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1. Introduction.

"Non-regular esfimation" literally means'the theory of statistical
estimation when some or other of the regularity conditions for the
"usual" theory fail to hold. The concept itself is purely negative
and it seems to be almost self-contradiction to trj to establish a
"general theory" of non-regular estimation. In the sample and large
sample theories of estimation of real parameters, however, there are
well established éets of regularity conditions, and it is worth while
to examine what may follow if any one of these regularity conditions
fails to hold. And there has been accumulated substantial amount of
results obtained by rather many authors, thbugh somewhat sporadic
investigafions, which can give some insight into the structure of
naﬁ—fegular esfimation and cén clarify the "meaning" of each of the
regularity conditions by showing which part of the theorem fails to
hold and it must be modifiea if it is not satisfied. The purpose of
this paper is to review those results from some unifying viewpoint
and -also to point out some problems yet to be solved. Our main interest
is, therefore, not to look for some strange looking "pathological®
examples, but rather to contribute to the main stream of the theory
of statistical estimation by clarifying the "regular" theory from
the reverse side,

First we shall consider the set of regularity conditions of
statistical estimation theory. In the most general abstract terms,
the problem of statistical estimation can be formulated as follows.
Let C{,;A) be a samplé space and let {Pwlwefﬂ be a set of probability
measures over‘(XS AJ. The index set Q can be any abstract set. Let
6=6(w) be a real p-dimensional vector valued function of w and is
called the parameter..An estimator 6 = é(x) is a measurable function
from ¥ into Euclidean p-space RP, An estimator which always comes
close to 6(w) when a random variable X is distributed according

to Pw, we R, is considered to be a "good" estimator. The main set
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of regularity conditions usually considered as follows :

(A.1). The set of probability measures is dominated by a o-finite
neasure u over (X,4), and the density function dPw/du = f(x,w) (weQ )
is defined.

(A.2). For each weQ , the support of Pw, i.e. the set {x| f(x,w)>0}
can be defined independently of w.

(A.3). The index space Q itself is an open subset of Rq, where g>p.

(A.4). For almost all x [ul, f(x,w) is continuous in w.

(A.5). For almost all x rul, f(x,w) is (k-times) continuously
differentiable with respect to w.

(A.6). The Fisher information matrix

I =B [—— £(X,0) =, f(x,0)] , weQ
w w~ dw dw
is well defined and finite.

For large sample theory we have to consider a sequence of sample
spéces CX(n), 9&63)) (n=1,2,...) and that of probability méasures
Pén) (we Q) on Can),ﬂi(n)) (n=1,2,...) with the common index space {,
and additional regularity conditions are

(L1) For each n, (X(n), A(n)) is subset of ;(}%ni-l)’ ﬁﬁﬁl)) and
P&n) (wé€R) is the marginal probability measure over G((n)ﬁA(n))
derived from the probability measure P(E)nﬂ‘) (weQ) over (};nJFl), 94,(1“1)).
(Sequence of observations).

(L2) For each n CX(n),gA(n)) is the n-fold direct product‘space
of sample spaces Cxi’?%i) (i=1, ... , n) and P&n) (weQ) is the
corresponding product measure P&n) (weR) on'C{(n), A(n)) of Bi(we Q)
on (}‘éi, tAi).(i=1, eee o, 1n). (Independence).

(L3) For each i=1, , N, xi=}_’, Ai=74r and P£=P1‘, (we Q). (Identical
distribution). |

Another set of regularity conditions are :



(81) The probability measures Py(we€ ) admit a finite dimensional
“sufficient statistic T=t(X).

(S2) The sﬁfficient statistic is complete.

(S3) The probability measures form anh exponential family, i.e.,
f(x,» ) can be expressed as

f(x,w)=c(w)h(x) exp {s(w)rt(x)} ,
where s(w) and t(x) are p-dimensional real vectors.

There are still some other minor conditions for various theorenms,
but the most commonly discussed are included in the above.

Next we consider the theorems of estimation. For small sample
situation, most of the theory deals with unbiased estimation, and
main theorems deal with a) the existence of locally best unbiased
eétimaﬁors and b) the existence of uniformly minimum variance unbiased
(UMVU) estimators. Also in small sample situation we may consider
other types of "unbiasedness" condition than the usual expectation-
unbiasedness, and other types of dispersion criteria than the variance.
.For large sample fheory, the main results are concerned with a) the
existence of consistency, b) the maximum order of consistency, c) the
asymptotic efficiency of estimators and d) higher order asymptotic
efficiency of estimators (See Akahira and Takeuchi [1] ).

