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Structure theory for sets in the plain with countable sections

=

By
Yutaka YASUDA
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Abstract

We develop structure theory for ;(;[3; sets in ww X Wy with
countable sections under the assumption of the projective determinacy
when it is needed. It is shown that several theorems of Luzin about
Borel and analytic seé%cannot be extended to -IEI sets. We also

n

generalize a Friedman’s theorem to T[;n+1 sets.



§0. Introduction.

Tanaka [39] extent several theorems of Luzin [24] about Borel

1
2n+l

and analytic sets in “w Y “w with countable sections to é
and %én;l sets respectively under the assumption of projective
determinacy. He also B%B that these theorems fail for H%m-l seds
and announced these also fail for T| ;m-l sets. Our main theme is to
complete structure theory for pro;j;:tive sets in ww * “w with |
countable sections under the assumptions of projective determinacy.
To this we prove that, among other things, every %%m—l set in
%5 X % with countable sections can be uniformized by the difference
of two g%rul sets, and there is a J[ %n+l set in ww' X %, with
countable sections which cannot covered by either countably many
E;n 2 or E;n+2 curves. We also generalize a Friedman’s theorem
as follows : There is an infinitely countable ]_[;rul set of reals
every member of which’except one is A ;n+2 real. We present several
applications df these results. Our proof methods are parametrization
of A ;n+1 reals by integers, uniformization theorem and higher-level
analoges of G6del’s L which are all cdﬁsequences of projective
determinacy.
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§1. Preliminaries.

We use in this paper standard terminology and notation in descripive
set theory, following in most inatances that of Mosehovakis’ monograph

27 . Our basic spaces will be ( , % (the reals, denoted by T,

in [27] ) and “2. (Product) spaces are of the form
I = xlx eoe X Xk,

where Xi 9 1£1i<k, is a basic space, members of these spaces are

called points and subsets of them pointseis or simply sets. Some-times

we think of them as predicates on the space ) and write interchangeably
for each x ¢ I
x ¢ P& P(x).
A-pointclass is a collection of pointsets, usually in all product spaces.
We will adhere to the following notational conventions throughout
this paper. Letters e, i, j, ky 1, my n denote always members of w,

dyBy¥s§ members of “w.

If " 1is a pointclass, we put

Y

M= {I - P s for some )Y and Pel” , PCcx},

call it the dual of [,

(r‘)l,u{PnQ:forsomeI,P,Q,PGPaQeﬁ9P,Q§x}9



call it the difference of two | ' pointsets, for each o
M) = {P : for some L and Q€ r', P(x) & Q(a, x)},

call it the relativization of r' to ol s and for each product space X,

MMxX-{rcx srecm)
After Kondd [20] for each x € X and P C Y x '\d
p<x? ={ye'H s P(x, y)} ’
and call it the section of P at x . We also call a partial function

s X —->y a curve and identify ¢ with its graph {(x, y) ¢

$(x) =y},

We shall be concerned in this paper the projective pointclasses 3
Zg = all open pointsets,

I’I._(l) = all closed pointsets,

Z}_ = { P € X s for some product space _ and some
]'[g pointset Q C 4, x XX , P(x)<& BOLVQ(O(, x)}.

s

In classical terminology these are the analytic sets or A-sets. Then
we let ]'[_i be the pointclass of all complements of Ei sets, i.e.
1 a1 '
Iy = 21 - «
Classicaly again these are known as the coanalytic sets or CA-sets.
Then we let

2;’ = { P : for some product space _| and some ]'[i
pointset Q C WXL , P(x)¢& T Qo x) }

(the classical PCA-set), and

AV
];[; = 2% (the classical CPCA-get),
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and in general inductively

1 1
gn”_ ={_P ¢ for some product space X and some En

pointset QC % x X , P(x)& FaAgd, 1)}’

1 21
I[n+1 = gm-l.

~

We also define the ambiguous pointclass

1 1 1
Q IEznf\],:[,n'

n ~

The class of projective sets is the union

[o 2]
U gl
n=o~.

It only remain to clarify the relationship between the Borel set

and Qi. According to a excellent theorem of Souslin [34]
The Borel sets = ’Avi',

i.e. the Borel sets coincide with the analytic~coanalytic ones.

We shall also be concerned the analytical pointclasses 3

‘Sg = all recursively enumerable pointsets,

0

Ity ’7-(1),

2% ={P:forsome X and 22 set Q C Y, x L

P(x) &S 3K Q(oly x)_}’

1 v 1
Iy =23

14

zi‘rl ={P ¢t for some ) and ]'[3; set Q C Y, x X
P(x) & o el 1)},
1 21
nn+1 = z"n+1,
1 1 1
An = Zln N I,

The class of analytical sets is the union

Y g%
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n=20
One can also define the effective analogs of the Borel sets, which

are known as hyperarthmetic (HYP) sets. Kleene’s theorem [18] (the

effective analog of Souslin’s theorem) assert that
ap - Al
1
What is the interrelationship between the classical and the

effective notions ? The key lies in the concept of relativigation,

introduced in Kleene [16].

We proceed exactly as before to define, for each real o, Z‘g(d.)
, T, i), T, ...

Here is now the precise relationship between the oclassical and

the (relativized) effective notiog :

~

0 0
£ - 0};‘%2 260,

0
1 . Y, ndw,

= d_% ww
21 - «\é'ww 2,0,

Ei = o\LZ-]“’wHi(d)’ etc.

Also for a function £ : [ —> 'H s T 1is continnuous if and only if
f 1is recursive in some real . Thus the effective .notions are

refinment of the classical onés. Note also the following facts. For each

n > 1 there is a Zl;' ‘set G in %“,x X vwhich is universal for
the 21 sets in ( , i.ec a et P C ) is Z‘l if and only if
~n - ~n

for some real o,

P = g<%,

Similarly for 22, ]’[g, zr];' Thus e.g. the Z‘i sets are just the

—b
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\\I/.
sections of the 2% set.)\(Addison [1] and Tugué).

Almost any proof in effective descriptive set theory involving
the absolute notions t recursiv, 22, I[(l), etc, relativizes immediately
to an arbitrary parameter o , by just "plugging-In" the parameter at
all appropriate places in the proof and so yields its relativized version.
In view of the previous explained relationship between the relativized
concepts and the classical ones, this maks clear that the effective
result immediately implies its classical version. In that sense effective
descriptive set theory is a strengthening of the classical one. And
usually the methods of the effective theory allow for much simpler and
elegant proofs.

vMany times now the formulation and proof of an effective result
involve concepts which are only meningful in the effective theory,
but nevertheless throw a lot of light to a related classical result.

