well-established resuit for the standard mapping where the golden mean
torus is the last KAM to collépselg). It will be of interest to check
whether the conjecture is true that the golden mean torus is the first

to collapse in dissipative systems.
3. Amplitude Instability

In real systems, the instabilities exist both in phase and
amplitude dynamics. Phase instability induces a locking to a cycle,
while the amplitude instability brings about the oscillatory behavior of
a torus, The oscillation is seen in a variety of two-dimensional

mappingszo)ZI).

Since the phase instability also exists in a generic
two-dimensional mapping, lockings to cycles mask the oscillation., In
order to extract only the amplitude dynamics, the following (nongeneric)

modulation mapping

xn+1=f(xn)+Ksin(27ryn)
Yn415¥ptc  (mod 1) \ (3.1)

is usefu122)23), s KX is increased, the oscillation of a torus becomes
stronger till the torus is fractal at K:Kczz)_. For K>K ., chaos with a
belt-1like attractor appears. The area of the attractor increases as the
increase of K. Fractalization of torus is seen in various types of f(x)

2 2

(such as l-ax“, -ax+bx“, and asin(2rx)). The fractal dimension depends

on the property of an irrational number c (i.e., the tail of the
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continued fraction expansion of c) but it seems to be independent of the
choice of f(x)zz).’

Another important iﬁstability in amplitude dynamics is torus
doubling, which was discovered independently by Franceshiniz6),~Arneodo

1.24) 21)25). The most remarkable difference from

et a , and the author
usual period-doubling of a cycle is that the doubling of torus occurs
only a finite number of times before chaos appearszs). Thus the period-
doubling cascade is unstable in the torus motion. In other words, the
fixed point function of the RG transformation by FeigenbaumlB) is
unstable against the modulation with an incommensurate period25)27).
When the doubling stops and chaos appears, the oscillatory behavior of
a torus is remarkably seen. Thus, the fractalization of a torus seems
to be a cause of the stop of the doubling;ZI)

Recently, another instability, torus intermittency has been

28)’

investigated by Daido where the modulation mapping of the tfpe (3.1)

is also used.
4, Chaos from T3

Stability of a three-torus and appearance of chaos has been an
important problem since the pioneerig work by Ruelle and Takensl).
Recently the author studied some 4-dimensional mappings and showed
the following aspects numerically30)
1)Three-torus exists for a finite coupling. As the coupling is
increased, it becomes feasible to phase-lock, to produce a 2-torus.

2) Chaos appears through a locking to a cycle. That is, chaos appears
via two steps of lockings, i.e., T3+T%-cyc1e+chaos. The onsetlof chaos
due to the Hopf-bifurcation to T3 cannot be observed.,

3) Rotation number as a function of a bifurcation parameter forms a
double-devil's staircase, which is analyzed by a coupled circie map.

Here, we consider the phase motion of a three-torus in a little

more detail, A typical model is given by the coupled circle map

xn+1=xn+rx+Asin(2ﬂxn)+Bsin(2ﬂyn)
Yn41=Tn+Ty+Csin(2nxy)+Dsin(2ny,) CBY)

//



A nongeneric case for the coupled circle map (C=D=0) is investigated by

30) 23)’

the author and by Sethna and Siggié while the case with higher

29). Here we

harmonics' (randomly chosen) is studied by Gfebogi et al,
reduce the number of parameters by taking A=D=a/2"(>0) and B==C=ab/27

and ry=r.=d, Thus, the map (4.1') is simplified to

y

Xp41=Xgtd+a(sin(2mx  )+bsin(2n ¥,))/(2m)
Yn+1=Yq+d+a(sin(2nyp)-bsin(2ry,))/(2n). - (4.1)

The Jacobian of the map is given by
1+a(cos2 ™x+cos2 1Ty)+a_2( 1+ bz)c0321r xcos2Ty,

the minimum of which is 1-2a4-a2(1+b2) for a<1/(1+b2) and 1-a2(1+b2) for
a>1/(1+b2). Thus, the map (4.1) is invertible for a<ac=1/y< 1+b2). If
the coupling b vanishes, the map reduces to two independent circle maps
with identical parameters. According to §1, the attractor in this case
is cyclegcycle or T2®I'2 ('I‘3) for a<a. and cyclegcycle or chaosgchaos for
a>a.. As the coupling is increased, direct product states can become
unstable, ‘

