ON THEORIES HAVING A FINITE NUMBER OF NON-ISOMORPHIC COUNTABLE MODELS

Akito TSUBOI (坪井明人) University of Tsukuba

§0. Introduction. In this paper we shall state some interesting facts concerning non- ω -categorical theories which have only finitely many countable models. Although many examples of such theories are known, almost all of them are essentially the same in the following sense: they are obtained from ω -categorical theories, called base theories below, by adding axioms for infinitely many constant symbols. Moreover all known base theories have the (strict) order property in the sense of [6], and so they are unstable. For example, well-known Ehrenfeucht's example which have three countable models has the theory of dense linear order as its base theory.

Many papers including [4] and [5] are motivated by the conjecture that every non- ω -categorical theory with a finite number of countable models has the (strict) order property, but this conjecture still remains open. (Of course there are partial positive solutions. For example, in [4], Pillay showed that if such a theory has few links (see [1]), then it has the strict order property.) In this paper we prove the instability of the base theory T_0 of such a theory T rather than T itself.

Our main theorem is a strengthning of the following which is also our result: if a theory T_0 is stable and -categorical, then T_0 cannot be extended to a theory T which has n countable models (1 < n < ω), by adding axioms for new constants.

§1. Preliminaries. Our notaions and conventions are fairly standard. T, T_n (n< ω) will denote complete theories formulated in some countable languages. M, M_n (n< ω) will denote countable models of such theories. \bar{a} , \bar{b} ,... will be used to denote finite sequences of elements is some models. Types are complete types without parameters, and will be denoted by p, q,···. $I(\omega,T)$ is the number of countable models of T.

<u>Definition 1.</u> A type $q(\bar{x},\bar{y})$ is said to be an order expression if $q(\bar{x},\bar{y})$ is principal over the first variables \bar{x} and non-principal over the second variables \bar{y} .

<u>Definition 2 (Benda)</u>. A type $p(\bar{x})$ is said to be a powerful type of T if every model of T which realizes it realizes every type $q(\bar{y}) \in S(T)$.

We now state some facts which are necessary for proving our results.

<u>Fact (i).</u> If $I(\omega,T) < \omega$, then a powerful type $p(\bar{x})$ of T exists.

Fact (ii). Let $1 < I(\omega,T) < \omega$ and $p(\bar{x})$, $q(\bar{y}) \in S(T)$. If $p(\bar{x})$ is a powerful type of T, then there is an order expression $r(\bar{x},\bar{y})$ which extends $p(\bar{x})$ and $q(\bar{y})$.

<u>Fact (iii).</u> A theory T is ω -categorical if and only if it has only finitely many non-equivalent formulas $\varphi(\bar{x})$, for each \bar{x} .

Fact (i) and Fact (ii) can be obtained by easy observations (see [4] for reference). Fact (iii) can be seen, e.g. in [2].

§2. Main theorem and its corollary. We prove the following theorem which will show the difficulty in constructing a stable theory T with $1 < I(\omega,T) < \omega$, even if such a theory exists.

Theorem. Let T_i (i< ω) and T be theories with the following properties:

- (i) $T_i \subseteq T_{i+1}$ for all $i < \omega$; $T = \bigcup_{i < \omega} T_i$;
- (ii) T_i is ω -categorical for all $i < \omega$;
- (iii) $1 < I(\omega,T) < \omega$.

Then T has the order property, and so T is unstable. (So some T_i is unstable.)

First we prove the following lemma:

Lemma. Let $p(\bar{x})$ be a powerful type of T with $1 < I(\omega,T)$ $< \omega$ and $q(\bar{x},\bar{y})$ an order expression which extends $p(\bar{x}) \cup p(\bar{y})$. Then there is a sequence $p(\bar{a}_i,\bar{a}_{i+1}) = q(\bar{x},\bar{y})$ for all $i<\omega$, and $p(\bar{a}_i,\bar{a}_j)$ is an order expression iff $i< j<\omega$.