In thé subsequent sections we conéider various combinations of

problems and situations.

2. Unbiased estimation .

2.1. Undominated case.

The most extremely non-regular case would be the one when the
condition (Al) is not satisfied, i.e., the probability measures are
not dominated. There exists, however, rather simple examples of the
undominated case.

Example 2.1.1. Let Q=(w1,...,wN) be a collection of N real values.
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The sample space X consists of the pair J and Y, where J is a set
of integers (Il’ i s In) with 1<I; 5N (i=1, .. , n) and Y is

a set of n real values (Y, P Y ). And the probability measure
is defined as

PLC Iy, ven v I) = (dgs wee n i)} = p(iq, covy 1))

and ¥;= wIi (i=1, ... , n) with probability 1 and it is assumed that
p(il, cee 9 in) is independent of w , This is nearly most general
formulation of the problem of survey sampling when 2 denotes the set

of the values of a "finite population" and Y the set of saﬁple values,
and P the "sampling scheme". The problem is to estimate some "population'
parameter 0=6 (w1, ... , wN). In general case the sample size n may

be random, and Ii's need not all be‘distinct. (The case of sampling

with replacement.) If we assume that W, can be any element of an

1

open subset of R™, the distribution is not dominated. Then the following

is known.

Theorem 2,1.1. ( [9] ). For parameter 6=6(w) with unbiased estimators,

a locally minimum variance unbiased estimator at specified w=w, has
zero variance at w=wy . Hence there never exists an UMVU estimator

unless there is one which is always of zero variance.

Example 2.1.2. Let Xl’ oo b Xn be independently and identically

distributed (i.i.d.) and for each i=1l, ... , n, X;-0 (0L @ <1) is
distributed accqrding to the Poisson distribution with parameter A ,
where n is fixed. The index is the pair of nqn-negativé real constants
o and A, The class of distributions is clearly undominated, but

([X] , X- IX] ) is obviously sufficient and complete, where [s] denotes
the largest integer less than or equal to s, and UMVU estimator exists

for any estimable parameter.
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Example 2.1.3 Let Xl’ o ,an be i.i.d. random variables.

The class of possible distributions P of X1 is the set of the all
discrete distributions over the real line. Obviously the class is
not dominated. Now let X(l)s.X(z)s_ e S'X(n) be the order statistic
obtained from X;, ... , X . We denote (X(l)' cen s X(n)) by Y.
Y is sufficient, and we shall prove that it is complete..
Assume that

E[ &Y)] =0 for all discrete distributions P.
Now take any posSible value of Y y=(yl, ces s yn), Y12 Y02 ...f_yn
of which there are k distinct values zq < eee < 2y and the numbers
of Vi values equal to Zj be n_, ( % : j=n). Now consider the class

.21
M, of discrete distributions with ihe support (Zl’ cee s Zk) and

k
P(X=z.)=p. (j=1, «e. , k), p.>0 (j=1, .e. , k) I p.=1. Then from
completeness of multinomial distributions we have E [¢ (Y) ] =0 for

all peM, implies ¢(y)=0 over the set of values of Y where all yi's

are equal tooneofzj's, and this implies that ®(y)=0. Since y can be
taken arbitrarily, we have ¢(y)=0 for all y, which completes the proof.

Consequently from the case any parameter with unbiased estimators
admits a UMVU estimator.

The above examples show the undominated cases where some uniform
results for the existence of UMVU estimators can be established.

There is also a simple but rather strange example of the undominated

case shown below.

Example 2.1.4. Suppose that for every n> 2, Xl, cee Xn are

i.i.d. random variables according to the probability distribution.

with the probability mass equal to 1/2 concentrated at the point g ,



and the rest uniformly distributed over the interval (0,1). The
parameter 8 is assumed to be unknown in the intervalv(O,l). The class
of prdbability distributions is undominated, but we can construct an
unbiased estimator by the following : Let 0, be any constant in the
interval (0,1). When two or more of X;'s have identical values, let
the value by X¥ and
en=mcx*-eo)+eo.

and an=90 otherwise.
Then it ig obvious that Veo(én)=0.'Hence the variance of the locally
minimum variance unbiased (LMVU) estimator is equal to zero.

