goooboooogn
0 5370 1984 0 112-122

1i2
. 4, P

Random Number Generation in Large-Scale

Monte Carlb Calculations

Yoshio Oyanagi
Institute of Information Sciences,

University of Tsukuba

HERE BFERLER AMAPW=ESER

Various problems in geherating large number of pseudorandom
numbers on a "supercomputer" is discussed. As a computational
physicist I am interested in a Monte Carlo simulation of
physical systems with very large degrées of freedom, such as
lattice gauge theory. I hope some of you could help us in

solving the problems.

1. Monte Carlo Simulation

Historically, computing has played only a background role
in the development of theoretical physics. 1In the last few
years, however, a new use of computer has emerged in
"theoretical physics". Monte Carlo simulation has become a
powerful tool for studying the solution to quantum field
theories. These calculation have concentrated on the gauge
theory of the strong interactions, called QCD.

The techniques have been borrowed from the solid-state

physicists. We can see the ties between the quantum physics and

the statistical physics via Feynman”s path-integral formulation
of quantum mechanics, in which quantum field theory in four
euclidean space-time dimensions is equivalent to the classical
statistical mechanics of a hypothetical thermal system with four

spatial dimensions.

The solid-state physicists has long used the Monte Carlo
method to simulate classical statistical systems. The computer
memory contains the numerical values for the degrees of freedom
of the system -- for example, the direction of the spins in a
model of magnetism. A random number generator, weighted by the
Boltzmann factor exp(-E/KkT), then induces changes that simulate
thermal evolution and fluctuation. By "measuring" various
statistical quantities of this system (energy, specific heat,
susceptibility, correlation,...) the physicists gains insight
into macroscopic phenomena such as phase transitions.

Particle theorists wuse the Monte Carlo technique as
numerical method for evaluating Feynman path integral. In order
to make the integral mathmatically well defined, we must

[1]

discretized the continuous space. K. Wilson provided a
scheme, called lattice gauge theory, by formulating gauge
theories on a four-dimensional hypercubic lattice. In this
scheme, integral over all space-time points are replace by sums
over a lattice of discrete space-time points. Thus - the field
simply becomes arrays in the computer memory.

Computer technology is escalating at a surprising rate.

Ten years ago no one imagined the power of Monte Carlo methods

for theoretical physics. But now we use 200-1000 hours of CPU
-2 -

[

[

time of contemporary multi-purpose high speed computers for only

[2]

one paper. The total number of random numbers generated in

9—1012, which often exceeds the period of

multiplicative congruential method for modulus 231.

such calculation is 10

2. Processor Array PAX
There are two types of high speed supercomputers: pipeline
type (vector processor) and processor array. First I will

discuss on the processor array.

The ever increasing power of microprocessors and the
continuing decrease in the cost enable us to construct an array
of 'microprocessors for large scale scientific computations,
where the performance increases in proportion to the number of
processors. In many physical problems, the proximity property
that the interaction is limited among nearby degrees of freedom
leads to the possibility of a very high speed simulation by a
parallel array-type computer, where each processing unit (PU) is
connected only with the nearest neighbor PU’s.

We are developing a parallel computer system called "PAX"
since 1977, and presently installed system has 128 PU”s with the
speed of about 4 MFLOPS[3]. The 128 PU”s in the PAX system are
connected in a two-dimentional nearest-neighbor mesh (NNM)
rectangular array with the periodic boundary condition. The
tasks allocated in each PU are executed asynchronously.

In the simulation of spin[4] or gauge systems, the whole
physical space is directly projected onto the PU array, so that

each PU takes care of the physical process going in each sub-
..3_

[a—
(R

region assigned to that PU. When the program refers to nonlocal
data stored in the nearby or distant PU”s, the data are either
transferred from the nearest-neighbor PU via the communication

memory or are broadcasted via the control unit.

3. Random Number Generation on PAX

Since these data move procedures must be preceded by the
synchronization of all PU”s to avoid the memory access
contention, they increase the overhead of 1idling. It 1is
therefore required that the random numbers should be generated
independently in each PU, i.e. without referring to nonlocal
Jata. How can we provide 128 series of random numbers? Not
only should these series be "good" random numbers themselves,

but the mutual correlation should be small. Especailly, a large

correlation between the random numbers generated in the nearest
neighbors would be fatal for the simulation.

In the case of the M-sequence method of the .Lewis—Payne
type, an algorithm for a correlation-free initial value setting

(5] How can we do in the case of

has been proposed by Fushimi.
congruential methods?

