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ABSTRACT

This is the brief sketch about the non-markovian
aspects observed in the chaotic motions of the area= -
preserving transformations. The asymptotic non=
stationary behaviors are qualitatively characterized
by the Allan variance, the power spectrum and the
appropriate sojourn time distributions. The observed
weak infrared catastrophe is explained by the symbolic
renewal processes derived from the fractal structure
of the phase space

1. Introduction

The f_v spectral behaviors of the ergodic dynamical systgms are

strongly correlated to some intermittent phenomena of the non-markovian

class. Especially, concerning the one-dimensional intermittency, it

became clear that many examples studied so far were successfully formu-

1
lated in the framework of the semi-markovian renewal process.A) One of

the interesting model is the modified Bernoulli system in the unit

interval,
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where €( >0) stands for a small perturbation and B is the positive bi-

furcation parameter. Taking the symbolic state 0, 0n=—l for 0§6n<%
and 6 =1 for -;-f_enil, the time course of {Gn} is simulated by the sym-

bolic sequence {On} . The jump events between 0 =-1 and 0 =1 reveals
strong intermittency for B2>3/2, as the result in the limit of €0,
the power spectrum density S(w) of {Gn} satisfies S(w)vw (w<<1)
and the pausing time distribution of the state (6 =-1 or c=1) P(m)~
m_8 where g =B/(B-1) and v=3-8 . Above the infrared crisis limit
at B=2, the asymptotic non-stationary spectrum is observed as v>1.
This infrared catastrophe induces the non-staitonary Allan variance.

oi(r) v B

This kind of ipfrared anomaly is originated from the
fact that the orbit is strongly localized near the end points of the
map (6=0 or 8=1). 1In other words, the neighborhood of the points
=0 and =1 afe very sticky and the orbit is trapped there for ex-
' tremely long time.

: In the flow systems also, the same mechanism may induce the infra-
red é.noma.ly. For instance, let us consider the oscillation in a double
well potential with small dissipation, whose ‘space profile is shown in
Fig. 1.

Introducing the external periodic forcing, the homoclinicity in-

duces the quite differnet ergodic motions depending on the tangential

. + _ )
manner of the stable and unstable manifolds (I' & I ). The symbolic
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Fig.1l Various types of homoclinicity

sequence {cn} is obtianed from the following realization on the poincare

section; o =-1 for the left focussing motion and o0=1 for the right.
Each case in Fig.l corresponds to the transversal (B=1), tangential
(B>1), and inverse tangential-(B~<l) homoclinicity. The strong inter-
mittency as was mentioned in the modified Bernoulli map is coﬁcerﬁing
to the tangential case.

Generally, the intermittency in the dissipative dynamical systems
seems to appear via the wéak homoclinicity.g) However, in the area=
preserving systems the other mechanism can induce the strong-infrared
anomalies. For an instance, let us consider the generic Hamiltonian
systems, where the phase space is decomposed into many ergodic compo-
nents; many kinds of KAM tori and stochastic regions. The essential
point is that each KAM torus is the invariant set and that tﬁé neigh-
borhood of them are very sticky. As the result the orbit stays near
one of them for extreﬁely long time before it departs to the other

sticky zones. The existence of such wandering motions was pointed out



3)

by Arnold. Our problem is to estimate the statisticai properties of
such motions. In what follows, we will discuss some numerical results
showing the infrared anomalies. From the mathematical vieéewpoint, the
measure theoretic aspect of such sticky zones are difficult to identify

k) but in the practical viewpoint the

even in the perturbation approach,
computer simulations enable us to predict the long time behaviors of
them so long as the sticky zones ére metrically transitive after the
last KAM tori disappear.

The recent studies én the one-dimensional systems show that thé
statistical quantities such as correlation fuhctions and power spectrum
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depend sensitively on the topological structures of the systems.
the high dimensional cases also, the detail topological informations
are necessary in order to reach the theoretical goal. In the dynamical
system with two degrees of freedom, however, the topological characters
are relatively simple on the area-preserving poincare section as the
twist map, where the rotation mechanism is dominant.6) The purpose of
the present articles is to explain the symbolic dynamics approach to
the infrared‘anomalies of the two dimensional case. The higher dimen-
sional cases are still open, where the detail mechanisms such as the

Arnold diffusion must be taken into account when we construct the

symbolic dynamics.

2. Fractal Geometry of Phase Space
As was clearly stated by Zehnder, the generic aspects of the phase
space is quite fractalT), The infinite many KAM regions are hierarchi-

cally distributed in the phase space. An arbitrary KAM region is
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surrounded by a certain stochastic zone, and the center of each KAM
region is anélliptic point. Near the hyperbolic point, the chaotic
orbit appears via homoclinicity. ‘ |

Among the various KAM ' hierarchies, we take note of a main series of

KAM regions (Fig.2), and denote the class of the KAM tori by an. integer

k (=0,1,2,...). As is shown in Fig.2, the tori of the class k is dis-
tributed around a (k-—i)th KAM torus, and simultaneousiy surrounded by
the (k=1)th tori. The hierarchical structure illustrated in Fig.2
continues seif—generatively to infinite small scale. Each KAM region
in the main series is further devided into many sub-series of the finer
KAM tori. In what follows, however, our discussion will be limitted

only to the main series mentioned above.
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Schematic picture of the
hierarchical structure of
phase space. Circles are
the outer boundaries of
the KAM tori of the main
series. Dotted lines are
the ghost separatrices.