The attractor of the map (4.1) is classified by the signs of
Lyapunov exponents L; and'L2(<L1). It is T3(L1=0,L2=0), T2(O,-),
cycle(-,-) or chaos(+,- or 0) for a<a. and Tz. cycle, chaos, or
hyperchaos(+,+) for a>a.. Here we note that Ruelle and Takens' resultl)
does not imply the nonexistence of 'I'3. The numerical result for the map
(4.1), on the contrary, shows that T3 has a large measure in the
parametei' space (d,b) for small a. The remarkable difference between T3
and T2 is that chaos exists even for a<a. ‘(i.e.. ‘in the invertible
regime), while chaos never appears in the invertible regime for the one-
dimensional circle map (2.1) for T2,

It is a little bit difficult to distinguish T3, T2, and chaos
accurately by numerical methods. We calculated the two Lyapunov
exponents i‘l and Ly for the map with b=0.1, by iterating the map (4.1)
3x101‘ times after dropping initial 10* times of iterations. We change -
the parameter d by 0.0005 for 0<d<0.5 for a given a (thus, 103 points of

d's are chosen) and counted the number of T3, T2, cycle and chaos.
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Here, the Lyapunov exponent is regarded as zero if its magnitude is less
than 10'4. The ratios of the four types of attractors (i.e., the number
of the parameter d at which each attractor appears, divided by 1v03) are
shown in Fig. 7. '

For small a, the magnitude of Lyapunov exponents is small in
general, if it is regarded as to be nonzero and the distinction of
attractors by the above criterion is not accurate, Especially it is
difficult to distinguish T3 from T2 with small negative Ly. Thus the
results for ag0.5a. cannot be taken seriously. For example, the
existence of chaos at ag0.7a. cannot be confirmed from this calculation,

because the magnitude of the positive Lyapunov exponent in the region
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Fig, 7 The ratios of attractors T3(A), Tz(o), cycle(X), and chaos(e),
in the parameter space d as a function of a, Lines are written only for
convenience., Initial values of the map (4.1) are (xo,y0)=(0,-0.02).
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ag0.7a. is small ('\/10'1‘) and the times of iterationé may not be
sufficient to make an accurate estimate of the Lyapunov exponents.
Furthermore, the increase of the measure of T2 for small a might also be
due to the lack of' iterations,

In order to distinguish chaos from a torus more accurately, we
calculated only the first Lyapunov exponent from the 10° times
iterations of the map, after the initial 104 times of the transients are
dropped. The parameter d's take the values 0.3+2x10%41 (i=1,2,3,",500)
(i.e., O.3<d<0.4) and the ratio of éach attractor is calculated as a
function of a with the use of the same ‘'zero criterion' as for the
previous figure. The ratios are shown in Fig.8, where only the ratios
for a cycle, chaos, and a torus (sum of the ratios for 'I'2 and T3) are
shown, since it is'impossible to distinguish T3 from T2 only from the

first Lyapunov exponent.
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X
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The ratios gf atfrac-
At e o tors, tori(T> or T4)W,
. cycles(X), and chaos(e),
3 _ g o in the parameter space d
T as a function of a,
which were obtained from
x , the calculation of the
2T x first Lyapunov exponent
for the map (4.1) with
1 x A the initial values
s ’ X . (XO’YO)=(O’-0002)0
X a/aca |
- - » s 1 SR W
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The following aspects can be seen from Figs. 7 and 8.
1) T3 stably exists even for a system with a finite coupling and a
finite nonlinearity. The ratio is rather large for a weakly nonlinear
system, It decreases as the increase of a and vanishes at ava..
2) Lockings to cycles increase as a approaches a.. The increase is the
most remarkable change as a function of a, which can be seen from Fig.7.

Though the ratio of lockings is less than unity at a=a_. owing to the

existence of chaos, it is the largest among the ratio;:for the four
types of attractors. In this sense, lockings play a major role for the
instability and disappearance of a three-torus. '

3) Chaos appears even for aca.. Its measure, however, is very small for
small a. According to the second calculation (for Fig. 8) chaos was not
found for a<0.7a.. Here we note that the measure of chaos is larger in
the region 0,3<d<0.4 (i.e., the region for Fig. 8) than in other regions
of d according to the first calculation (for Fig. 7). Thus, it may be
concluded that the measure of chaos for a<0.7a. is small (<1/500) if it
exists stably in the region. In other words, chaos of Ruelle and Takens'
typel) cannot be observed for a<0.7a.. The result agrees with the

30), where chaos cannot be observed

simulation of 4-dimensional mappings
in the parameter region where T3 is dominant. We cannot, of course,
deny the mathematical existence of chaos for a<0.7a. by numerical
methods. It may be concluded, however, that chaos does not exist
" "physically" in the weakly nonlinear (or coupled) region where T3 is
dominant. We also note that the ratio of chaos shows a significant
change at a™0.85a., where lockings to cycles also increase, which seem
to be essential to the appearance of chaos.
4) The ratio of lockings to T2 increases at ab0.7ac, but it decreases
for a30.9a., where lockings to cycles increase rather rapidly. The
ratio of Tz, however, does not vanish for aﬂd.lac. |