The series of multiplicative congruential random numbers
with the same multiplier, say 48828125, starting from
"arbitrary"™ 128 initial values, say 1415, 9265, 8979, 3239,
4627, 4339, 3279, ... (decimal sequence of pi; the underlined
digits are changed), was first used. It might cause trouble,

For example, I numerically found that the series starting from

555 and 777 are strongly correlated (r=0.03125). The correlatib
- 4 -

[
e wre
T

over the whole period was estimated as 0.0286 in tefms of the
Dedekind sum.[G]

One would argue that we might change the multipliers PU by
PU. But how could we find 128 good multipliers which pass
[7]

various statistical tests and the spectral test? Moreover,
it is difficult to estimate the correlation over the whole
period between the two series with different multipliers.

In the case of the ILLIAC IV, a pioneering parallel
computer of .the SIMD type with 64 processing elements (PE), the
whole period of the mixed congruential random numbers for

248

modulus was equally divided into 64 subsequences and each

subsequence is allocated to one PE. Namely, the starting wvalues
for each PE are separated by Jjust 242. This algorithm is
dangerous, since, as 1is well known, every 224 tefms in a
multiplicative or mixed congruential random number series with

248 have an equal difference modulo 248. The random

modulus
number series in each PE would be mutually strongly correlated

unless disordered by a masking option.

I will propose a simple method to choose the multiplier and
to set up the initial values for the PU’s. The 1idea 1is to
simulate the random number generation on an ordinary von
Neumann-type computer. Let the sequence of random numbers which
are used in a simulation of a system with 128 degrees of freedom
be

R(i)=c*R(i-1) (mod m) i=1,2,.ce00..
231,

where m is typically At the first iteration, random

numbers R(1)-R(128) are used. At the second iteration,

-5 -

R(129)-R(256) are used, and so on. From the standpoint of the
i-th degree of freedom, every 128 numbers, R(i), R(i+128),
R(i+256), ... are used as random numbers. This ’partial series
can be calculated directly in terms of the relation,
R(i+12§)=cc*R(i) (mod m),

where cc=c128 (mod m). 1In the case of a processor array, if we
take the initial values for each PU as R(1l)-R(128) as above and
the multiplier for the PU as cc, we can simulate on PAX the
random number generation on a sequential computer. However, the
random number sequence in a PU generated as above is NOT a good

random number itself, since c¢=3 or 5 (mod 8) implies c128

129

=1 (mod

8). I will propose to take cc=c
29).

instead. Thus the period is
maximal (2

The nearest neighbor PU”s are separated by 1 or 16 (except
the boundary PU”s) in the case of PAX-128. How large 1is the
correlation between the random numbers starting from R(i) and
R(i+1l) or R(i+16)? Are there better ways to scatter the 128
initial wvalues on PU”s in order to make the correlation between
the near-by random numbers small, without just putting them one
by one from left to right? I hope the number theorists have

comments.

4. Random Numbers on a Pipeline Supercomputer
At the present time, commercial supercomputers such as
CRAY-1, Cyber-205, FACOM VP-200, HITAC S810/20, ... are all

pipeline computers. 1In these machines operations on vectors are

(S,
-~
[SE)

processed on a special hardware (vectorized), e.qg.

A(*)=A(*)+c*B (%) (elementwise scalar mult and add)
s=s+A(*) *B (*) (inner product).

In HITAC S810, the first order iteration

do 10 i=1,n
10 IR(i)=c*IR(i-1)+d

is also vectorized. Both multiplicative and mixed congruential
random numbers are thus generated by a vector operation.
Unfortunately, however, this iterative operation 1is very slow
even if it is vectorized, because the calculation for different
i cannot be done parallelly.

In order to speed up the generation, the number of such
iterative operation should be minimized. If the vector length n
is nearly fixed, the method proposed for PAX is also applicable
here. At the first stage, n random numbers are prepared by the
first order iteration

do 10 i=1,n
10 IR(i)=c*IR(i-1)

This stage 1is not very fast, but it is excecuted only once.
After that the n (or less) random numbers are generated as:

do 20 i=1,n

IR(i)=cc*IR(1)

ceeTeIR(1) ...