This example may be considered to be the limiting case of the
regular situation with the following density f(x,6) as ¢ tends to zero :

1 , % - 8]>e 3

2
f.(lxye) =

-%— + 1%— Ix- 6], |x-8]<ce,
where 0<€<6 < 1-¢.

Then the amount Io of the information is given by

L = fo.ooo{-;;? log f(x,8 )}2 f(x,g)dx

0 +e 1
= - dx
g -€ e f(x,8)

Hence I. tends to infinity as €+ 0, which implies that :the lower

bound of the variance of unbiased estimators goes to zero.

2.2. The suppOrt'depending on the parameter.

In the case when the support of the distribution depends on the
parameter, we often encounter a situation where the variance of

locally minimum variance unbiased (LMVU) estimator is zero.
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In other cases we have the infimum of the variance of unbiased esti-

mator is zero, but there does not exist one with zero variance.

Example 2.2.1. Let X be a random variable with a density function

f(x,0), where 6 is a real-valued parameter. We consider the location
parameter case, i.e. f(x,0)=f(x-6).

Assume that

f(x) >0 for a<x<b 3

f(x) =0 for x <a, x2>b,

and further that f(x) is continuously differentiable in the open

interval (a,b) and

lim f(x) = AO , lim f(x) = B,
x+a+0 x+b-0

exist, including the case where either or both AO and BO are infinityél
Then it is shown that

min Vg, (0 (x)) =0
g2 unbiaseg

for any specified value of 6, ,
Here an estimator 6, with zero variance at ® =0y can be constructed
as follows.
A A
Let g4(x)=0, for @,ta< x< 6, *b. And for Botb< x< B¢+t2b-a, B¢ is
determined by the equatioﬁ
' otb . ' Botba
(2.2.1) S 6 (x)dx = 6 -080 Sy  B,(x)dx
0
Both

which is obtained from the condition

Eol 00(X)] =6 for 8o < 6 < 8o + (b-a) .
It is easily seen that the equation (2.2.1) has a solution for 0.

Repeating the similar process, we can get 6q(x) for all values of x.
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Example 2.2.2 Let X be a random variable acéording to a trian-

gular distribution with a density function

1- | x-9| for |=x-6|< 1 ;
f(x,e) = :
for Ix-0ol> 1 .

Then it is shown that

n Vel 8 () =0,
: unbiased ™

4
9

but the lower bound is not attained.
Fix 8o =0. Let us define an estimator of the type

1 _ _¢C .
f(x,o) - ]_-X fOI‘ 0<X<l—€ ?

A _ l _ .
ee(x) - X0y - - TI-x for 1l+t+e<x<1l

0 for 1-e<x< 1, -1<x<-1+t¢,
where 0< € < 1,
By the similar process as with 60 in Example 2.2.1 we can so construct
ge(x) for all values of x that it is unbiased.

And we can prove that

Ve=o(6€)+0 as € > 0

which implies that jinf V,(8)=0. Note that here we can not let
‘ g ¢ unbiased

€ =0, because we can not construct an unbiased estimator outside the

interval (-1,1) of x,

Morimoto and Sibuya [7] discussed the estimation of a so-called
selection parameter. Let X5 oo s X, be i.i.d. random variables
with the density function(with respect to a non-atomic measure u)

of the type c(0)f(x) for ><€Ae ;

f(x,8) =
0 for x ¢Ae ,
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where f(x) is a function independent of the real parameter g .

Let US define letl(xl,ouo,xn) and T2=t2(x1, .‘-.,Xn) by
T,=inf {0] (xl,...,xn) € Ae }

and

T,=sup {el(xl,...,xn)eAe} .

Obviously, the pair (Tl’TQ)(Tl,iTé) is sufficient for 6 (with proper
measurability condition etc.). Then assuming that the distribution
of (Tl’ T2) is absolutely continuous w.r.t. the Lobesgue measure,
the density function is given as
c®) g(ty, ty), ale) <t;<t,<ble) ;
£*(t

l’t2’ 6) :

0 ’ otherwise .

Generally, (T;, T,) is complete if 6 > c with a(c) <b(c) and a(p)

is monotone decreasing and b(8) is monotone increasing, and any
estimable function n(6) admits an UMV estimator. And if both a(g)

and b(e) is monotone increasing, (Tl’ T2) is not complete, and under
some regularity conditions there exists an unbiased estimator 50 of ©

which has zero variance at any specified value 90.

