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Number—theoretic problems in pseudorandom number generation

Harald Niederreiter

Pseudorandom numbers are used for the deterministic simulation of random
variables. They are of great importance for general simulation purposes,
and in particular for the Monte Carlo method in numerical analysis which is
based on simulation. Ideally, we should work with '"true" random numbers in
a Monte GCarlo method. However, if a Monte Carlo method is implemented on
a computer, then the use of '"true'" random numbers becomes problematic, and
one prefers to work with numbers that can be generated in the computer by
a systematic algorithm, i.e. with pseudorandom numbers. It is an important
requirement that pseudorandom numbers can be generated very quickly, since
in a typical Monte Carlo calculation we may need about 105 pseudorandom

numbers.

A sequence of pseudorandom numbers (abbreviated PRN) should satisfy the
following properties:

(i) it is generated by a fast deterministic algorithm;

(ii) it possesses good statistical properties similar to those of "true"
random numbers, in particular good distribution and statistical
independence properties.

A sequence of PRN should simulate a given statistical distribution. There

is of course a multitude of interesting distributions, e.g. the normal

distribution, the exponential distribution, and so on. Therefore it is
more efficient to proceed in the following manner. We select a standard
distribution and study methods of simulating this standard distribution by

PRN. As a standard distribution we choose a simple one, namely the uniform

distribution

0 for x< 0,
U(x) =¢{x for 0& x £1,
1 for x> 1.
To simulate this distribution, it suffices to take PRN from the interval
. [0,1]. 1If one knows how to simulate U(x), then by well-known transforma-
tions one can obtain PRN that simulate any other given distribution; see

[3, ch. 5], [6, Ch. 3]. PRN simulating the uniform distribution are

called uniform PRN. ‘
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The most common method of generating uniform PRN is the so-called
linear congruential method, which was proposed by D. H. Lehmer [10] in
the early days of the Monte Carlo method. 1If used properly, this method
combines simplicity with excellent performance. Let Mé& IN be large,
let AN€WN with 2 £ A<M and gc d(AM) =1, and let r € Z We
generate a sequence YorVqysee- of integers with O é:yn'< M by the re-
cursion

Vo = Ayn +rmodM for n = O.
We obtain uniform PRN in [0,1] by an appropriate scaling, i.e. by setting
X = yn/M for n2=0. The following terminology is standard: M is
called the modulus and A the multiplier. In practice, one chooses M
in such a way that the residue arithmetic is simplified, namely M prime

(e.g. M = 231 - 1) or M a power of 2 (e.g. M= 235).

‘Our first .observation is that the sequence (yn), and thus (xn), is
periodic. If T 1is the length of the least period, then we always have
T 4 M. Of course, periodicity is not a property of ''true'" random numbers.
However, this drawback does not play a role if T 1is larger than the
number of PRN to be used. Therefore, one is only interested in the case
where T 1is large. Since we have chosen M large, it is possible to
obtain large values of T . It is customary to consider the following three
cases in which we achieve T ®M:

1) M prime, A primitive root mod M, r = O, Yo # 0 (then T =M - 1);

2) M=2°L,)\55mod8,rElmodZ(then‘t’:M);
3) M=2% A= 5mod 8, r = 0, yo= 1 mod 2 (then T = M/4).

For a more detailed account of the elementary properties of linear con-

gruential PRN we refer to [6, Ch. 3], [16].

For the applications it is important to study the behavior of these
PRN under statistical tests, especially tests for the quality of distribu-
tion and for statistical independence. Let XgsXysees be a sequence of

linear congruential PRN and let s € [N. We consider the points

(1) x = (x_,x ) € [0,1]°, n = o.

=n n’n+1’ " nes-1
In the ideal case where the x ~ are uniformly distributed and independent
random variables, the random vector X would be uniformly distributed
over [0,1]°. Therefore, we can measure the quality of the first N points
in (1) by considering the maximal deviation between their empirical
distribution and the uniform distribution on [0,1]°. This leads to the

so-called discrepancy
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DIEIS) = s up’ Fe(3) - IJ‘,,
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where the supremum is extended over all subintervals J of [0,1]5 with
one vertex at the origin, FN(J) = N_1 card{n< N:§_n€ J} is the empirical
distribution, and |J| denotes the s-dimensional Lebesgue measure of J.