<u>Proof.</u> We construct two sequences $\{\bar{a}_i\}_{i<\omega}$ of realizations of p and $\{M_i\}_{i<\omega}$ of models of T such that for each $i<\omega$,

- (1) $M_{i} \succ M_{i+1}$;
- (2) M_i is prime over \bar{a}_i (hence $\bar{a}_i \in M_i$);
- (3) $tp(\bar{a}_i, \bar{a}_{i+1}) = q(\bar{x}, \bar{y}).$

This is done inductively. Let \bar{a}_0 be a realization of p and M_0 a prime model over \bar{a}_0 . $(M_0$ exists since $I(\omega,T)<\omega$.) Assume that we have already defined $\{\bar{a}_i\}_{i < n}$ and $\{M_i\}_{i < n}$. Since M_{n-1} is prime over \bar{a}_{n-1} and $q(\bar{x},\bar{y})$ is an order expression, we can choose $\bar{a}_{n-1} \in M_{n-1}$ such that $tp(\bar{a}_{n-1},\bar{a}_n) = q(\bar{x},\bar{y})$. Let $M_n \prec M_{n-1}$ be a prime model over \bar{a}_n . It is then clear that (1) - (3) are satisfied by $\{\bar{a}_i\}_{i \le n}$ and $\{M_i\}_{i \le n}$. Thus the construction can be carried out. We prove that \bar{a}_{i-1} has the desired properties. It is sufficient to prove that $tp(\bar{a}_i,\bar{a}_j)$ is an order expression if i < j. Let i < j. Then clearly $q_{i,j}(\bar{x},\bar{y}) = tp(\bar{a}_i,\bar{a}_j)$ is principal over $p(\bar{x})$. So we only have to show that $q_{i,j}(\bar{x},\bar{y})$ is non-principal over $p(\bar{y})$. But this is clear, since \bar{a}_{j-1} is prime over $\bar{a}_i \hat{a}_j$ and $tp(\bar{a}_{j-1},\bar{a}_j)$ is an order expression.

proof of Theorem. By Fact (i) and Fact (ii), we can choose a powerful type $p(\bar{x})$ and an order expression $q(\bar{x},\bar{y})$ which extends $p(\bar{x}) \vee p(\bar{y})$. So by Lemma, there is a sequence $\{\bar{a}_i\}_{i < \omega}$ M_0 of realizations of $p(\bar{x})$ such that all $p(\bar{a}_i,\bar{a}_j)$ (i<j<\omega) are order expressions and all $\bar{a}_i \wedge \bar{a}_{i+1}$ (i<\omega) realizes the same type $q(\bar{x},\bar{y})$. Choose a number $m<\omega$ and a formula $\P(\bar{x},\bar{y}) \in L(T_m)$ such that $p(\bar{x}) \vee \{ \P(\bar{x},\bar{y}) \}$ proves $q(\bar{x},\bar{y})$. For each i<\omega, let $\P_i(\bar{x},\bar{y})$ be the formula $\exists \bar{x}_0, \ldots, \bar{x}_{i-1} [\P(\bar{x},\bar{x}_0) \wedge \P(\bar{x}_0,\bar{x}_1) \wedge \cdots \wedge \P(\bar{x}_{i-1},\bar{y})]$. Since each \P_i is an $L(T_m)$ -formula and T_m is \omega-categorical, by Fact (iii), there are only finitely many non-equivalent formulas in $\{ \P_i \}_{i < \omega}$. So $\Psi(\bar{x},\bar{y}) = \bigvee_{i < \omega} \P_i(\bar{x},\bar{y})$ is a first order formula. Now it is a routine to check that, for all $i,j<\omega$, $\Psi(\bar{a}_i,\bar{a}_j)$ holds in M_0 iff i< j. Thus T has the order property.

<u>Corollary.</u> Let T_0 be stable and ω -categorical. Let T be an extension of T_0 obtained by the addition of axioms for new constant symbols. Then $I(\omega,T)=1$ or $I(\omega,T)\geq \omega$.

References.

- [1] M. Benda, Remarks on countable models, Fundamenta Mathematicae, vol. 81 (1974), pp. 107-119.
- [2] C.C. Chang and H.J. Keisler, <u>Model theeory</u>, North-Holland, Amsterdam, 1973.
- [3] A. Pillay, Number of countable models, J.S.L., vol. 43 (1978), pp. 492-496.

- [4] A. Pillay, Instability and theories with few models, Proceedings of the American Mathematical Society, vol 80 (1980), pp. 461-468.
- [5] A. Pillay, Stable theories, pseudoplanes and the number of countable models, to appear.
- [6] S. Shelah, <u>Classification theory and the number of non-isomorphic</u> <u>models</u>, North-Holland, Amsterdam, 1978.
- [7] A. Tsuboi, On theories having a finite number of non-isomorphic countable models, to appear in J.S.L.
- [8] R.E. Woodrow, A note on countable models, J.S.L., vol.41 (1976), pp. 672-680.
- [9] R.E. Woodrow, Theories with a finite number of countable models, J.S.L., vol. 43 (1978), pp. 442-455.