In Figs. 9, some examples of attractors are shown. We note the
oscillatory behavior of T2 and localized attractors of chaos. Lockings
exist at the the parameter values close to the values for the chaos.
The chaos has a large measure near the points (x-,yi) (i=1,2,"~ W)

i
which are the periodic points of the lockings (with the period N) at the

/S
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nearby parameter, ;

It is important to note that the attractor of the map (4.1) is not
always unique even for a<a. (for the circle map (2.1) it is unique for
A<Ac). We observed the coexistence of two or three types of cycles and
the coexistence of chaos and a cycle, for example at a=0.95a.. Thus,
the resonance overlapping has already occurred for a<ac(i.e” in the
invertible region). | A

At the rest of the present section, some future problems on T3 will

be discussed.
1) In the circle map for T2, all tori are stable for‘A(Ac, which
collapse simultaneously at A=A, and chaos appears for A>A.. Thus, a
dissipative version of a KAM theory can be constructed. How about for
T37 There does not seem to exist some critical parameter a at which
chaos appears simultaneously for various values of d. The construction
of a dissipative version of KAM theory, therefore, is not trivial and
will be an important problem.

We also note that the resonance overlapping gradually occurs even
for a<a_ for the model of_T3, while it appears only for A>A. for the
circle map for T2, Detailed study on the relation between the
appearance of chaos and the resonance overlapping is left for future.

2) Lockings to tori from T3 form a double devil's staircase, since they
occur when Rx/Ry' Ry, or Ry is rational, where Rx(Ry) is a rotation
number for the map (4.1). In the case of one-parameter lockings for T2
in §2, a continued fraction expansion has been a very powerful method
for the study of a torus motion. Is it possible to extend the method to
the lockings in 132
3) As is seen in the present section, the onset of chaos seems to occur
from a locking to a cycle. In Tz, a period-doubling cascade from a
locking is an essential mechanism for the onset of chaos. In the map
(4.1) for aca., period-doublings of lockings have not yet been observed
and they do not seem to be important for the onset of chaos from T3.
Then, what is the relevant mechanism of the onset of chaos?

It is also important to characterize a chaotic orbit. The notions

of ordering and disordering for T2 are not easily applicable to T3,

/7
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because the rotation in thé phase space (x,y) prevents a simple
extension of the notions to a’T3—system, and some new ideas will be
necessary. Also, the numerical study on the power spectra for the chaos
in the coupled circle map (4.1) has to be performed.

4) In experiments, T3 (and Ta) have been observed in the Raerigh-Bénard

33)-36)

systems In these cases, a locking to a lower-dimensional torus

is a relevant mechanism for the instability of T3, which seems to agree
with our numerical results for the previous four-dimensional mappingsBO)
and for the present coupled circle map. A unique exception was found
by A. Libchaber et al.35), where they studied the convection of mercury
in a high magnetic field and observed that the third incommensurate
frequency appears simultaneously with an exponentially decaying noise in
the low frequency. Thus, the Hopf bifurcation of T2 seems to lead to
chaos, which is rather close to the picture by Ruelle and Takensl). A
simple model which explains the above phenomena has to be constructed in
future,

5) In connection with the experiments, it will be necessary to construct
a "physical"»theory for T3 and chaos. Chaos might exist in the region
with small nonlinearity a. It‘tékes, howevef, a very long time to
distinguish chaos from T3 and the effect of noise in real systems
prevents us from detecting chaos. Thus, we have to construct a theory
for the observability of chaos near T3, which includes both the time for
the observation and the effect of noise.

6) T3 stably exists., How about TA,TS,"",etc.? There is no reason to
doubt their existence. The lockings to lower-dimensional tori and to
cycles may perhaps play an essential role in such systems, which justify
the recent success of a theory of a low-dimensional dynamical system for
the onset of chaos. To study such a high-dimensional torus, the author

has recently studied the following coupled circle map

xn+1(i)=xn(i)+asin(2ﬂxn(i))+d
+b(sin(2mx, (i+1))+sin(27x (i-1))-2sin(2™x,(1))) , (4.2)

where i=1,2,-,N denotes a spatial coordinate of a one-dimensional

lattice. The map shows a variety of propagating spatial patterns,
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details of which will be shown elsewhere37).

There remains a lot of problems on the chaos from T3, which will

hopefully be solved in future,
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