For example, the classical perfect set theorem for Z,‘j. sets
asserts that a 'g‘,_:]l. set which contains no nonempty perfect subset
must be countable. Let us say that a real [ is A i‘(OL) if and only
if its graph {('ii, 3) + (1) = jj isin A i(d.). Denote by 191'(0(.)
the set of all A i(o(.) reals. Clearly )0 i(d,) is countable. We have

now the following basic result of effective descriptive set theory.

Theorem (Harrison [1I] ). Let A C %, be 'i‘,i(oc). If A

contains no nonémpty perfect set, then A C 191(0().

Thus not only we know that every 30 i(c() gset with no nonempty

perfect subset is countable, but we know what kind of members it contains,

namely only 10 i(OL) ones. Put in another way, we have a fixed countable
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set lOi(OO such that a necessary and sufficient condition for A &
Zi(d') to contain a nonempty perfect subset is +to contain at least
one elemeht not in it. So the fact that effective descriptive set
theory ocan develop a concept of classification of "complexity" of
individual reals (as for example being Ag, Ai, A;‘, ees) serves
to clarify oconsderably a c¢lassiocal situation. (Note that tize concept
of a real being Qg, Qi’, Q_;’, eee is trivial § every real is such.)

Finally, and very importantly, effective set theory provides
powerful methods for the solusion of problems of unddobtedly classical
character and contents, for which no classical type proofs are known
at present. A such example is Steel and Martin negative solutién of
one of Lﬁzin’s uniformization problems [24] : That is to say there is
a Zi set in “% X “%© which cannot be uniformized by the difference
of two 2;’. sets (see Moschovakis [273 4F.21] ). Also this is an
example of strongest negative solution for classical type problems,
sinoejgzgounter example is a light face Z‘i set.

As Lugin [25:[ predcted, the classical methods of descriptive
set theory are nof successful in solving non-trivial problems
concerning projective sets for levels begining with the third, and
sometimes for the second and even the first level. Powerful as they
are, the methods from logic and recursion theory cannot solve this
"difficulties of the theory of projective sets" , since they too
are restricted by the limitations of Zermelo-Fraenfel set teory. (

see Cohen [4] , Gddel [7] , Harrington [9, 10] ,Lévy [23] ).
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Since properties of definable sets can usually be established
effectively, without use of the full axiom of choice AC, we shall

work in set theory without the full axiom of choice. However, we shall

agssume a weak form of the axiom of choice. The reson is that in
descriptive set theory one frequently considers unions and intersections
of "countably many countable sets is countable". Thus we shall work,
throughout this paper, in set theory ZF + DC, where DC is the axiom

of dependent choices s

Axiom of dependent choices (DC). For every set of pairs P C

A X A from nonempty set A,
VxeAdyedAP(x, y) = If tw— AVn P(£(n), £(n+l).
Recall some consequences of DC @
(1) The countable axiom of choice.
(2) Every infinite set has a countable subset.
(3) The union of countably many countable sets is countable.

(4) A binary relation without infinite descending chains is wellfounded.
The full axiom of choice implies DC easily and Kechris [16] has

shown that DC is consistent with PD,

9
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For any pointeclass [' ,
Det(r’)

is an abbreviation for the assertion that all games in [' are

determined. In particular,

PD & V  Det( grll)

the n=0

is I jg_ro jective determinacye.

As stated in introduction, this paper is a sequel to well-known
classic book Luzin [25]. Its main purpose is to show how game theoretic
hypotheses, definable determinacy, can be used to natural extension of
Luzin’s theory of structual properties about Borel and analytic sets
in Wy x % with countable sections to higher level projective sets.

: 1 0 1 0 1 0 1
(For n=0, S5=%y» Mg=ITl7, Bg=2D; s0 Det( L) is

Just clopen determinacy which is provable in 2ZF + DC, thus no strong
hypothesis is being made in this case.)

Let [' ©be a pointclass, A a pointset. A norm on A »is a map
: A 5 X from Aonto an ordinal X. We call ¢ a ['-norm if the ’

two relations below
x<tyeoxeda (9(x) <9y,

x <§ey¢¢x e A & (9(x) < %(y))

are in [ where we put 9()’) = an ordinal bigger than sup {9(::) :
b ' A} g for all y ¢A. Finally we say that [' 4is normed if and only
if every pointsets in [|' admts a [ -norm.
-1 1 .
The pointclasses “2n+1’ 22n+2 are normed (First Periodcity
Theorem ; Moschovakis [27 3 6B. 1]). Some corollaries of this fact

are the following :

—f O
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1l 1l . 1 1
(1) Mope1 (22n+2) satisfy reduction and Fp ., (H2n+2) satisfy

separetion (Moschovakis [29; 4B.10-11] ).

(2) The number uniformization theorem for T[;n+1’ i.e. if P(x, n)

1 1
is -n2n+1 there is P*¥(x, n) in JU, ,, such that

P* C P
and

3n P(xy n) & 3! n P¥(x, n)

(Moschovakis [29; 4B.4]).

1

1
oney Teals and m2n+1(d') the

1
(3) Let L92n+1 denote the set of A

relativized notion, i.e.

Belol (0&BeAl (0.

Then there are partial functions 1 t wr¥% ¥xw->w and c s W ® W,

—> W with n%m-l graphs such that
Beldl , 00 e Vi (1) = dle, &, 1)),

(ps o) € dom(g) &> R0 Z (),

1
for Bel‘)zn+

1(e0)
Vi (d(e(py )y oty 1) = 3(1)),

1
and the relatons "(3(i) = d(e,cl, 1)* and "e = 2([3, ol)" are A onel ?

unifornly on (e, o, i) € dom(d) and (py &) edom(c) respectively,
i.e. 4 for example, there are Q, R in Z‘%xul’ n;rul respectively

, such that for (e,ol, i) E:dom(g)

(’)(i‘) = g(ea oLy 1) <> Qe, oy 1, [3) & R(ey oy 1, (3)

-f/-
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(Moschovakis [293 4D.2, 4D.5, 4D.15 and 6B.2]).

