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AVERAGE VOLTAGE OF CHAOTIC RESPONSE
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ABSTRACT

Qualitative behavior of a current driven Josephson junction
circuit is investigated. The circuit dynamics is expressed
by a nonautonomous periodic equation on a cylindrical phase
space. By using the Poincaré mapping on the phase space the
bifurcation of periodic and chaotic response is considered.
It is found that the average voltage of the responses is
‘invariant under some bifurcational processes.

1. INTRODUCTION -
A current driven Josephson junction circuit1) described by the
nonautonomous periodic differential equation

X + kx + sin x = BO + B cos yt ¢D)

exhabits many interesting properties, such as the jump and hysteresis
behavior of various states, the frequency entrainments, the appearance
of chaotic states, etc. In particular, the time average of x is kept
constant under some bifurcational processes, for example, the period
doubling bifurcations. This corresponds to the well-known constant
voltage steps appeared in the current—voltage characteristics of the
circuitz).

In this paper we make use of the qualitative theory of ordinary
differential equations and numerical methods for calculating bifur-
cations of periodic solutions and consider the global feature of bifur-
cation diagrams. Invariance property of the time average is clarified

theoretically and numerically.



2. PERIODIC SOLUTION AND ITS BIFURCATION

Equation (1) is equivalent to

]

X =y £(t, x, y)

¥y = - ky - sin x + BO + B cos vt = g(t, x, y) @

where the state belongs to a cylindrical phase space (x, y) € s! x R,
which is homeomorphic to the punctured plane, R2 - {0}. By using the
solution of Eqs. (2) the Poincaré mapping T is defined as:
T: 8! x R —> st x R; P T(P) = @27/v, P) - (3)
where (9(t, P) is the solution of Egs. (2) with @(0, P) = P.
A periodic solution @(t, P) with period 2Nm/v corresponds to a
fixed point of TN or an N-periodic point of T:
™) -p =0 (4)
A quasi periodic solution of Eqs. (2) corresponds to an invariant
closed curve (abbr. ICC) of the mapping T.
An N-periodic point is called hyperbolic, if the absolute values
of the roots u of the characteristic equatiom:’ ;
det (DTV(P) - HE) = 0 (5)
are both different from unity. Topological type of a periodic solution
is then classified by the characteristic roots of Eq. (5) and the wind-
ing number L of the solution around the'cylindrical phase space. Hence
we call a hyperbolic L times winding N—periodic point of T, or simply

(N, L)-periodic point, as:

(1) completely stable, if ]u1|, [uzl <1,
(i1) completely unstable, if [U1j, !Hzl > 1,
(1iii)  directly unstable, if 0 < Hy < T<u,,
(iv) inversely unstable, if u, < -1 < Hy < 0,
. N,L .N,L _N,L N, ;
which we denote S , U s D and I , respectively. Note that an

(N, L)-periodic point corresponds to a periodic solution of the form
x(t + 2Nm)
y(t + 2Nm)

X(t) + 2Lm
y(t)

which is wrapped around the phase space L times. We call the solution

[l

(6)

as an (N, L)-periodic solutiom.



PROPERTY 1. Let @(t, ¢, y) be an (N, L)-periodic solution of Egs. (2).

Then 2NT .
J f(t, ¢, ¥)dt = 2Lm, (7)
0
and AR
J dx/f(t, ¢, ¥) = 2Nw, . : ' (8)
0 A
if £(t, ¢, V) # 0 for t €[0, 2Nw].
Proof. . (2Nm : , 2N1rd ' v
j f(t, ¢, v)dt = J d—’é dt = ég dx = 2Lm,

0 0

2L7 ZLﬂdt 2N
J dx/f(t, ¢, y) = J = dx = J dt = 2N,
0 0 0
where ¢dx denotes the line integral along the solution curve. QED.
COROLLARY 1. 1If f(t, ¢, ¥) =y as in Eqs. (2), then

P N Zg(t)dt=_1_ dx = L (9)
Y = ONm 0 2NT | N .

This means the time average of y(t) is a rational number for a periodic
solution of Egs. (2).
When a system parameter varies, the bifurcation of a fixed or

3). An appear-

periodic point may occur at some bifurcation parameter
ance or disappearance of a couple of fixed point is observed if one of

the roots of Eq. (5) satisfies the conditionm: By = 1, or equivalently,

det (DTN (P) - E) = 0 (10)
This bifurcation is symbolically expressed as:
gh-L o, pNoL = (11)

where @ denotes the disappearance of the periodic points. This type
of bifurcation is also called the tangent bifurcation of (N, L)-
periodic points. 4 |
The branching of periodic points is obtained if‘u1 = - 1; or
equivalently,
det (DT (P) + E) = 0 - 4 (12)

The branching of periodic points is expressed as:

gNsL s ML, 5, 2N,2L )
oML —s GN,L |, 12N,2L



This type of bifurcation is also called the period doubling bifurcation.
Under certain variation of parameters the branching may proceed succes-
siﬁely as:

+2x 8 (14)

form = 0, 1, 2, .... The time average of y(t) in Eqs. (2) is kept

ézf“N,sz — 2,20 Bty omtiy

constant under the branching process, because the period and winding
number alter simultaneously by factor Zm, m=1, 2, ...