(s)

For s =1 a small value of DN means a good distribution behavior of

(s)

the X s and for s =2 a small value of DN means that s con-
secutive x =~ are nearly statistically independent. General information

on the discrepancy can be found in [8, Ch. 2], [16].

The statistical test based on the discrepancy (usually called the
serial test) is also of interest because it leads to effective error bounds
in a staﬁdard application of PRN, namely multidimensional numerical integra-
tion. This is discussed in detail in [20]. Here we mention only the fol-
lowing fact: if the integrand f has bounded variation V(f) on [O,l]s

in the sense of Hardy and Krause and if the points X~ are as in (1), then

1 N"l (S)
E g_; t€x) - [ £ dx | £ veomy
) [0,1]°
For a later application we note that in the case s = 2 the variation

V(£) of a function f = f(x,y) on [0,1]2 is given by

11 1
(3)  V(f) = { )O’I%}f{(g,y) | ax dy “df(x 1) . )(:Idf(l,y)' gy

provided that all the indicated (partial) derivatives are continuous;

compare with [16, Sec. 2].

The serial test for dimension s 1is at least as powerful as any other
statistical test using s or fewer consecutive X . For s = 2 a widely
used test for the pair correlation of consecutive X is based on the

calculation of the serial correlation coefficient

M[(xn - M(Xn))(xn+1 - M(xn+l)):|

(G

N 241/2 1/2 7
M{(x - M(x_))"] M{(x o = M(x_ 1)) 2]
where for given numbers to,tl,...,tN_1 we define
. 1 N-1
M(t ) = = t
n N n
n=0

The PRN pass the test if lﬁjqf is small. The following result shows that



IGN] is small whenever D;z) is small. We note that this result does not
depend on special properties of linear congruential PRN, but holds for any
numbers xo,xl,...ﬂ%]e[o,l] for which the denominator of &, does not
vanish.

(2)

Theorem 1. IGN|< 73 DN

Proof. Put D = Dlgz)

and note that if D> -7%, then [6’N[ < 73 D since we
always have IGNI £ 1 by the Cauchy-Schwarz inequality. Now assume

D é7—:1,’. For the numerator Num(G'N) of GN a simple calculation shows that

)

1l

(4) Num(GN) M(ann+1) - M(Xn) M(xrl

+1

1l

[M(ann+1) B z%] - |:M(Xn) M(xp,1) - %]

We apply (2) with the points X = (xn,xn+1), 0% n< N-1, and f£(x,y) = xy.
Then together with (3) we obtain

1 1
lM(anrHl) - %‘ :'1%] XnXne T g gxy dx dy| < 3Dp.

Similarly, using f£(x,y) = x and £(x,y) =y, respectively, we get

lM(Xn) M(Xn+1) - %&l =

1

7] + %[M(Xn) - %] ¥ %—[M(x 2

1
net) leé b+ D.

= I[M(xn) - %][M(xml)

It follows from (4) that

(5) INum(GN)’ £ 4D + Dzé 222 p.

For the denominator Den(GN) we have

MLGx - MG )P MGe - MOx )]

Il

(6) Den(sN)2

[M(Xi) - M(xn)z][M(xil) - M(xml)z]-

Now
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N-1 N-1 ;
2 2 1 2 1 2
M(x ) - M(x )" = 5 x - (§ > x)
n=0 n=0
N-1 N-1 N-1
1 1 2 1 1 1 1
"Gt R P - G- - G2,
n=0 n=0 n=0
1 2
;E - 2D - D

by (2) with f(x,y) = x2 and f(x,y) = x, respectively.

bound holds for the second factor in (6), hence

ben@)= L o op o plxl 2 L 3%
| 3% 12:73
Together with (5) we obtain
293-12-73
<L 2= -2 T
l6y| € =55 = 0 < 73D. O

The same lower

In the case of linear congruential PRN, effective bounds for

are available. Because of earlier remarks it suffices to consider

(s)
Dy

only for 14 N£T. The case s =1 and general

(s)
Dy

N was treated

by the author [13], the case s = 2 and N =7 by Dieter [4], and the

case of a general s = 2 and general N by the author [14], [15], [19].