A KAM region of class k is assumed to be packed in the imaginary
separatrix that is the vestige of the integrable case approximating our
mode. The stochastic region surrounded by the separatrix is denoted by

Sk and C, where Ck==Sg-+C The whole stochastic regimes of our model

k k+1.
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is U 8 +V, where V is the space outside CO.
k=0
The motion in the stochastic regime is described by a symbolic

sequence of the ranking number m of Sm to which the orbital point is

included. Denoting the mapping time by n, the symbolic dynamics is

constructed,
v : m(n)>m(n+1) ’ ' (2)
(n=integer and m=-1,0,1,... )

The state m=-1 means that the point is in V.
The following assumptions are used; (I) the number of the cluster

c, is pk, (IT) the phase volume of C, satisfies vol[Ck] =b'vol[Ck+l],

k

and (III) pk clusters of Ck have a certain self-similar structure for

all k. From these assumptions, the joint probability P(m,n) for the
6)

state m with the pausing time n is. derived,

P(m,n) v Plm)n? B | (3)
(=32 and 2(m) ~ (/o)™ ) |

3. Semi-markovian Process and the Infrared Anomaly
The jump probability Pm " from the state m to the k is determined
bl

by,

J P(m) P . = P(k) . | (4)

m,k
m b

The most simple case is that the jump event occurs among two successive

clusters m and m* 1, then
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Equations (3) and (5) uniquely determines a semi-markovian process
which simulates‘the symbolic dynamics of eq.(2).

As thé direct result of the Pareto—Zipf law about the pausing time
distribution, the infrared anomalies mentioned in 8§81 are inducéd. For
an example, let us consider the fluctuation of the rotation number 8 (n)
around the primafy KAM torus. The Allan variance oi(t) ana the power

spectrum S(w) for 6(n) are estimated,

oi(r) n'rz_D,

(6)

Sw) ~ w3

4. Numerical Results
The standard mapping, which describes the poincare section for the

parametrically driven pendulum, is studied.

_ X .
In+l B In T oon 31n(2n6n)
(1)
= +
6 n+l i n In+l

Figure 3 shows the orbital points obtianed by the iteration of the map.
The white parts are the KAM regions. The power spectrum S(w) and the
Allan variance oi(r) are calculated for the dynamical variagle cos(2n
Gn) near the bifurcation parameter K=1.5 (Fig.h). The infrared ano-
mglies such as S(m)'hw_v and ci(T)'MTY are clearly observed, where v=vy

+1.
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Fig.3 Poincare section in ( 8, I) space
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Fig.4t Allan variance and power spectrum density
The pausing time distribution P(n) is calculated from the sojourn time
around the primary cluster. Figure 5 shows the Pareto-Zipf law P(n) v
n_D. These numerical results reveals the weli accordance with the -
theoretical ones predicted in §3.8)
The mehcanism for the infrared anomalies in the area-preserving

map is quite differnet from that in the one-dimensional map such as in

the modified Bernoulli system, but the interrelation among various
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Fig.5 pausing time distributicn

ces is the same in both cases.

intermittency should be extended to that of the heterogeneous random

geometry beyond the ordinary time series analysis.

This direction

This suggests that the study on the

seems to be parallel to the problems in the critical phenomena and in

the hydrodynamical turbulence.

References

1)

2)

3)

L)

Y. Aizawa, C. Murakami and T. Kohyama,

'Statistical Mechanics of

Intermittent Chaos', Prog. Thoer. Phys. Supple. 79 (1984), to

appear.

T. Uezu & Y. Aizawa,

Forced Lorenz System', Prog. Thoer. Phys. 68 No.5 (1982), 15k43.

V.I. Arnold & A. Avez, 'Problems Ergodiques de la Méchanique

Classiqge', (Gauthier-Villars, 1968).

'Some Routes to Choas from Limit Cycle in the

V.I. Arnold, 'Instability of Dynamical Systems with Several Degrees

of Freedom', Sov. Math Dokl. 5 No.3 (1964), 581.



6)

7)

8)

159

H. Mori, B.C. So and T. oée, 'Time correlation Function of One=
dimensional Transformatiégs', Pfogp Thoer;'Phys. 66 No.4 (1981),
1266. o o

Y. Aizawa, 'Symbolic D&namics Apprbaéh to the Two-Dimensional Chaos

in Area-Preserving Maps', Prog. Theor. Phys. 71 No.6 (198k4), in

. press.

E. Zehnder, 'Homoclinic Points Near Elliptic Fixed Points', Commun;
Pure and Appl. Math. XXVI, (1973), 131.
T. Kohyama, 'Non-Stationality of Chaotic Motions in an Area=

Preserving Mapping', Prog. Theor. Phys. T1 No.5 (1984), 110k.