Example 2.2.3 ( f7]). Let X;, ... X Dbe i.i.d. random variables
with a density function ,
£(x)/F(8) , 0O0<x <9,
f(X,e) =
0 ' s B <X ,
where f(x)> 0, a.e. and F(6)=f2 f(x)dx<o
We consider the estimation of the selection parameter 6 of the family
{ f(x,6) : 0 < B < o} , A minimal sufficient statistic for 6 is

T=max (xl,..l,xn) and its density function is given by

g(t)/a(e) , 0<t< 6 ;
g(t,0) =

o , ' <t ,
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where g(t)=nF*"1(t)r(t) and G(g)=F"(g). T is complete, and if n(6)

is an absolutely contihuous function defined on (0, =) and if

1im n(e)G(g)=0, the UMVU estimator of n(e) is given by
E-)-'I’O

6 (8)=—Fgy (n(£)6(+) }'= n(t)tn' (¢) —%—% n(t)+n' (t)nf b

The estimator ¢(T) has the variance

0 (1 ()G gy 1 e gy, B
(o (m) =gty £{-HEHF B (00" B et

Example 2,2,4 ([7] ). Let X1s eee s X be i.i.d. random variables

with a density function

£(x) / Fle) » 8 < x < blg) -

0 , otherwise ,

b(e)
6
A minimal sufficient statistic for ( @, b(g)) is the pair of T

=J f(x)dx < = .

where f(x)> 0 a.e. and F(o)

=min
1

(X1s+++sX ) and T,=max X;,...X_ ). Then the family of its densities
ge(t)=g(tl,t2)/G(e) with

t2 n-2
g(ty,t5) = n(n-1){ s ° f£(x)dx } £(t)£(t,)
vy
and
b(p) n
G(e) ={ N f(x)dx} ,

~ 1s not complete.

Assume that b(e) ( >6) is a strictly increasing and a.e. differentiable
function. It will be possible to coﬁstruct an unbiased estimator ¢ (x)
of n(@), based on a single observation X, with zero variance at a
given vaiue 60 of the parameter. '

Obviously, an estimator with this property must satisfy
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o(x)=n(8g) a.e., 8p< x< b(0) .
And from its unbiaseaness

b( )
By [6(x)] = fg  6(x) %{-g-} dx

which implies the relation

b'(x) o(b(x))f(b(x)) - ¢ (x)f(x)

n(é) for all 6 ,

[n(x)F(x) ] !
for almost all x. ‘
As a special case in the example let b(8)=26 , F(0)=6 , f(x)=1
and n(6)=6 . Then we have
(2.2.2) 20 (2x) - o(x) = 2x . ,
Letiing 90=1, we obtain V¢(x)=l for lf,i< 2. From (2.2.2) we have

d(x) = ——?2'—— (x+1) for 2<x<4 3
o(x) = —%—(% x + %) for 4<x<8 ;
o(x) = —%‘—-(—% x + 1) for 8<x<16 , ... .

Similarly we obtain from (2.2.2)
o(x) = 2-2x for —3-<x<1 ;
o(x) = 4’- 10x for —%—ix<-%—— ;
1
A

®(x) = 8 - 42x for —8:-L—§x<—— ’ eee o

6
5
3 $(x)
"
2 -
o \\I 2 3 i 5 3
NN ﬁ
-3 |

Figure 2.2.1, The unbiased estimator ®x) given in the above way

in the case of the uniform distribution.
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In other cases of non-constant support, we have the Cramér-Rao-
Bhattacharyya bound.

Even when the support depends on ®, we sometimes have the Cramér-
Rao type bounds for unbiased estimators. Suppose that a random
variable X is distributed with the density function f(x- 0) with

respect to the Lebesgue measure where f(x) is defined as

c(1-x9)*, Ixl <1,
f(x) =
0 s otherwise,

where ¢ 1s some constant.

Then for any unbiased estimator ©(x) we have

971 B(x)f(x- O)ax = O.

By differentiating with respect to © we have

6+1

6-1 O(x)f!(x-6)dx=1 .

8 (6+41)£(1)- 6(8-1)f(-1)-1

Then it must be proved that the differentiation is allowed, but we
omit the detailed discussion.
Since f{(1)=f(-1)=0 we have

e"l"l A
o1 0(x)f (x-8)dx=1 .