The results can be described as follows. For a lattice point

h = (hl,...,hs)e Z° define
s
R(h) = TT max(l,Zlhi| ).
i=1
For melN let

P(S)(/\,m) =m i
h
where the minimum is extended over all h

c i-1

Zh.)\_ = 0 mod m.
“— i

i=1

# 0 with

Theorem 2. In the cases 1), 2), 3) we have

cl(s) c2(s)(1og M) °

(s)
——— & D 7L
?(S)()\,m) v P(S)(/\,m)

cl(s) (s) c3(s) Ml/2 (log M)s+1 c4(s)(log M) °
—————-—(S) £ DN < N + o) for
f A,m) 1% (A,m)

1€ N<L 7,
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where the cj(s), 1< j&£ 4, are effective positive constants only depending

on s, and where m = M in the cases 1) and 2) and m = M/4 in case 3).

The quality of the linear congruential PRN can thus be measured by the
so—called figure of merit ?(S)()\,m), which should be as large as possible.
Although Theorem 2 is quite satisfactory, there are still various open
problems connected with it. We will discuss several of these problems,

which are all of number-theoretic character.

For s =1 it is immediate that always 53(1)(A,m) = 2m. For s =2

we can choose h = (hl’ 1, 0,...,0) with hl‘_—-E - A mod m, [hllé m/2, so
that always Sa(s)()\,m)é 2m. In the case s = 2 there is an interesting

connection with continued fractions. For our purposes it suffices to con-
sider the case g c d(A,m) = 1. Let

A [ao;al,...,ak]

=

be the continued fraction expansion of A/m 1in the standard notation,

where we assume ay = 1 for the sake of uniqueness. Let
P;
q—j = [ao;al,...,aj], 0L j< k,

be the convergens of A/m. Then we have the formula

(7) 9(2)(/\,m) =4 min q,lp.m- qj)\l

ogjck I3
obtained by Borosh and the author [2]. This formula allows the calculation
of ?(2)()\,m) in O(log m) steps, whereas a calculation by the defini-
tion would require O0O(m) steps. If

K:K(f‘_n)z m a

X a,,
PR VA

then we have the bounds

4m (2) 4m
mé ? A,m< T

The good parameters A are therefore those with a small value of KO\ /m).

This leads already to the first open problem.

Problem 1 (Conjecture of Zaremba [22]). Prove that for every m > 2 there
exists a A with g c d(A,m) =1 and K(A/m)<£ 5, or just KA/m) £ C

with an absolute constant C.



This has been checked numerically for m é-.(3.2)-106

and for m = fw

by Knuth [7]

, o« £ 35, by Borosh and the author [2], yielding C =5 in
this range and even C = 3 for sufficiently large m. The best theoretical
result says that we can always obtain KMA/m) £ C1 log m with an. absolute
constant Cl; see [16, Sec. 4]. TFor the applications to PRN generation we

also want ) to be a primitive root mod m if m is prime and A = 5

mod 8 if m = 2% see [2], [16, Sec. 11].

An algorithm for the determination of optimal A, i.e. of those A
yielding the maximal value of ?(S)(A,m) for given s and m, was de-
veloped by Borosh and the author [2] for the case s = 2 on the basis of

formula (7). This leads to two related problems.

Problem 2. Generalize (7) to a formula for §£S)(A,m), s = 3, possibly

using a suitable (s-1)-dimensional continued fraction algorithm.

Problem 3. Develop an efficient search algorithm for optimal A in the
case s = 3. This algorithm should be substantially faster than the trial-

and-error search of all possible values of A.

We turn now to results about the order of magnitude of fﬁs)(A,m).
In case 1) we have to consider §§S)(A,m) with a prime m and a primitive
root A mod m. It was shown by the author [14] that for any s > 2 and
any prime m there exists a primitive root A mod m with

c(s)m

9(5)()\’m)> s—1 ¢

(log m) log log m

In the cases 2) and 3) we have to consider ?(S)(A,m) with m a power of
2 and A= 5 mod 8. It was shown in [14] that for s = 2 and any m = 2%
there exists A in a prescribed odd residue class mod 8 with

(2) c(2)m
9 (A,m)> m.