(4) The bounded quantification theorem for n;ml’ i.e. for each

P(dy By x) in I[éml the pointset
R(py x) 4> Jae 03, ,, () Py By )

is also in T[]2.n+1 (Moschovakis [293 4D.3 and 6B.2] ). In particular

the relation

Pea §n+1(°0

1l
is Il 2n+1’

Harrington [10] has shown that "First Periodicity Theorem" is
consistent with 2ZF + DCI%J its all consequences, e.g. (1)-(4), are
consistent with ZF .« DC. + I, where I 1is the statment which say there
is an inccessible cardinal.

Again let [ ©be a pointclass and A a pointset. A scale on
A is a sequence @ = {§ ]} of norms on A such that

(1) 1f x;, €4 1=0,1, . and x, > X
and

(ii) For each n, and for all large enough i

?n(xi) = constant = A,

then x € A and Qn(x) ézn. We call {g:n} a ['-scale if the pointsets

R(n, x, y)e x ¢ ¥ ¥,
n

*
S(n, x, Y)@)I(?ny
are in [' . We say that [’ is scaled if every A € [7 admits a
r‘-scale.

-)2=-
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The pointclasses ]'[;'m_l, Z;m_z are scaled (Second Periodicity

Theorem 3 Moschovakis [29; 6C.3]). Some corollaries of this fact are

the following @

(1) The uniformization theorem for n;ru-l’ i.e. if P(x, y) 1is
H%n-:»l there is P*(x, y) in ]'[;n+1 such that

P*C P
and

Iy P(x, y) & ! y P*(x, y)

(Moschovakis [293 6C.57 ).

. 1 R 1
(2) The basis theorem for Lopsoe ieee every nonempty 22n+2 set

contains a A ;n+2 real (Moschovakis [293 6C.6] ).
We turn now to definability estimates for winning strategies.

The basic theorem here is the Third Periodicity Theorem (Moschovakis

[29; 6E.1]), which asserts that in every Zén game in which l;layer
I has a winning strategy, he actually has a A ;'n+1 winning strategy.
We shall also use the following consequences of this result :

(1) The Spectof-Gandy Theorem for I[%m-l’ which asserts that every

‘H;rul pointset P(x) can be written as
1
P(x) & Bo(ﬁlozm_l()() R(«, x) ,
for some R in H;n (Moschovakis [293 6E.7] ).
(2) Every thin (i.e. containing no nonempty perfect subset) Z%m-l

set contains only A§n+l reals (so in particular is countable).

Also every nonempty A;nwtl thin set A ecan be written as

{(E)n s n e_w_} for some A :21n+1 redl £ (Moschovakis [293 6E.5]).

-j3=-
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§2. The uniformization of 2 ;m-l sets with countable sections.

We assume in this section Det( ézzln).

Theorem 2.1. (Yasuda [43, 45] ). BEvery E%n-l-l set in “w x “w
s
with countable section]can be uniformized by a (Z‘%rwl)f set.
Proof. Let P be a z‘;xnl set in % x % with countable

15 G
sections. Since for each d P<°(>,t"EEfn 2;’n+1(0() set,

2n+

Let P* define by
P*(oly B) & Pla, ) & VYV (R(L,Y) = o, o) < (¥, 4))s
vhere < is the usual wellordering on @ . Then we have
P* C P,
and
IBP(y B) & F1p P, (B)e

Thus P*¥ uniformizes P, and from our definiton of P¥* it is clealy
1
(Z2n+1)f set. [

From this theorem, using the remarks in preliminaries, we have

Corollary 2.2. Every 2%n+1 set in “wx % with countable

sections can be uniformized by a (Z;m-l)f set. a

..,4_..



Theorem 2.3. (Yasuda [45] ). There is a 221n+1 set P in
“x“  with the properties :
(1) PFor each o P “*> igs nonempty and has at most two elements,
1l 1
(ii) P cannot be uniformized by either a ’2\_21_“_1 or a L[Zn+1 set.
Proof. Let G be a 3, én+1 set in PwrYw* Yw  ynioh is

universal for all 3, 1 sets in Yy, * Yo and Q define by

2 2n+l
Qoly e) & VE(G(loty B) = Vi ((1) = d(e, a,y 1))).

Since Q is a H;ml set in “w* W, using the number uniformization

1

%
on+1 set Q¥ which uniformigzes Q. Now let

theorem we can find a ][

R define by
R(dy B) & e (a*(oy-e) & Vi (i) = d(e, oy 1))).

Them R is a H%n+l set whose each section bhas at most one A ;m-l(d’)

real as an elements. The following is clear from the properties of R.

Fact. For each X, if G<°(’0(‘> contains just one element the?

G<0(, [+ 93 - R<o(>.

Finally, put
P, 3)s (Vi (p(i) =0) V Vi (p(1) = 1)) & T1R(,[3) .

1 <>
Then P is 2|,  , and for each o P is nonempty and at most
two elements. We will show that P _satisfies (ii). et A be a
Z;m-l subset of P which is the graph of a partial function from
@, into “w . Then there is a real OCO such that

A = 6%,

Y -
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Since 1140(0> has at most one element, if A<°(‘o> is nonempty then by

the fact
R R(¢o>.
But
A<o(<,> c P(o(o> c @ R(o(o> .

We must have A<%> is empty. Thus A<%¢> is the empty set. This

means P cannot be uniformized by a 2. 1 set. Now suppose that

~ 2n+1
P can be uniformized by a H;ml set C. Then for some real &
1
2n+l

c(d, B) & H‘Ie.LO%ml(o(,é‘)(c(o{, Y) & ¥£ B).

C is in I[ (§) and we have

By the bounded quantification theorem, this equivalence shows that
Tl . 1

the complement of C is also [l 2n+1(é\), je@e C is é2n+l' Thus

it is a Z %ru»l uniformizator for P , so we have a contradiction.

Therefor P also cannot be uniformized by a [ -%n+1 set. |
orollary 2.4. There is a > onep S0t in WX Tw  with

countable sections which cannot be uniformized by either a ?\L;n e
1

or a E 2ns1  SOte (|

Corollary 2.5. There is a X 1 set in “’wx‘"w which

< 2n+l

cannot uniformized by either a z\;m-l or a H;’m_l set. 0

(e

Let D define by
D =fols R(d, An (01 ) V R(ey AnC11)},

and C* by
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C*(dy 3) &> oAeD & ((RGAn[0]) & B =2An[1]) V (R(d, Ari (11) &
B=anC01)). |
Then D and C* are H%n+1 and C* is a partial function which is

contained in P. Now put
P*(y 3) &> (e D & C*(d, B)) V (A¢ D& B= An [0]).