20 continue
where cc=c**n or c**(n+l) if n is even. The operations in this
loop is really parallel and is processed in a very high speed.
We may call this algorithm "linewise vectorization."
In this algorithm, all the random numbers are stored in the

memory IR(¥*). The store operation 1limits the speed of this

program. Since it is not always necessary to keep all the

- 7 -

values of IR(*) in the memory, the program is improved by

al.[8]

minimizing the store operation. Aoyama et proposed an

alternative algorithm, where every four, say, random numbers are
generated by the first order iteration and then the rest are
generated parallelly.

*VOPTION NOFVAL
do 10 i=1,n
IR(i)=cc*IR(i-1)
IRl=c*IR (i)
IR2=c2*IR (1)
IR3=c3*IR(1)

10 continue

where cc=c4, c2=c*c and c3=c*c*c. In this loop four random
number sequences IR(i), IR1, IR2, IR3 are generated parallelly.
Since the wvariables 1IR1l, 1IR2 and IR3 are kept only on vector
registors (high speed buffer memory), one can save the time for
"store"™. We will call it "columnwise vectorization." This idea
can be extended to more than four columns. The limit isithe
number of the vector registors and the vector pipes.

Actually this technique is also applicable to the 1linewise
vectorization by generating more than one lines at one time.

For instance,

do 10 i=1,n
10 IR(i)=c4*IR(i-1) <~—-= jinitialization

*VOPTION NOFVAL

do 20 i=1,n
IR(i)=cc*IR(1i)
IR1=c*IR(1i)
IR2=Cc2*IR(1)
IR3=c3*IR(1)

20 continue

where c4=c**4 and cc=c**(4*n+l).

The next problem would be a vectorizable M-sequence method.
In 1985, the bit operations' (AND, OR, EOR, ...) will be
supported on S810. It is time to elaborate on a new algorithm.

I hope some of you are interested.

4. Conversion of Random Numbers on a Pipeline Computer

In most cases, uniform random numbers are converted to
dother distributions. In the Monte Carlo simulations for
statistical or quantum systems, random numbers obeying the
Boltzmann distribution exp(-E(x,¥,...)/kT) 1is necessary, where
X, Y, etc. are variables corresponding to each degree of
freedom, k is the Boltzmann constant and T is the temperature.

If the density distribution function is analytically
integrable and its inverse is expressed analytically, then the
random numbers are generated by a direct method. For example,
the distribution of the 0(3) Heisenberg spin model is expressed
as

exp(-a cos X) sin x dx dy
where x and y are polar and azymuthal angles of a spin and a is
a constant. Putting z=cos X, we can write

exp(-a z) dz dy,
which is simply integrable.

On the other hand, the distribution of the 0(4) spin is
(apart from O0(3) factors)

exp(-a cos X) sin®x dx = exp(-a z) (l—zz)l/2 dz.

On an ordinary computers, we first generate an exponential
-9 -

random number for =-1<z<1l obeying exp(-a z), then we use the

rejection method for the factor (1—22)1/2.

Unfortunately, the
rejection method cannot be vectorized, since we do not know
beforehand how many tries are necessary. Possible method would
be
1) ﬁake a table and interpolate (we have also to interpolate
in a).
2) make an approximate polynomial for various a and
interpolate.
3) in the case of the simulation in statistical physics, there

is a freedom to keep some of the variables unchanged. 1If a

z value generated according to exp(-a z) misses in the

rejection method, we may leave the corresponding variable
unupdated.
This 0(4) distribution is quite important in the lattice gauge
theory, since it is related to the adjoint representation of the
SU(2) gauge group, and SU(3) simulation is performed by applying

SU(2) three (or six) times.

5. Discussion
I have discussed various problems related to the random
number generation in large-scale Monte Carlo simulations on
supercomputers. They are not only crucial to realistic

simulations but also challenging to applied mathematicians.

lO

8. T. Aoyama et al., BHRME=2&E28EHLEBXRE (/ 984) » /37 9.

o

Lr.

REFERENCES

K. G. Wilson, Phys. Rev. D10, (1974) 2445.

M. Fukugita and Y. Oyanagi, Phys. Letters 123B (1983) 71-76.
T. Hoshino et al., ACM Trans. on Computer Systems 1 (1983)
195-221, T. Hoshino et al, Proc. Intl. conf. on Parallel
Processing, Michigan (1983) 95-103.

T. Hoshino et al., to be published in Comp. Phys. Comm.

M. Fushimi, s mE Lo m T & 24 (1983) 576-579.
M. Sugihara, private comuunication.

See for example, I. Borosh and H. Niederreiter, BIT 23 (1983)
65-74.

- 11 -

