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1. INTRODUCTION.

Number theory had long been considered as the pureset branch
of pure mathematics, since many beautiful and powerful results
have been needed to obtain only one theorem in number theory and
its converse, i.e. applications of number theory to other mathe-
matics, did take place quite rarely. These are pirobably the main
reason to mention the gueenliness of number theorvy.

Over twenty years ago, some of mathematiciéns started to in-
vestigate .problems of diophantine analysis and uniform distribu-
tion of point sets from not only their intrinsic interests but
also interests in their applications to numerical analysis. To-
gether with the progress of digital computers, number theory is
now applicable to mathematical sciences.

Applications of number theory seem to be made mainly through
so—called Monte-Carlo simulation including numerical integration.
Monte-Carlo method is a kind of heuristic device to solve various

problems: When a certain difficulty arises to obtain an exact ana-
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lytic formula, Monte-Carlo simulation gives practically sufficient
numerical tables. To verify the validity for newly invented sta-
tistical methods, simulations based on artificial data are re-—
spéctable. Fof higher dimensional multiple integral, Monte-Carlo
numer-ical integration is, in general, better in quality than tra-—
ditional numerical analysis techniques, since the error term is
independent of the dimension. Monte—-Carlo simulation provides us
perspectives to unsolved problems and sometimes essential dicover-
ies also.

Monte—-Carlc simulation as well as numerical integration need
a huge amount of random numbers. FPseudorandom numbers accotrding
to a probability distribution may be transformed from pseudorandom
numbers from the uniform distribution on the wunit interval. To
obtain uniform pseudorandom numbers, firstly we generate a se-—
guence of integers mod m , next divide this sequence by m . It
is, therefore, important to study distribution properties for in-
teger sequences mod m .

An  integer sequence a = { a_ > is said to be uni-

formly distributed mod m , if, for any integer j with
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where AN( a3 j ) is the number of a_,
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I. niven introduced this notion from a general point of view and
8. Uchiyama gave its characterization.

Instead of all residue classes with respect to a given modu-
lus m , we consider uniform distribution in residue classes ( mod
m ) which are prime to m , that makes us possible mod m arithme-
tics.

We call an integer sequence a = { a_ - uniformly

distributed in ( Z / mZ ) if, for any integer relatively prime

to m with 1 < j < m -1,

. | _ 1
LR N = FTa !

where $ ( = ) is the Euler function. This integer sequence is
called also weakly uniformly distributed ( mod m ) according to
W. Narkiewicz [21 .

The Dirichlets prime number thecrem gives us an example of
uniformly distributed sequence in ( Z / mZ )m for all positive

integers m *» 2 . For other obtained results on weakly uniformly

distributed sequences mod m , especially for multiplicative a-
rithmetical functions, please consult the Narkiewicz’™s review [21,
in which several unsolved problems on ( weakly ) uniformly distri-—-
buted sequences of integers can also be found.

In this note we consider recursive sequences defined by

- 1
= +
un+1 = un un { mod m ) ( 1.1 )

and shall prove in the next section that u. > - ... 18 not
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uniformly distributed in ( Z / mZ )N except for m 3 . This
praof given here is different from that in [13 . In the final
section we shall give a generalization of the recursion formula

( 1.1 ) and obtain a similar result by using the idea in [11 .

i

2. RECURSIVE SEGQUENCES DEFIMED BY u u, o+ u;l ( mod m ) .

n+1
Recursive sequences defined by

hn+2 = hn+1 + hn ¢ 2.1 )

have a wide literatuwre. This sequence with its initial value

h, = h, =1

1 2
is the sequence of Fibonacci numbers, which is shown not to be

uniformly distributed mod m except for m = 5k « k= 1,2,-+-, by

H. Niedetrreiter [31 .
A variation of the recursion formula

hn+2 = a-hn+1 + b-hn ( 2.2 )

generates a sequence of generalized Fibonacci numbers and if this

sequence is uniformly distributed mod m , then m is necessarily

2 k

of the form ( a“~ — 4b )" , k = 1,2,-»= .,

Replacing ( 2.1 ) by
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u o+ u“l { mod m ) (
n n

or by



u a=u_ + b-u—1 { mod m ) . ( 2.4 )
n n ’

n+1

how the distribution of recursive sequences u ¥ \ be-

haves mod m © This problem was posed by M. Mendes France.
Before answering to this problem, it seems important to check

that the recursive sequence { U ¥ does not terminates. For

this end, the following congruential equation

s + 5—1 = c ({ mod m ) (

shold be soluble for all s in ( 2 / mi ) . The law of recipro-
city affods us a satisfactory answer, ( see [1]1 in detais ).
Let us consider & necessary condition for the recursive se-—

o

quence { w, } to be uniformly distributed in ( 2 / mZ ) .