Then P* uniformizes P, and it is the sum of a 3! ;m-l and a JL ;xul

sets.

Problem. Is there a Z;ru-l set in “w*x% with countable

sections which cannot be uniformized by the sum of a 2 1 and
~ 2n+l
1 .
a ]’I on+l sets ?
For this problem we have no answer at present, but a related

result for n = O.

Theorem 2‘,.6, (Tanaka [39] for n = 0 )e There is an uncountable
Eéml set in “2 with no nonempty Hlém-l subsets,.
Proof. Let G be a H%n-l-l set in @ x °2 which is wniversal
for all I ;m_l sets in 2. By the wniformization theorem for
1 1l A . w .
H2n+1’ we can find a T[2n+1 set G¥ in w x “2 which uniformizes

Ge Put
Qo) & de G*(e,)e
Then Q is a I'[;n +1 set and intersects with every nonempty H;n-i-l

set in Y2, therefor the complement A =2 —Q isa I ;n«i-l set

_/7_



and it contains no nonempty ]T;m_l subsets. O

((Cenzer and Mauldin [4]); ) y
Theorem 2_.7,IFor each uncountable Z\l set A in T2, we can

find a nonempty perfect subset A*¥ of A which is also 2}‘. -

-8 -
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Corollary 2..10. There is a perfeoct Polish space D which is a
21 set in %2 with no nonempty H_i subsets.

Proof. Let A be an uncountable Z‘i set with the properties
as in theorem .6. Then ,using theorem 2.7 , we can find a nonempty
perfect 2, 1‘ subset D of A. Clealy D is a perfect Polish space,

since D has a couﬁtable base
y KW
{Hs NnD:ase? },
where

L -{o(ewZ s o([‘the length of s = 3} . O

Theorem %.11e There is a Zi set .P in 2 x*2 with the
following properties @

(1) For each real d., P<* has at most two reals as elements.
(i1) P cannot be uniformized by a ;]_i set.
(iii) P contains no nonempty T[;' curves.

Proof. Let D be a perfect Polish space as in corollary 2.10,
and f 1 D — Wy g Borel isomorphism (we cannot find such f which
is A i isomorphism, since if such f exists then D must contains
nonempty Hi sets)y and G a Zi set in “2 x "2 x®> whioh is
wniversal for all 2% sets in “2 x “2, We c&rﬁefine a nevw univasal

~

-} q;.-
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set G' for all 3] sets in “2 x“2 by
C*(dy Py 1) &> AeD & G(£(x), By ¥)e

Since D is Z‘% and f is a Borel function, G' is a Z.'i in

Wy x Wo i Wo 4 then we use this G¢"* as G in the proof of theorem 2.3. L]

From this theorem, using a Ai isomorphism between two spaces

ww s We have

w2 and
Corollary 2.12. There is a Zi set in Q’w % “'w with countable

sections which cannot be uniformized by the sumiof a 3! i and a _'['[i

sets. O

The same reason as befor the set P in theorem 2.11 can be

uniformized by the sum of a Z‘:]L_ and a I.\[, i sets. We do not know

~

at present whether corollary 2.12 can be extended to Z';m»l set ,

(a3

where n> 0 .

Note in the proof of theorem ..7 we really used the fact that

C is T[°

1 only to prove that the game G* is determined. Thus

we have
& 1

1
Thbrem %.13. If Det(ﬂmﬂ) then every uncountable Z‘Qm_z

set in 2 has a nonempty Z‘zr11+3 perfect subset. ]

-2
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§3. On the partial [} functions from “w inte % .

Luzin [26] proved that every analytic curve can be extended
to a Borel curve. We assume that Det(é\v;n) holds in this section.
Under this assumpution, Tanaka [42] extend this Luzin’s result as

follows.

Theorem 3.1. (Tanaka [26] ). Every E%ru-l partial function

w R w x 1l
from w inte W carﬂ‘?e extended to a A2n+1 function. a

From this, using the notion of relativization, we have

Corollary 3:'.2. Every 2§n+1 partial function from “w into

Wo can be extended to a A ;‘ function. O
~ 2n+1

Now we show that these results do not hold for ﬂ;‘n 4, and

2! ;n+2 partial functions in thestrongest form.

Lemma §.3. Let [' be an analytical pointolass, and G a

' pointset in Ywx “w X “w which is universal for all [’ sets
in “ux % s and put
D= {(cfy p) * G(d Ay P}«
\J w w
Then D cannot be embedded in a {: set P in “w X “w with the
property s for each o

‘P<d>fw .

-2 -
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Proof. Assume, inkrder to obtain a contradiction, that there

isa [' set P in %, x %, such that

o

DcC P
and for each ¢

Now consider the .,I: set Q = (¥, x%) — P . Since Q is f:/

there is a real o(,0 suh that

‘Q = ¢ <%,

D<d°>" {ﬁ’ G(%y doy B)} = Q<0(°’>
80 We have
Q<°(°>= ¢ .

But Q.<°(°> is not empty since P <&o> is not equal to ww e Thus

we have a contradiction, so the lemma is proved. (|

Theorem 3.4. (i) There is a partial H%rul ~function from

“o into Yw which cannot be extended to: & A;’ function.
~2n+1

(ii) There is a partial 2;n+ function from %y, into %, which

1 s
cannot be extended to a A2n+2 f#unction.

s
1 1 1
Proof. Let |7 be —T[2n+1( 22n+2) and & a partial T[‘zn+1
(S ) function from %w into YW which uniformizes the [ -
§;2n+2 unction m n 1L2n+l
(Z’%m_z) set D in the lemma 3.3, we can find such function using
1 1 : -
the uniformization theorem for J[ 2n+1( 22n+2)' By lemma 3.3, <

1 1
cannot be extended to Q2n+1(4\,2n+2) function. ]

w22
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We have also

. w N
Theorem 3.5, There is a total ][%rwl function from w into

w, . 1
w which is not 4 ont1®

To prove this we need first

Lemma 3.6. There is a T[ ;n set P in Wy X ww such that

(1) Yo IR P(d, B),
(11) Vo 13 Bel; , () 2@, R).