By putting 6=0 and applying the Cauchy-Schwarz inequality we have
1 N4 1 ~ ’
(o 6 orm@ad Ut EED2eGoaxda 1 8 (x)dn) 21 .
-1 ¢ , -1

Hence we obtain

~ > 1 =LC,
Vo 82 1 (e 2 32 °

X
f—l Tl dx

What is remarkable here is that the bound is sharp, that is,

inf Volo (x)) = 33—¢ .
g:unbiased '

Such an argument can be generalized to the Bhattacharyya type

inquality.

— 12—
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Example 2.2.5. ( [2]1). We consider the location parameter

case, i.e. f(x, 08)=f(x- 6), and unbiased estimator of 6.

We assume that for any p > 1, the density function f(x) is given

by { c(1-x9)P 1 if | x| <
£(x) = :

0 otherwise s

. 1 '

where c¢=1/B(1/2, p) with B(a , B)=Jo xa-l(l-x)s-ldx (a>0, B>0).
Case (i). Let p=1. Then the distribution is uniform, and it is
easy to check that

r,qin Ve (6)=0
0 sunbiased 0

for any specific value 6, ( [10]).
Case (ii). Let p=2. In this case, it is easy to check that the

Fisher information

® frix .
U5 flx)dx = .
Then it is shown that

inf Ve (8)=0
e:unbiased 0

for any specified value 0o,
Before proceeding on to the next cases, we note the following :

Let A be a k X k non-negative definite matrix whose elements are

0+1 : i Jj
A o= f _1 0 f(x-8) 3°f(x-9)
(2.2-3) ij e._]_ f(X-e) 391 393 dx
' 1 (1) (3 ”
= f‘-l (-1) “F(x) £ (x)f (x)dx ; i,j=1,...,k.

2)p—2k"l

1
If k<p/2, Ay (i=1l,...,k) are finite since S, (1-x dx<e ",

Then the Bhattaéharyya‘bound of the variance of unbiased estimator
8(x) of © is given byv

(2.2.4) ~ Vg, (8) > (1,0,...,0) a"1(1,0,...,0)'"

for any spacified value 6.

(See Akahira, Puri and Takeuchi [21).



We obtain for |x|< 1,
f(l)(X) ='-2C(p—l)X(l—x2)p'2 ;
2¢(p-1) {(1-x2)P"2 _ 2(p-2)x*(1-x2)P73 3

£03)(x) = 4elp-1) (p-2) [3x(1:x?)P3 2(p-2)x3(1-x2)P 4 }

(2.2.5) f<?’<x>

If i+j is an odd number, if follows by (2.2.3) and (2.2.5) that
Aij:O since f(i)(x)f(j)(x) is an odd function.
From (2.2.3) and (2.2.5), we have

Aq = 4e(p-1)2B( —%— » P-2)

A3 = 8e(p-1)2(p-2) {2(p-3)B(—3, p-4) - 3B( =~ , p-3) } ;

Ay = he(p-1)2 {B(1/2, p-2)-4(p-2)B(—3—,p-3)+4(p-2)°B(—3—,p-4) } ;
‘A33 = 16c(p-1)%(p-2)( 9B(—3=,p-2)-12(p-3) B(—5—,p-5) +4(p-3)?
B(—,p-6) }5 ... .

Case(iii). Let p=3,4,5,6. Then it is shown that

inf v, 0) = 55
g tunbiased ~° 11

for any specific value 0o

Case(iv). Let p=7. In this case, we see that k=3. Using (2.2.3),
(2.2.4) and (2.2.5), we obtain

22 O N
1 | 13 -1
V. (8)> —:- Ao (le ———13
60 - ll\l O )\ [ ll )\ )\ )]
33 11 33
where
A11 0 Ay
A= 0 sy O
A
13 0 Agy

— 14 —
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with

n

IAZ;CB(_%—' ’ 5) H

M1
M3
Mo

33

1440¢ { 8B(—3— , 3) - 3B(3-, 4))

li4e {B(=3, 5) - 20B(-—5— , 4) + 100B(—3- , 3)} ;

1}

14400 {9B(—3— , 5) - 48B(—3— , 2) + 64B(— , 1)} .

We‘also obtain

2
M3
1%3  B(3-,5) { 9B(—5=,5)-48B(—3-,2) +64B(——, 1))
2

. . 2 13
Here again 4.inf. Vo (8)= [ A4 (2-- )]
6:tRfiasea Vo, 11 A11113

{ 8B(—3,3)-3B(—3—,4)) ?

"1 for any specific

o , i.e. we have a sharp bound.