In the above and in the sequel, c(s) denotes an effective positive

constant only depending on s.

‘Problem 4. Prove that for any s 2513 and any m = 2® there exists A in

a prescribed odd residue class mod 8 with



o' ym) > —C(-S—)—m———l :
(log m)°”

We note that a noneffective version of the result desired in Problem
4 can be obtained from a method of Zaremba [23]. There are also results
that contain stronger information on the order of magnitude of Di,s) it-
self. In case 1) it was shown by the author [14] that for any s = 2
and any prime modulus M there exists a multiplier A which is a

primitive root mod M and for which

p(s) , cls)(log M)° log log M '
T - M
In the cases 2) and 3) an analogous result was shown in [14] for s = 2:

for any modulus M = 2% there exists a multiplier A = 5 mod 8 with

PP g @ Uog w?

Problem 5. Prove that for any s =3 and any modulus M = 2°L there
exists a multiplier A= 5 mod 8 with

5(s) . cls)(log M)°
T M

—

Recently the case s = 3 of this problem was solved by the
Austrian mathematician Larcher [9]. Since for any T points in [0,1]°
the smallest known value of the discrepancy is DT(,S) = O(’c‘—l(log 'r_‘)s_l),
and since ¥ & M in our cases, we may pose the following (rather dif-

ficult) problem.

Problem 6. In the cases 1), 2), 3) prove that for any s = 2 and any

modulus M there exists a multiplier A such that

D(S)4 c(s)(log M)S_1 ]
r = M

It follows from {16, Theorem 11.11] that if Problem 1 can be solved

& and

for m prime and- A a primitive root mod m, or for m = 2
A= 5 mod 8, then the statement in Problem 6 holds for s = 2. The

existence theorems mentioned above are all nonconstructive, so an even
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more challenging problem would ask for general explicit contructioms of

parameters A meeting the various bounds above.

Quite a different test for the performance of linear congruential
PRN is based on ideas from the geometry of numbers. For a given

dimension s = 2 we consider again the points

x_ = (x_,x ..
=n ( n’ n+l’

S
"xn+s—1)€[o’1] , 0£ n< 7T,
from the full period, and in case 1) we add the point O. Then we
extend this point set periodically over R® with period 1 in each
coordinate. It turns out that this extended set E is either a

lattice or a shifted lattice. In detail, let L be the lattice
- . L i &
L={kb+...tkb : k€Z for 1£1i£s},

where

s-1

b, = S(1,AMA, .
m

-1

b, = ith unit vector for 24£ i< s,

with m being defiﬁed as in Theorem 2. Then E =L 1in case 1) and

E = Xy + L in the cases 2) and 3); see Beyer [1], Marsaglia [12], and
Ripley [21]. For good PRN the lattice L should fill R® in a "dense"
manner. We measure the 'denseness'" of L as follows. Let S be the
maximal distance between parallel hyperplanes in any family of parallel
hyperplanes covering L, and put y = S—l. The quantity ¥ should be

large for good PRN. 1In fact, ¥ 1is connected with the successive

minima My sMy s e sm of the lattice L. We have 1é:vﬂg £ c(s), i.e.
the order of magnitude of ¥ 1is essentially given by mgl, and further-

1

The quantity ¥ can also be described in terms of the dual lattice

more VY =mm, for s = 2 with m as in Theorem 2; see Ripley [21].

L ={k1p_1 teeet ksl_a_; : k,€Z for 1£i4 s},

Lo oS
r

where b.,...,b.  is the dual basis of b,,...,b , that is b,+b, =J. ..
by b 21 25 2i°23 T %4

Then we have Vv = mI, i.e. - ¥V 1is equal to the length of the shortest
nonzero vector in L*. Various algorithms are known for finding or
approximating the length of the shortest nonzero vector in a lattice.
The algorithm of Dieter [5] gives ¥ exactly, and the algorithm of

Lenstra, Lenstra, and Lovasz {11] gives ¥ up to a factor at most 2(5_1)/2.

It would be of interest to compare the running times of these algorithms.
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We note that for another important class of uniform PRN, namely

that of Tausworthe PRN, the behavior under the serial test was recently

studied by the author, but we will not dwell on this subject here and

refer the interested reader to the papers [17], [18].
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