Proof. Since lg;nﬂ_(d) is H%ﬁi—l s there is a H;n set

R in Wux%wX%y such that
RE 03,1 <> TyR(h @5 ¥)-
Put
P(os ) <> R(dy (R)ys ();)
Then P is ][, and since
Va3 RIYRA B 7))
VX IBP, ().
Since if
a3 Bel0;,, ) P p)
then for some real o and A ;ml(o() real [}
Ry (Rgs (P)y)s
so (p), isnot A %ml(oo real. This contradiction shows

v 13 Be 03, (@) P, (). O

23



Proof of theorem 3.5. Let P be as in lemma 3.6. By the
1 1
uniformization theorem for J[; ., we can find a J[, ., set P*
whioch uniformizes P. By lemma 3.6 (i), P* is a total function.
Assume, in order to obtain a contradiction, that P* is A ;n+1'

Then for some real o(o P* is in A %n-t-l(do)' Thus there is just

1
one A 2n4’1(0(0) real (3, such that

P*(kys By)-

This implies
Va3 Belny @) B, ).

But this formula contradicts with the lemma 3.6 (ii). O

Theorem 3.5 can be extended to even levels using Moschovakis’
models M2n+2(d.) which is the smallest Z':ztn+2—correct standard model
of ZFC containing all ordinals and real A.. We also need the sharp
operation for these models (for detafled theory of these models

and its sharps , the reader consalts Becker £3]).

For alld
Lemma 3.7.(Becker [3] ). Assuming i wwq#n+2(d') is countable,

‘the real o(gfl +2/\Lixii_st%the relation
n+2
M

¢ (a) #

P(dA, B)@ B=d2n+2
is nén+2’ and

Yo 3! BP(A, 3). O

_2{'@.
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Lemma 3.7. If [} is A%n+2(d) real, then [3 is in M2n+2(0(.).

Proof. Let [ be a A;mz(oc) real. Then
(3(1) = § & P(4, j), where P is fz:éme(ot)
& W)k p(1, ).
Since

2L 3X (Rewxw & Vi ¥i ((4, 3) € X & P(1,1))),

ZF + V = M
W2) b IX (XCwyw & ¥y ¥ ((4, j) € X <>P(4, 3))).
This implies that theve is a set X in MP*2(o) such that
XC wrxw,
and for each i, j
W22) k (1, 3) € XS P(L, ),
so by the Z‘%mz correctness of M"T2(d)
(1, 3) € x & ¥ |k (1, 3)
& P(i, J)
S K1) = 3.

Thus X = [ and hence [3€& M2n+2(d.). O

Corollary 3.8. Assuming “bn e n"'2(0(.) is countable, dziz
1
is not in A 2n+2(0(). O

Theorem 3 «9. Assume that for all o M2n+2(0()n “o is countable.
Then there is a total ]T;n +2 function form ww into w‘U which is
: 1
not in é 2n+20
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Proof. Consider the P in the lemma 3.7 which is a total
1 w w 1
1'[2n+2 function from ~W into W . Suppose that P#is in é2n+..’
1
so for some real [y P is in A2n+il(d0). Then do ons1 18 An

1
A 2n+;'.(d0)' This contradicts with corollary 3.8. O

Remark. Det(E;n;Fé) implies ww(\ M2n+2(0() is countable

(see Becker [3] ).

Luzin [26] proved the so-called "Théordme sur la projection
d’ensemble d’unioité" . This says that let { be a Borel set in
w o, w '
wX“w and | denote the set of all points (A, (3) of &
such that the section E <> congists of a single point . Further,

let E, be the projection of & 1' on the first axis

1

E, = Proj 81.

Luzin ocalled 81 "1’ensemble d’unicité" of 8 y and showed
that both 81 and E, are ]’I% sets. Tugué and Tanaka [43]
obtained the effective version of this classical fact énd also‘ proved
this classical fact from its eff ctive version.

We will extend these facts to higher levels of projective sets.

Theorem 3.10. (Tugué and Tanaka [43] for n = O). For each

A§n+1 set B in “u X “ the pointset

PA) & 3! BB, )

is also in Hém-l'

28 -
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Proof. As is well known
(*) 3! BB, B) =B is a Z’éml(o{) singlton
= B0y, () B(a 3).

Since, by the baunded quantification theorem, 386)9%:&1(00 By 3)

is H;n-&-l' from (*) we have
31 BBy B} <> T 0, () Bl B) & VB @ (Bloh ()
& Bldy R') = B=¥)e

This shows.that P is T[;n-a-l' |

Corollary 3.1l. (Tugué and Tanaka [43] for n =0 ). For each

1 w w
é2n+1 set B in “wX™w the pointset

R(cd) <> 3J! pBldy 3)

is also in H%xﬂl’ B

Let & and El be the sets in Y X “ defined as follows.

(o R ET <> Bldy P)
and ,
Oy Ple T& @ el & Vi ((d ple &= B=p30)-
stnce ¢ is Aj s &y is Igge stace
deE & T p((d, R)E E),
we have
A &E; & R(A),

1
so E1 is also E2n+1’

-3



(cby PP oAeD & B= (Y.

Then § is a zéml partial function _from ww into ww s but

. 1
whose domain D is not in é2n+l.

Finally, we notice that every partial A]2.n+1

Wy into %, can be extended to a total A %nﬁl function.

function from

)
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Corollary 3.12., (Luzin [26] , Tugué and Tanaka [43] ). Let B

be a é\.;rnl set in W W X%y such that

I RB(dfy B) = 3! 3 B(d, [3).

Then IRB(ofy ) is also in A;‘n”_. J

Corollary 3.13. (Tanaka [42] ). The domain of & A, .
s . 73] w . 1
partial functiqn i t “w—> e is also A2n+1'
Proof. In theorem 3.1l or corollary 3.12 set B =& . Then

Dom(F) =R isin Ay .. [J

This corollary 3.13 does not hold for A:2Ln+2 partial functions.

Theorem 3.14. There is a partial H;rul function &+ Y — Yy

1
whose domain is-not in Q on+2°

Proof. lLet D be a set in wa) such that

1 1
D e 22n+2 - é2n+2
By the wniformigation theorem, we can find a H;n-bl partial function

¢ s Y % such that

dom(§) = D. O

Cleary this theorem 3.14 holds for Z %n+l partial functions.

Let D be a set in Yy as follows
1
D €2, :

2ni+I ~  *2n+l.

Let (3 be a fixed recursive real, and put

~2f-
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%4. On the ﬂ'i pointsets in %, x %, with countable sections.