;Case (v). For p> 8 we can continue in a similar manner by choosing
k= [(p-1)/2) , where (s) denotes the largest integer less than or

equal to s.

2.3. Discrete parameter set.

In some cases the parameter set itself can be discrete. Then the
parameter set is either finite or countable. The case of finite
parameter set can be generalized to the case of finite rank, which

is defined as follows.
The class {Pw |w 9} of probability distributions is said to be

of rank m(< «) if there exist W1 5y ess W in @ such that for any

wef there exists a set of constants cl(m), cee s cm(w) satisfying



%)=cl(w)Pw1+ ee. t c (0)P,  for all weQ

and Pwl' ces 9 Pwm are linearly independent in the sense that

Cng + ... cmem = 0 implies c3= ... = c, = 0.

Then for any real-valued function 6 = 8(w) of w, unbiased estimators

exist if and only if
6 (w) = c1(w) 6(wl)v+ ees t Cm(w) e(wm)
for all w€Q . The class of all UMVU estimators (of any parameter)
is equal to the class of measurable functions of a finite subfild
W?ofﬂ&. |
In the case of countable index set we have an LMVU estimator
for any_parameter point w=w, whose variance is infinity except

fOI‘ w=wo [}

Example 2.3.1 ([6]). Let Xl’ ees » X Dbe i.i.d. random variables

according to a normal distribution with mean m and variance ndz,
- n

where m is a integer-valued parameter. The sample mean X= % Xi/n
i=1

is sufficient and its distribution is normal with mean m and

variance d2. Then the LMVU estimator at m=0 is given by

£(%)= uZl(_l)u+1{exP(u(u-l)/zdz)(eXp(u/dQ)-1)exP(u2/2a2)}'1

{exp(ux/d®) - exp(-u%/d?) }.
Its local minimum variance at m=0 is

v(£)=2 % (-1)""Ty {exp(ou(u-1)/2d2)/(exp(u/d?)-1) } .
u=1 ‘

The LMVU estimator at m=0 has infinite variance at all m#O0.

When the sample space X itself is a finite set of size N, then

the probability distribution P, can be considered to be a finite

— 16 —
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dimensional reél N-vector, and if there are N linearly independent

P (i=1, ... , N) then the sample X is complete and any parameter
1 .

with unbiased estimators has a unique unbiased estimator which is

UMV unbiased by the definition.

Example 2.3.2. Let X be distributed according to a hypergeometric

distribution
I C_.
P(x=x) = &X Naﬁ B=X  for x=0,1, ... y 0,
N

where n< M and 2n <N.

Let M be the unknown parameter and the possible values of M be 0, 1,

ese » N-n. Then X is complete.

2.4. Discontinuous and non-differentiable density.

Now suppose that the density function f£(x,8) is not continuous
with respect to © while the support A(8)={&[f(x,6)> 0} can be
defined to be independent of 6 . Note that this condition does not
affect the existence of a LMVU estimator, because it can be shown
that for any real y (6) which has an unbiased estimator, a LMVU
estimator at 6=0, exists if )

(o TOET— & <
(e.g. see Barankin [4] and Stein [8] ).

But the LMVU estimator sometimes behaves very strangely.

Example2.4.1. ([3]). Let X,

cee 9 Xn be i.i.d. random variables

with the following density

p, 0< x<9v and - ptl< x<2,
f(x,0) = ’
(x, 0) 9, 6<x< g +t1,

0, otherwise ,
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where p and q with O<p<q and p*q=1l are fixed constants.

gince the support of f(x,6) is the interval [0, 2], in the subsequent.
discussion it is enough to consider it as the domain of x.

The paraméter g has the range 0<6< 1.

Then the LMVU estimator of 6 at 6=6, has the form

1

(2.4.1) 8, (xqseeerx ) = Iy T —ﬂx—i',e—o'yd(‘xn(n) ,

where Gn(n) is some signed measure over the closed interval [0, 1]

(e.g. see Stein [8] ).

: . *
Case (i). Let n=1 and X=Xq . Then we take a signed measure G1 over

[0, 1] satisfying Gl(’{o })=-1/c, Gl( {1y )=1/c, Gl( {6,} )= 6oand

3*
G ((0,80)" (8 ,1))=0. Letting Gy=G; in (2.4.1)
we have
A% _1£(x,n 3
100 = s fERy a0 )
—i-(l-%—) for 0<x <80;
- —]C:-(_c%- -1) for Bo «x< 1 3
—%-(l-—§~) for 1< x<@9,+ 1 ;3
—%—(—%——1) for 8,+ 1<x< 2,
1
h m— - >0).
where c 54 4 )
-2 cc—————o
q : \
! '.
PR R b
p ' 1 ]
] ] '
[ ]
g 90' % eO+1 2 x
) =+
! 1
! )
Tl

. A ’
Figure 2.4.1. The values of el(x) for all xe[0, 2] .