PROPERTY 2.. Let (xm(t), ym(t)) be the m—-th branching solution, i.e.,
a (2°N, 2™L)-periodic solution of Eqs. (2), which bifurcates from an
(N, L)-periodic solutiomn (Xo(t), yo(t)). Then the time average of

ym(t) is invariant under the branching process (14):

; ML L

y = ==, form=0, 1, ... (15)
m ZmNn Nv

We omit the Hopf bifurcation and the bifurcation related with

3)

the completely unstable periodic solution These bifurcations cannot

occur in Eqs. (2), because the damping parameter k is positive.

3. BIFURCATION DIAGRAMS AND AVERAGE VOLTAGES
In this section we illustrate some numerical results of bifur-
cation diagrams and the time average y(t). In the following the system
parameters k and v are fixed as
k =0.5,  v=1.0 (16)
and two-parameter problem for B and B, is considered. For notational

0
convenience, we use the symbols:

Gg’L : the tangent bifurcation set of (N, L)-periodic solutioms,
IE’L : the branching set of (N, L)-periodic solutioms,

in bifurcation diagrams, where m denotes the number of separate com-—
ponent of the bifurcation set.

The bifurcation value of parameter and the location of (N, L)-
periodic point can be calculated by solving Eq. (4) and the condition

3)

(10) or (12), simultaneously
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The bifurcation diagram illustrated in Fig. 1 shows the region in

which different types of fixed points are obtained. The boundary curves

. . . . . 1,L
constitute the bifurcation sets of parameters. The bifurcation set Gm’

forms in the shape of leaf and aligns parallel to the B axis for m = 1,

2, ..., although we omit the sets for m 2 2 in the figure. In the
region surrounded by G;’L there exist' a directly unstable (1, L)-
periodic solution and a completely stable or an inversely unstable

(1, L)-periodic solution. Therefore in the overlapped regions, we can
1,L

G1

intersects the BO axis, we observe the phenomenon of frequency entrain-

always find even number of periodic solutions. At the point where

ment, i.e., the higher harmonic entrainment. . A limit cycle of the
second kind with period 2w /L synchronizes with the external periodic
force B cos t. ‘

In the shaded region encircled by I;’L, we have an ipversely

unstable (1, L)-periodic point and a pair of (2, 2L)-periodic points.

2.0

Fig. 1. Bifurcation diagram for (1, L)-fixed point of T.



The bifurcation diagram for (2, 2L)-periodic points is schematically

1,0
1 b}
are obtained. In

illustrated in Fig. 2. In the shaded portion encircled by I
2,0 2,0
173 %

the region encircled by I

bl

1
?Y . the period doubling process (14) proceeds

tangent bifurcations G and branching I

1
successively and finally causes chaotic states.

Fig. 2. Bifurcation diagram for
(2, 0)-periodic points.

o

Now we consider the time average of y(t):

- ,
vy = lim J y(t)dt an
Ty /0

which corresponds to the average voltage across a Josephson junction
element. Figure 3 shows numerical results obtained by the Poincaré
mapping and the computation of Eq. (17). By increasing B0 from 0.06,

the branching processes of 51’0: 51’0 E— 11’0 + 2XSZ’0 Sf’o-——§ IZ’O

1 1 1 ’
+ ZXSQ’O, ..., proceed and finally chaotic states are obtained. At
BO % 0.106 the chaotic state abruptly changes into (3, 0)-periodic
points. This transition is caused by the appearance of heteroclinic

% 0.111 by the
1,1
1

points. The (3, O)-periodic points disappear at B,

tangent bifurcation and the state jumps to (1, 1)-fixed point S

whose y = 1. By decreasing BO, S:’1Vremains to exist up to the

boundary curve G:’1 in Fig. 1. From this résults, we see that the

average y is equal to zero under the period doubling bifurcation as

expected from PROPERTY 2.
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Even if a state transition takes

— <)

B=2.0 place from chaotic to periodic, y is

still invariant if the final state has

the same winding number as the original

one.

i .T Similarly, jumps and hysteresis

behaviors and the invariance property

0 : of y are observed when B is fixed and

BO is changed. Two numerical examples

, . : : . L are illustrated in Fig. 4. 1In the

figure ICC denotes the average (17)

for the quasi-periodic solution of

Egs. (2). For min(1, B)*«'BO, the

quasi-periodic solution is approxi-
mately calculated as y(t) = Bo/k,

x(t) = x, + Bot/k. Hence y = BO/k.

0
Figure 4 shows a satisfactory agree-

ment with the approximation of ICC.

Note that in Fig. 4(b), we see frac-

tional steps of y iny € (4, 5).

0.06 008 ol al2 Under certain variation of parameter,

irregular change of y is also observed
Fig. 3. Phase diagram and y B
obtained by numerical
analysis. They are interesting problems left for

by transitions between chaotic states.

further investigation.
Finally, we append the bifurcation diagrams of (1, L)-fixed

points for k = 0.2 and v = 1.0 in Fig. 5.
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(a)

Bifurcation sets

points.

(b)

Bifurcation sets
for (1, 1)-fixed

points.

(c)

Bifurcation sets
for (1, 2)‘—fiXEd
points.
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(d)

Bifurcation sets
for (1, 3)-fixed
points.

(e)

‘Bifurcation sets
for (1, 4)-fixed
points.

(£)

Bifurcation sets
for (1, 5)-fixed
points.

Fig. 5.

Bifurcation diagrams for (1, L)-fixed point of T. k = 0.2,
v = 1.0. Outer boundary curve denotes the set for tangent

bifurcation. Boundary curve of shaded portion indicates
the set for period doubling bifurcation; see Fig. 1.
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