Lad

One of well known theorems of Luzin is

Theorem 4.1. (Luzin [26] ). Every Ai set in wa)x “W with

countable sections is the union of countably many Q i curves. ||
From this he also obtained

Corollary 4.2. (Luzin [26] ). Every zi set in ‘Yo X % with

countable sections is the union of countably many Zi curves. d

Effective versions and extentions of these results are obtained

by Kondd [23] and Tanaka [42] . We assume from now on Det( é;‘n) holds.

Theorem 4+3. (Kond8 [23] for n = 0, Tanaka [42] ). For every
A;nq-l set P in wcu X W with countable sections, we can find a
A%n+1 set P* in Wx % X “w such that for each n and ol

pTed> has at most ome element and

P(L, B) &> Jn P*(n, A, [3). (|

Corollary 4.4. (Kondd [23] for n = 0, Tanaka [42] ). For every
Z';'m_l set P in Yu x"w with countable sections, we can find a
E‘Iém-l set P* in wx Ywux%®w such that for each n and o

pF¥™M X>  pag at most one element and

P(cly B) <> dn P*(n, o,y 3). O



38

Then Luzin [26] proposed the question

Does every 'ﬂ:i set in Y X% can be covered by countably

many ]:[vi curves ?

A negative answer of this and its effective analoge are obtained

by Tanaka [42] « Here we shall show

1 1
Theorem 4.5. Assume that Det( 22114-.1)' Then there is a ]—[2n+1
set in Y x%w with countable sections which canno%:eéoveréd by either
countably many 2%1'14-2 or ]'[%n 4p Curves.
1 . w, .
Proofs Let G be a 22n+1 set in w x “w X W whic is universal
for all Z;n +1(®%) sets in w for each real ol, and for each e
and o Pé o the characteristic function of the set G<®*%> in w,
b4

ey 0> 1
Since for each e and of G- is Z‘zm_z(o(), the real ﬁe,o(, is

i (Tppeo@)p » Put

P={(chB)s Fe(B=p, o)}

is |
We want to prove that the set P\/[)really Z;n#l;' To this we need

the following results of Kechris and Moschovakis (for details see Kechris
2] ).

Theorem 4.6. (Solovay [36] for n = 0, Kechris and Moschovakis
[13] ). Assume that Det( Z’;n +1) bolds. Then for each real ol

(1) There is a lagest thin (not containing nonempty perfect subsets)
1
]—[‘Zm-l(d) set of reals 02n+1(o(_). (For n = 0, this is also due

independently to Sacks [30] ).

-3 -
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(11) 1If
Coppolel) = { B+ 3yeCy () (3 is recursive in ¥ )_},

1
then 02n+2(°0 is a 22n+2(°(') set containing all thin Z;‘lﬂz(d) sets.

(1ii) C2n+2(°(') is the largest countable 2;n+2(0() sete. |

We say that for each real ¢/ a wellordering < ot on a pointset

A is A (0)-good, where ([7(A) is a pointolass and
A = )N (e,
if and only if for each real (3¢ 4
{7 74043} is countable
and the relation
mseq . (1,3) ={ s new}- & £<,. 6}
isin A(d) for 3 c4, iees for @ R in [0 [ (o) respectively

>€ 4 = (InSeq - (s By, 3)> R(Y, (3)).
(8

Theorem 4.T. (Kechris {12, 151 ). Assume that Det(Z;m_l) for

1 . .
n>1l., 02n+2(°(’) admits a 22n+2(00-good wellordermgirhich has

an+2
the property : 40(

B <EM2 ¥ 2 peng,, ol 1) O

_))2—
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lemma 4.9. The set {(o(,‘() s Y€ D2n+2(0()} is in Zl%n+2
| S
Proof. This is clear from 3 on+ ~goodness of wellordering ~
<2 and the detinition of DME(w). O

Lemma. 4,10, If Y is in D2n+2(00 and for each Aén,,g("o

real [»
2n+2
B.<¢n Y’
then for each e

14
{39’ A = ,39, «’
Proof. Since Y is in 02n+2(00’ it is sufficient to show that
on+2 <2n+2r
(*) ‘ EM((% e, K, i) & 3B<¢ (¢ & (B’ e, 0, i)e
Suppose that 3(}{5((3, ey 0ly i)e Then 2;n+1(0() set {(3: B(3y e, o

i)_} is nonempty. By the basis theorem for 2;‘1“_2 , there is a
A_\%mz(d) real {30 such that

(%*) ¢((3°7 ey X, i).

Since ¥ is in D2n+2(00 and Bo<in+2~(, by (**)

2n+2
By <222 <K T, oy 0l 1)

Thus we have

2n+2

3(54?+2)’¢<'* r(ﬂ’ e, &, i)e

prove . 2n+2
To)right to left implication of (*), suppose that 3(3(;” 7 #(

2
Ry, e, i)e Since Y is in p2n+ (), we have

3 ﬁ¢(r51 e, oly i).

So we have proved the formula (*). [

-73-



Lemma 4.11. There is a real ¢ in C, ,0(%) such that
2n+2 Y 1, 2n+2
(1) L () & "For each (22n+2(0())f’ real 3, B [y w,

2n+2

(11) L1*Z(@) k * 7€ D22,

Proof. Nowwwe work in the model L°™*2(ol), Let J be the

<ff+2—least real such that for all real [

B.<in+2f = fle J_O;ng(o().

1
(i) Suppose that there is a ( Z‘zm_z(o())f, real [, such that

2n+2
OBV

Then
2n+2
V<o 0BV y=f
So Y isa A ;’n+3(o(_) real. This contradicts with our choice of { .

(i1) This can be proved by the induction on the construction of the

1 |
H2 n+l formula @. Let ‘7// be a zfn formula such that

Yoy (& [ ey &y 1) SH(By ey X 1)
Suppose that
(*) VRSN BT (6 By o b D P& B o % 1),
We must show that for all f3<2£+2{ ’
2n+2
(**) V&<2:+2 r(/‘<d f(é" [ ey o i) <=>Vcﬂf (& By €5 (s 1)e
To prove from le>f1: to right of formula (**), suppose that
—YSY(Ss By e Ay i)e Then LY (dH By ey Ky i) Since the
Z;m-z set {CS‘ : (-,L (dy Py ey &, i)} isbnonempty, by the basis theorem

for 2;n+2 there}s a A%n+2(°0 real d), such that

1 ‘f‘((g\os [3s ey & i),

I.e.