—18 —
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st
Then the variance of the LMVU estimator 61 is given by

(2.4.2)  Vg(6)) = == +] 6= 8o] (1~ [0 - 8,]).
Note that
~x% 1 ~ %
Vg(8y) 2 == = Vg (87)

for all 6e[0, 1] .

1.1
1 ¢ 3

! |

! ]

! '

t 1

l '

i !

—]"— --7 h [ i

c 1 1 ) !

1 1 i 1

0 90—(1/2) » 60 1 90+(1/2) 2]

, A3
Figure 2.4.2. The variance of the LMVU estimator 64 at 6= given

by (2.4.2) when 60>1/2.v

Case (ii). Let n > 2. Then we take a signed measure Gz over [0, 1]

satisfying
gié = (1- i )T1+Cjn_e”)n sgn(n-60) for 0<n<f, , @,<N<l ;
Gi( 9 )v= i cn(l+ieo)n‘l ;
Gﬁ( {1}) = cn(1+c(i-eo))n‘l ;

G:_( {60)) = eoc



1o

A
A

It is shown that

Ay 1 n f(x;,n) x
7] = 1
0 (xl,...,xn) fo 911 -§T§§T§:7 dGn(ﬂ)

is an LMVU estimator of 6 which has the following variance at 6=§;, :

—lzlog {(14c08,) (1+c(1-6,))} for n=2 ;
v (A*) 2¢c .
e =
60 n 5 1 2- 1 5 - 1 n—2} for n> 2.
¢“n(n-2) (1+c6y) (1+c(1-64))

In the case of discontinuous or non-differentiable density functions
a lower bound of the variance of unbiased estimators was obtained
by Chapman and Robbins [5], which is given by

( n-eo)2

,f%xznz 2 *
fx{ T Xy 60 -l} d’.‘

8

V. (8(x))> sup
0 n

By definition we have

%, (n) ] -1

Veo(e(x)) Z_[innf-m ,

vhere 2
{ f(x,n )-f(x, 060 )}

B =L %, 05 ) o

When Xl’ cee oy Xn are i.i.d. random variables,

{ kg,)+ -1 _-1

1.

(2.4.3) Veo (6 (Xl""’xn))i[iﬁf (1 ~60)2

In the regular cases we have

Kg,(n) = 1(8)(n -85)% + o((n-80)%)

and the right-hand side of (2.4.3) is attained when n-8, is of the

order 1//n . In the non-regular cases we have

By, () = 16D In= 0,12+ of |- 6,]2)

where o > 0.



2.5. f(x, e)/f(x,eo)'is not square-integrable.

There are cases when the support S= {x |f(x, 8) > 0 }is independent

of 6 , but I {£(x, 6)}2/f(x,eo)du is infinite for some 6 € C).

Assume that (@) = {680, 01, <. , Gp} . Then we consider to
minimize

s 8(x) 12 £(x, 80)dn

)

under the unbiasedness condition : E (9)=Y(ei)=Yi (say) (i=1,...,k)
i .

and the condition

(A.2.5.1) f(x, Gi)(i=1,...,p) are linearly independent,

{£(x, 8,))
I's f(xyeo_)

du<® (j-:]—!---’k s k2 p) ’

and Y
{ z_ c;if(x, ei)}2
i=1 du <
fS f(X,eo») -
implies
ck+l = e s e = cp = O *

Let A be a kxk non-negative definite matrix whose elements are

- fs f(x’ ei)f(x’ eJ)
f(xseo)

Then it is shown by Takeuchi and Akahira [11] that under the condition

A
1J

du (i,j=l,o.|,k) .

(A.2.5.1)

a 2 1
To 180 “f(x, Bodan = vyl vy

!
holds, where y(k)=( Y1s +ee » Yy) 1is given in the above.

Therefore in this case the lower bound of the variance of the
unbiased estimator can be obtained by simply disregarding of
( Oppyr ooe o Bp), however, it should be noted that the lower

bound is not generally attained.
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