LEMMA 1. If the recursive seqgquence { U ¥ defined by

( 2.3 ) is uniformly distributed in ¢ Z / mi) s then it is

necessary that

-k
( u1 + u1 ) = uz { mod m ?}
Cu, + u:i )P = ui { mod m )
= - ( 2.6
-1 ko

( ) = u? ( mod m ) ,

“pem T Y m
for every positive integer k .

For any even modulus m , the recrsion formula ( 2.3 ) ter-—



minates immediately. For a prime p of the form 410 + 1

and for

. n . , . .
its power p L No recursive sequence < u. Y is uniformly dis-—

tributed in either ( Z / pZ ) o (Z /7 p"Z) .

cern is restricted to primes of the form 48 + 3 .,

—r

LEMMA 2. For any prime p of the form 41 + 3 ,

So our con-—

no sequence

{ u > is uniformly distributed in (( Z / pZ )ﬂ except for

FROOF Suppose that { v > is uniformly distributed in

( 2 / pi )ﬂ » and consider ( 2.6 ) for p = 2 . Summing up these

congruences with the remark

€ U, u Uns Y =4(2Z/ mz) ,

17 Mottt Yem

we have
2{p-1) + Z 17 20 ( aod p ) .

6 divides ( p-1 )( 2p — 1 ) Ffor any prime number
20 p - 1) =20 ( modop ) ,

which is impossible for odd prime p . Thus we have

for p =3 .

COROLLARY. For any prime p of the form 41
quénce { Yo ¥ is uniformly distributed in ( Z /
for p =3 .

LEMMA  3F: For n *»1 , no seqguence <{ u 3

one

+

p'z

is

exception

3. No se-

)  except

uniformly



distributed in ( Z / 3

PRDQE: Suppose the contrary, then ( 2.6 ) Ffor k = 3 with

the consideration of ( 2.7 ) gives

j=3"-1 j=3"-1 ) G=3"=1
K N + X T + =i S =20 (mod 3 ) .
_J=1 J:::]_ J=1
(j,3 =1 (j,3 =1 (j=3"y=1
This congruence may be rewritten by
j=3"-1 , j=3"-1 3= -1 n
- T j + 3. DN T T 1 =0 ( mod 3 ) .
izl izt izl
(j.3 " =1 (.31 =1 (=3 =1

The first and the second terms above are congruent to O

( mod 3”) but the third term

b En 3n~1

is not congruent to © ( mod 3” ) for n > 1 .

From these lemmas, we obtain

THEOREM 1. No recursive sequence u Y defined by ( 2.3 )

is uniformly distributed in ( Z / mZ ) except for m =

2. SYMMETRIC FUNCTIONAL EQUATIOM.
In my paper [11 , Theorem 1 is a direct consequence of the
next Theorem.

THEOREM 2. No recursive sequence { U ¥ defined by ( 2.4 )



is uniformly distributed in ( Z / mZ ) except for a=b = 1

Through our personal communications, FProfessor Doctor
H. Niederreiter proposed an elegant proof of Theorem 2 ( and also
Theorem 1 ) in place of wmy long proof before. His idea is as
follows:

Consider the corresponding function f to the recursion for-
mula ( 2.4 ) . This function is defined by

f (5 ) = ars + b-s—l

on (2 7/ mz) . If the recursive sequence { un ¥ is uniformly

distributed in ( Z / mZ )h .« then is bi jective on
2 /7 mZ )ﬂ « On the other hand, +F satisfies

£ (s =4 (b-ates™l)

for all s = ( Z / mZ )* « which signifies

s = bea s (mod m ) , ( 3.1

"

since f is a bijection on ¢ Z / ml) . Setting s =1 and
s = 2 , we get the result.

Frofessor Niederreiter suggested me also the applicability of
his idea to other classes of recursive sequences. 0One of the an-
swer is the followings

Let us consider recursive sequences defined by
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Vel = ak( vﬁ + v;}) + a’_l( vi_l + v;(k_l))
see + al( v+ v~1) + A, ( mod m ) . ( 2.2
The corresponding function g Ffrom ( Z / mZ )x is defined by
g { s ) = &, ( 5l + —k) + ak—l( sk_l + 5—(k_1)) +
I al( 5 + 5 ) + Ay o
which satisfies a functional eguation
g (8 ) =g { 5~1 ) .
For odd m ., ¢ Z / mZ )H contains 2 as an element, then
substituting 2 in
5 = 5_1 { mod m ) , (’3.3 )
we have m = 3 . For even m , we denote the smallest element
v in ( Z / ml )x other than the unit and setting rooin
{ 3.3 ) gives m = r2 -1 . Then r2 — 1 should be divided by

all primes less than r , which holds for only small values of r

from the prime number theorem.

Calculations in { Z / 8Z )# and ( Z /7 247 ) finally
shows the next Theorem:

THEOREM J. No recursive sequence { Vo ¥ defined by ( 3.2

is uniformly distributed in ( Z / mZ )“ except for m =3 and

-1
u u_ o+ U ( mod 3 ) ,

n+l n
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+ v+ 1 + v + v { mod 3 ) .
n+i n n n n
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