-394,.. '
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2n+2 .
36\<¢ r "'ISL(CS (3 9)0(9 i)e
Thus we have a contradiction. This prove that the left to right implication
of (**)..¥Using (*) from the right to the left of (**) is clear.

Therefor (ii) is proved. O

Lemma 4.12. For each o there is a Y such that

(1) Ve D™*3(q).
| (i1) If f is a (zémz(o())/; real, then [3<ﬁ“+2f .

Proof. Since the model L2n+2UX) is jﬁ%n+2-absolute, by

lemmas 4.9 and 4.11 (i) and (ii) are clear. —

Lemma 4.13. .The following equality holdse

2n+2 2n+2
Paf(d () s Te Iy(ver™w & p<EPra p-pl o)
Proof. To prove the inclusion from the left to the right, let

P(dly 3)e Then there is an e such that

ﬁa{}e’a.
By lemma 4.12 there is a 7 such that

r e D2n+2(o()

and
2n+2
B<°(n+ J/-
By lemma 4.10
y
/5 ==/33, .’
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Conversely let (o, (3) be such that

2n+2 2n+2

Jo  Iv(ver™@) & By & p=pl ).

I. for each A;m_z(d\) real £,
2n+2
&< r .
Then by lemma 4.10
PGy )

If there is a A ;n+2(o() real d" such that

n+2
‘16\‘<¢é+ '

e
then, since the absolu%ess of the A ;mz(o() reals € 02n+2(o(),
2n+2
Yy &V T=&

Thus

2n+2

<. o
1
Therefore (3 is a A2n+2(oo real. Since [3(= ﬁe,r x ) is the
characteristic function of the Z;’n_’_z(O() set {i s (3(1) = 1‘} ’

we have

P(As 3. (]

Lemma 4.14. The set P has the following préperties s
(1) For each & P<*> ig countable. ‘
(ii) fThere is no countable family of Z.;m-Z curves whose union
contains P,
(i1i) There is no o‘bunta.ﬁle family of ]l;n+2 curves whose union

contains P.

—.j'b‘_
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onl y
’ 4
Proof. (i) Since for each (. there are)\countably nany

Z;m_z(o() gets in w , P <2 is countable.
(ii) Assume, in order to obtain a contradiction, that there is a
countable family f{ Pl of Z;ns\Z ourves such that

rc M »p
m=20

Take a real o(o and a set S in (O as follows :
1
Vo (P, € 2 on42(00))s

and

S € Diniol®) — &zp2(0)

Let [30 be the characteristic function of the set S. Then

P(oys (3)s

so there is a my such that

Pmo(o(o, (%)
Since P is a ourve, B, is1in zémz(o()), so (3 isa

(6]
A;n+2(o(o) real. The set S is written as

s={1:3(1) - 1},

. 1 .
S is in A 2n+2(0(0). This contradicts with our choice of S .

To prove lemma 4.14, (iii) we need the following lemma.

*> thich is not ]'[%mz(o()

Lemma 4.16. There is a (3 in p<
singleton, i.e. {B‘; is in ‘ﬂ_;m_z(oo.
Proof. Since P<* is Zém_z(ot) and {{l s {(?}G ]'[%n+2(o() }

is in ]-[;n+3(0() — 2§n+3(009 |
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4 {0 (B TLg, (o0& Pt p)} G25°2 (T

Proof of lemma 4.14, (iii). Suppose that there is a countable

1
family {Pma of 11‘2n+2 curves such that

pc U p.

= m=0"m
Then there is a o(o such that
1l
Vo (P, € IL 5,,(00)).

By lemma 4.16, there is a BO in P <% which is not ]'[;'n+2(0€’)

singleton. Since

P(chs )

there is a By such thst

Py (0 o)

1 1
Sigce 1"mo is a .H2n+2(%) curve, [30 is a R2n+2(08) singleton.
Thus we have a contradictione. C

Let h t @, x%,—3 W, be a recursive homeomorpism and for i=o,1

hi H “,j, -9ww recursive functions such that for each ’

h(h (), b, @0)) =K.

By the uniformization theorem there is a ]—[ém_l set P¥ in

Wy %%, * Wy such that
dom(P*) = P

and

Vo, 6 (P*(dy 3,0 ) & P*(dy By ¥') > ¥ = ).

-38 -
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Put

poe = {(cy BB 1)+ P*(0 3y N}
We will show tha.t the Hé +1 set P** cannot covered by either

countably many 22n+2 or ]T2 4o ourves.
Suppose that there is countably many 22n+2 curves {P 1

such that

Take O(o such that

Vm (Pm € 2%:14—2(0(0))

and, take (3; in W3  such that

By € (Tpa2(0))p — A2ni2(%)
and
P(0ys [3g) -

Let Yo be a real such that

P**(ofysb( s Yo))-
such that

P;. (chys BBy 7))
s0 h((}) Yo) is a Azmz(%) real. By the substitusion property
(see Moschovakis [29] ) (% =h (h((% Y) isa A 2n+2(oQ)) real.

This ,contradl.cts with our choice of (30

Then there is a :»fmo

Now suppose that there is countably many ]T ope2 CUTVeS (Pin-}

such that

-37,.
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Take 0(0 such that
1
\/m (Pm & n2n+2(d0)) ’
and take (}0 such that

but (30 is not H;’n_‘_z(%) singleton (by lemma 4.16 such a BO

exists). Let Yo, be a real such that
P¥*(0hyy b([3)s fo))o

Then there is a m such that

0
Pmo(%, h((3y» Yo)),
so  h(f3,, YO) isa T ]2'n+2(0(0) singleton. By the subustitusion
property BO = hlfh((%), b’o)) is also H%m—Z(%) singleton. This
contradicts with our choice of Bo.' Therefor the proof of theorem 4.5

is completed. []

Since by theorem 4.1 every T[;n+1’ 2! ;n+2 and JT-;m-Z set in

Wy » Wey with countable sections can be covered by countably many
A;m_ 3 ourves, theorem 4.5 is the best possible extension of theorem

II.7 of Tanaka [42] .
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85+ A generalization of a Friedman’s theorem.

Friedman proved the following theorem.

| Theorem 5.1. (See Mathais [28 § T3210J ). There is an infinitely
countable T[i' set of reals every member of which except one is A;‘
real .
Using the method developed in §4, we shall prove the following

generalization of theorem Sele

Theorem 5.2. Assume that Det( 2;n+1) for n > O. There is
an infinitely countable H%n 41 Set of reals every member of which
except one 1is A;’n+2 real.

Proofe Let G be a ng_z set in (uxw which is universal

1

for all 22n+2

sets in W, # a I[%n+1 formula such that

3 BA(B 1) & G(4, 1).
(fr 1) be the 53 , formula which is obtaind from the
formula @((3, i) by replacéng quantifiers V4 , I& in # by
Vv &<2n+2f ’ 35’4&“2{ respectively, where <2n+2 is a
}:;m_z-good wellordering on Czn+2 such that

n E25 = ped pga()

Lemma 5.3. There is a real Y such that if f3 is a A;m-a

real then

B <2n+2(.

-] -
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Proof is similar one of lemma 4.12. (|

1

2n+0. real then

Lemma 5.4. Let Y be such that if [} is a A

Bf"*zr . Then following formula holds.

2n+2
IpAR, 1) & IB<Pey g < T, 1).

Proof is ‘Similar one of lemma 4.ljof lemma:#s10: [

Put ’
p=feéd s Vi(g(1) =1 < 3p<®ig <227 1))},

Then A is 13 . Since the set {1t G(i, 1)} isin S ., —

1 . . 1 1
A2n‘+2’ its characteristic function ¢* is in (22n+2) P A2n+2.

By lemmas 5.3, 5.4, there is a real Y such that

e*(1) = 1 & 6(4, 1)
& 3B, 1)
.-<_—_> aﬂ<2n+2Y¢,<

Thus ¢* is in A. By the basis theorem for Z;n+2 s A must have
infinitely many A%n+2 reals. Let YO be the smallest real such that

> Eigémz = B<2n+2 o

(such a'oexsists by lemma 5.3). Then, by lemma 5.4 , if {o 42n+2

’
2n+2
<2< T (p 1) > ACHE,:1)

Since ¢* is in A%n+3 y YO £2n+2£* . Clearly between b’o and
£* +there is no elements of A .
RO ¥
' JDROUD DD -
In this interval, In this interval, there

is only one element of

there is no eleme- A , i.e. the real ¢*

nt of A

-2
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Let 4% bea [lp,, setin Yo ¥ % such that
dom(A*) = A
and
¥ By 1 (8%, B) & £¥%( ') > =)
by the uniformigation theorem such A* can be finded). Nm_f put
AX® = h(A*),

where h is a recursive homeomorphism from o, % %w onto %o Let

/& be the unique real such that
A*(‘é,*y {5*)-
Since §* is (Z‘l o — AL is :a AL — Al real
2n+2’P ons2r (5 18 2n+3 2n32 ’
so is h(¢*, 2*) which is in A%¥*,

A¥*(ol) &~ £ h(g*, *) = Be+# ¢¥ I (K=h(g, B) &
A%(E, ) & A(2))
Sdel0] ..

Thus the T[%m-l set A%* has just one non-ﬁg,'n"_2 real h( g%, 3*)

and other members of A¥* are all A ;n+2 reals. Therefor theorem

5.2 1is proved. [
From this theorem we have

Corollary 5.5. Effective perfect set theorem for 2;n+2 faile O

—43 -



Finally, we state one more theorem which is essentially included

in the theorem 4.5, but it is interrested itself.

Theorem 5.6. Assume that Det( Z‘%'m_l). Then there is a T[%n+1

set in Ww which contains at least one non I[% n+2 singleton real.

Proof. Let G be a 2%n+2 set in WX W which is univarsal

for all Z%n+2 setgs in W . Now put
A={ee®2 + 3o i (5(1) =1 alo, 1)},

Then appling the proof method of theorem 4.5 to the set A using the

fact

ghlee 2 o {elelT] ,, & SeA}.ﬁs A O

-Gl
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§6 o Enumerability.

We begin an application of theorem 5.2 to the problem of effective
enumerability of countable projective sets of reals.
Since there is non- AL infinitely countable Z’l set in
~2n+l1 2n+1
w
W, the elements of a Z‘ :21n+1 set of reals are not necessarily

enumerated by a A 1

Dont function, but

Theorem 6.1. Assume that Det( A;én)' Then the elements of a

countable A;n”_ set in ., can be enumerated by a A %n+1 functione |

Assume that Det(é;n)
Theorem 6.2. (Tanaka [40] for n = 0). | An infinitely countable

1 w 1
2on.1 St P in Wy, cannot be contain A\, ., reals of arbitrarily

high degrees s that is, there is a A ;n-kl real £ such that

(*) v of (P(e) = oL is recursive in £ ).
S
Proof. By Moschovakis (293 4F.5] , there is A ,, real][such
that
P C{(8)gr (€)1 (D) -
Using this real ¢ we have (*). O

Is was a difficult work the one performs any enumeration of a
countable T[1 set in “w . In fact it is undeoidable in ZFC. But

under the projective determinacy, we can prove , using theorem 562y

] 1
Theorem 6.3. Assume:that Det( géx&l)' Then there is a T{, .,

1
set in wu_) which cannot be enumerated by a A one2 functione. (I

Y .
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Therefor the following theorem is the best possible one.

Theorem 6.4, Assume that Det(E%m_l). Then every infinitely
Fad
countable I[:Zlm-l set in %, can be enumerated without repetition
) ‘
by a A ons3 function.

Proof. Let P be a -T[%nﬂ set in W,,. Put
Pl <> Vi, 3 (143 = (B)y F (B))) & Vi (P((B);) &
Va(P@) > 3i (o= (B)y)).

is a countable A 1

Then P, 2ne3 set, by the A —uniformization
criterion (Moschovakis [29; 4D.4] ), we can find a A ;n+3 set Py*
such that

36 r P
and

V3 (BHRI& BB > B=pr).
Now we can define the function ? T wWw—-> ww by

G(1) =l &> Tp(*(P) & (P)y =)
> B EFB) > (P, =A) .

1

on+. and enumersats without repetition

Thus the function $ is in FAY

the elements of P. ]

Closing this section, we state an extention of Sampei [ 33] and

Tanaka [39] theoren.

-8~



Theorem 6.5. (sampei [33] and Tanaka [39_] for n = 0), Assume
1 1 w
that Det( Q 2n). Then every J 5 .; 86t in ““w can be enumerated by
a A%m-z function without repitition.
Proof is similar one of theorem 6.4, using the uniformization

theorem for A %n+2 (see Kondd [21] ) instead of the A -uniformization

criterion. D
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